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Abstract

In this paper we propose a kind of implicit iterative methods for solving ill-
posed operator equations and discuss the properties of the methods in the case
that the control parameter is fixed. The theoretical results show that the new
methods have certain important features and can overcome some disadvantages of
Tikhonov-type regularization and explicit iterative methods. Numerical examples
are also given in the paper, which coincide well with theoretical results.
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1. Introduction

Let X,Y be two real Hilbert spaces and let A : X — Y be a bounded linear
operator. Consider the operator equation

Az =y. (1.1)

If R(A), ie., the range of A, is nonclosed in Y, equation (1.1) is ill-posed(!). Many
important problems in applied sciences result in this kind of equations®3l. In this
paper we consider the Moore-Penrose generalized solution 27 = A%y to equation(1.1),
where A7 is the Moore-Penrose generalized inverse of operator Alll. Aty exists if and
only if y € D(A') = R(A) 4+ R(A)*. In practice, instead of (1.1) we usually only have
a perturbed version of equation

Az = ys, (1.2)

where the perturbed right-hand term y5 € Bs(y) = {z € Y|||Q(z —y)|| < 6} with d >0
being a known error level and @) being the orthogonal projective operator from Y onto
R(A). A well-known kind of methods to obtain a suitable approximation of 1 by using
the perturbed equation (1.2) are regularization methods which can be constructed by
variation methods or the spectrum of operator A*A12). Another usually used approach
is iterative method. In 1951, Landweber ¥ proposed the first iterative method to solve
ill-posed operator equations, though the convergence rate of the method is very slow.
The next breakthrough was made by Nemirovskii and Palyakl®! and Brakhagel® who
developed independently iterative procedures of so-called v-method. In [7], Hanke
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analysed all above-mentioned methods and some others, and established a framework
for explicit iterative methods. However, the explicit iterations discussed in [7] still have
some disadvantages.

We will discuss the following kind of implict iterative methods for equation (1.1)

(A"A+ apl)z, = A"y + oy, k=1,2,--- (1.3)

T given,

where aj > 0 are some parameters and A* : Y — X is the adjoint operator of A. In
this paper, we assume all oy, are equal and hence (1.3) becomes

(A"A+al)zy, = A"y + axg 1, k=1,2,--- (1.4)

In a relative paper we will consider the general case.

2. Convergence Properties for Nonperturbed Equation(1.1)
Iteration (1.4) may be rewritten as
(A"A+ al)(zk — 2p—1) = A™(y — Azg—1) (2.1)

Let r, = A*(y — Azy), and (2.1) becomes z = z_1 + (A*A + o) 'r;_;. Repeat use
of this formula gives r, = o*(A*A + o) *ry and

24 = U (A" A) A%y + Py o(A* A)zg (2.2)

with
Pra(\) = (Aia)k (2.3)
Uk,a(A) = (1 = P a(N)/A (2.4)

In the paper we will use following notations:

I, := (0, A% Al

S ={z e X|A*Az = A*y}

P; : the orthogonal projection X — S

{E\} and {F,}: the spectrum families of self-adjoint operators A*A and AA*,
respectively.

S is the set of the least squares solutions to equation (1.1) and S # @ ify € D(A™).
In the sequel we will always assume the case and Qy#0 as well.

Lemma 2.1. For any fized o > 0 and z € N(A)*,

| Ppo(A*A)|| < 1, Ppo(A*A)z — 0, as k — oo.

Theorem 2.2. Let {x;} be the iterates of (2.1), then xy, — Pszg, as k — oo.
Especially if vog = 0,2, — Aty.

Proof. Since Pyrg € S, A*y = A*APsxy and zy —Pyxzg € N(A)*. By (2.2) and
Lemma 2.1,

o, — Psxo = Py o(A"A)(xo — Pszg) = 0, as k — oo
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It is clear that Psxg = 2+ = ATy if 29 = 0.
According to the theorem , we always take in the paper 2y = 0, and hence

Tk — (II+ = _Pk’a(A*A)er (27)

As usual, to consider the convergence rate of ||z — z™|| one needs some “smoothness”
property of zt11, Let X, = R((4*A)") ¢ N(A)*,v >0, and

1/2
ol = ([ A d|Bal?) ”? forzeX,
0

r € X, if and only if there exists a unique f € N(A)* such that z = (4*A)” f and in
this case ||z|, = || f]l-
Lemma 2.3. Let 2 € N(A)-. Then for any fized v > 0,

* v * NV
147 4)" Pea(A* Az = ex(@) (7)) k21, (2.8)
where fxo 12
—er@) = [ [ (2) N Pea(N)?d|| Exell? 2.
o) =€) = [ [ (3) N PO dl Bra] (2.9)
with the properties
x(x) < C1v”|all, (2.10)
ep(x) = 0, as k — oo. (2.11)
The constant C; = Cy(k,v) is given by the formula
AFA|R, ik <
o _ [ IAAlE k< 012)
1, ifk >v
Proof. (2.8) is obvious. It can be verified by differentiation that
sup A Py o (A) < cly”(%)” (2.13)

A€l

and hence (2.10) follows. Let £,(A\) = (k/a)” X\ Py A()), and (2.13) shows &, (A) < Civ”
for A € Iy and k > 1. Let 1 be any positive number such that 0 < n < ||A*A[|. It is not
difficult to verify that £,(A) — 0 uniformly in [, ||A*A||] as k¥ — oo. These properties
of & (A) result in (2.11).

As a consequence, we have

Theorem 2.4. Suppose there exists f € N(A)* such that x+ = (A*A) f € X, for
some v > 0, then

lox -t = e (%) (2.14)

where e (f) = e “(f) is given by (2.9).

Proof. The result follows from Lemma 2.3 and the equality zy—z" = — Py, o(A*A)z™t
= Py (AT A) (AT AT,

Remark 2.5. (2.14) and (2.11) show that for any individual z+ € X,

lzx — 27| = o(k™"), as k — oo. (2.15)
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The factor ,(f) in (2.14) goes to zero, however the rate can be arbitrarily slow. In
fact, the following result is valid: let {7} be any positive sequence with 7, — 0, then
there exists a certain 27 = ATy € X, for which

g~ _
m ———- =00
k—oo k™Y

We omit the details.

3. Convergence Properties for Perturbed Equation (1.2)
For equation (1.2), the iteration is

(A"A+ al)(z) — 2 ) = A"(ys — Al_), k> 1, (3.1)
0 _
Ty = 07

and the iterates mi may be given by

) = Ugo(A*A) A*ys (3.2)

Because of ill-posedness of the equation, the quantity ||ATys — A*y|| can be arbitrarily
large eventhough y; € D(A™) and |lys — y|| < 4.

Lemma 3.1. Let y5 € Bs(y) and {2} and {z}} be the iterates of (3.1) and (2.1),
respectively. Then

k
2, — ]| < (5)1/25 (3.3)
Proof. Since 7 — ), = Uk o(A*A)A*(ys — y) = Uk,a(A*A)A*Q(ys — y) and y; €
Bj(y), it is valid that
2 = 24]1” =(Uro( A" A) A" Q(y5 — 1), Ur.al A A)A™Q(y5 — )
=(AA* U o(AA*)Q(ys — y), Qys — y))

= [ AUZLOIEQUs ) < 8 sup AUE, () < 2
Io ’ AeTp ’ a
As a consequence, we derive
Theorem 3.2. Let ys € Bs(y) and the natural numbers k=k (6) be chosen such
that k(8) — oo and 6k(6)/2 = 0 as § — 0. Then ||x2(5) -z =0, as § — 0.
Proof. The result is based on Theorem 2.2, Lemma 3.1 and the following inequality

Iz — 2|l < llzf — zxll + [l — 27| (3.4)

Now turn to the consideration of convergence rate of {z{}.
Theorem 3.3. Let ys € Bs(y) and 27 = (A*A)Yf € X, for some v > 0 and
f € N(A)L. Then with
(0) = Caar(eg(a) (£)/0)/ 2+ (3.5)

where e (f) = e,*(f) is given by (2.9), we have

5y — | < Caepa ()10 Cv D) (3.6)
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where C3 = Cy" + 021/2.
Proof. By (3.4), (3.3) and (2.14) it is valid with such k£ = k(J) that
v 1/2
||‘/I:i _ ZE+|| < 5k(f)(%) + (E) / 5= 035k(f)1/(2y+1)52y/(2y+1)-

o

If there exist two constant C' > C > 0 such that the number Cy = Cs(d, k) can be
chosen with the following condition

C < Cy<C, for 6§ < 6, (3.7)

(3.6) shows
255y — =t = o(62/C¥ 1) (3.8)

It was proven by the first author!®l that for any regularization algorithm solving linear
ill-posed equations, the convergence rate (3.8) is optimal in the sense like that mentioned
in Remark 2.5. We do not take the trouble to discuss whether condition (3.7) can be
satisfied or not, since (3.5) is not implemental in practice. Applicable strategies of
choosing k = k() in practice are a posteriori ones. In the next section we will consider
such a strategy and prove the rate (3.8) can be retained.

4. The Morozov’s Discrepancy Principle

As usual, we suppose in this section that ys and 6 > 0 satisfy

1Q(ys — )l <0 <1Qysll/¥o (4.1)

with a certain constant vy > 1. Since Qy # 0, all the elements of Bjs(y) satisfy (4.1)
when ¢ is suitably small. By using Morozov discrepancy principle®) which is widely
used in practice, we derive the following regularization algorithm.

Algorithm 4.1. Let (4.1) be satisfied and {2} be the iterates of (3.1). Suppose
k= k(d) = k(0,ys) is the first natural number for which

1Az} 5 — Qusll < Y00, (4.2)

then stop the iteration and take xz(a) as the solution of (1.2).
Theorem 4.2. Algorithm 4.1 can be terminated after a finite number of steps and

k(6) — oo, :ch((;) -zt as§ =0 (4.3)
Proof. By (3.2),
Az, — Qus = AU o(A*A) A*ys — Qys = —Pi o (AA™) Qs (4.4)

Since R(A) = N(A*)* and hence Qys € N(A*)*, lemma 2.1 shows P, o (AA*)Qys — 0
as k — oo. In fact, by (4.4) ||Az — Qys|| converges monotoniclly to zero as k — oo
and thus Algorithm 4.1 can be terminated after a finit number of steps. It is also clear
k(6) — oo as § — 0. For such k(d), (4.1), (4.4) and Lemma 2.1 lead to

| Az, 5y — Qull <[|A35) — Qusll + | A(zh5) — Tr(s) — Qys — y)l|



280 G.Q. HE AND L.X. LIU
<700 + [ Prs),a (AA")Q(ys — y) Il < (0 +1)0 (4.5)

and
| Az )1 — Qull > [ Az 5y 1 — Quasll = 1 Pr(s)—1,0 (AA")Q(ys — )| > (v0 — 1)3. (4.6)

On the other hand, since A*y = A*Az™ and Qy = Azt we derive Az, — Qy =
AUy o (A*A)A*y — Qy = — APy, o(A*A)z ™. This with Lemma 2.3 gives

1Az (51 = Qull =IIAPy(s) 1,0 (AT A)a™ || = (A" A) 2 Pyis) 1 0 (A" A)a ™|

=" (") (W"_l) & (4.7)

By (4.6), (4.7) and Lemma 3.1,

k(0)\1/2 1 /k(6)\1/2
lae — arah < (B %5 < L (KO ags s - qul

« Y -1\ «
1 E(0) \Y2 12,0 ,
-1 (k(a) — 1) Ex()-1(27)

Thus the theorem follows from (3.4), (2.11) and the property k(d) — oo as 6 — 0.

We turn now to the convergence rate of Algorithm 4.1.

Theorem 4.3. Suppose x+ = (A*A)f € X, for some v > 0 and f € N(A)" and
let :ch((;) be the solution of (1.2) obtained by Algorithm 4.1. Then

25y — 21l < O (6, )62/ v+ (4.8)
where
I/a (5 f) _Ek )(f)l/(21/+1) (,Y + 1)2V/(2V+1)

g2ty el gy
+ )

+[ o — 1

(87

Proof. By (2.7), (4.7), (4.5), Lemma 2.3 and Hélder inequality, we have

|z k(s) — 27| = Prsy (A% A) (A" A)" f|
<[ Ps),a (A" A) FIIY D (A7 A) 2 Py s) o (AT A) (A A) £/ )
—“Pk 6),a(A )f”l/ (2v+1) ’|A$k _ Qy“2u/(2y+1)
<5k (f L/@uD) (4 + 1)2u/(2u+1)52u/2u+1) (4.10)

Assume now k() > 2. By (4.6) and Lemma 2.3 we derive
(y0 = 1)6 <[[Azp5)—1 — Qyll = (A" A4)'? Py 1,0 (A" A)(ATA) [

_ vt+l/2,e « v+1/2
~Ck(9)-1 (f)(k((s) — 1)
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and hence
v+1/2,a

£ v
k(0) <1+ a(%)w@ U 52/t (4.11)
-

If v > 0, in(2.9) we may reasonably define £5°*(f) = 0. Therefore (4.11) is valid for
k(6) =1 as well. We finally derive by (4.10), (4.11) and Lemma 3.1 that

|3 — | <lww) — 271 + 123 — Zas) |
ng,g) (f)l/(Zu-l—l) (’)/0 + 1)2u/(2u+1)52u/(2u+1)

v+1/2,a
g2/ v el SN () 212,
v/(2v+1)
+[ o +( Y —1 ) ] ’

=Cyi5) (8, oD,

For any fixed o > 0, (2.11) and (4.3) show ngz)(é,f) — 0 as 6 — 0, and thus we
have

Corollary 4.4. Suppose x+ = ATy € X, for some v > 0 and let xg(ﬁ) be the
solution of (1.2) obtained by Algorithm 4.1. Then (3.8) is valid.

Theorem 4.3 not only claims the optimal convergence rate of xg( 5 but gives a clue
how to choose suitable parameter «. (4.11) shows that k(J) may discreases when «
discreases, while by (4.9) the error ||:ch( 5 z7|| may increases. This means we can
change the number of iterations and somehow the error of the approximate solution by
varying «. Due to this property we will call a the control parameter of (2.1). Let u,
0 < p < 00, be such a number that 2% € X,, for any v < p, while z7€X,,. (4.9) shows

the strategy of choosing « by
o ~ §2/CrtD) (4.12)

may be reasonable. In this case we have the estimate for the error

ey — @l = O(8/2+1), (4.13)

5. Numerical Implementation and Examples

Let Wy, C R(A) be an m-dimensional subspace and @),,, be the orthogonal projector
Y = Wy Let Ay = QuA, Vi, = A*(W,,) C N(A)L. Then discrete versions of (2.1)
and (3.1) have the forms [10:11]

(A;knAm + aI)(fI;k,m - xkfl,m) = A;kn(y - Amxkfl,m) (5.1)
(A A + @) (20 1 = 20—y gn) = A (Y — Amai_y m)

with zom = 2§, = 0. Let z}, be the limit of iterates {zyy,} obtained by (5.1), then
z}t = Ppa™t, where P, is the orthogonal projector X — Vj,. Consider Volterra integral
equation of the first kind

(Az)(s) = /0 “p(t)dt = y(s), s € 0,1]. (5.3)
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d
To solve (5.3) for = by given y is equivalent to find z = ATy = d—y(s), which is a
s

typical ill-posed problem. Let X =Y = L?[0,1] and W,, be the m-dimensional linear
splines subspace with evenly spaced nodes. In the computation we take m = 65 and
v = 1.01 in (4.2).

Example 5.1. Consider equation (5.3) with

2
T2

Using the singular value decomposition (SVD) of A ,one can show ATy =z € X, for
v < 1/2 but z€X, /2. The perturbations used in computation are

z(t) =t, y(t) (5.4)

Pert.1 ys —y = /20 sin 107t
Pert.2 ys —y = /20 sin 1007t (5.5)

for several values of §. In this case, (4.12) suggests the control parameter « be taken
such as @ ~ ¢ and the numerical results in Table 5.1 with a = ¢ are underlined

Table 5.1 Numerical results for Ex 5.1

pert.1 pert.2
b | o [KO) [T — 2 ] 1o — @ 1707 [ *(0) | 70— 11 [ [0 — 2 1/07
1 20 0.345349 4 0.435629
1.E-1 0.1 3 0.336833 1.07 1 0.388876 1.23
0.01 1 0.416409 1 0.234946
1 168 0.191585 98 0.226528
1.E-2 0.1 18 0.190365 11 0.198019
0.01 3 0.184072 1.84 2 0.178698 1.79
0.001 1 0.200516 1 0.131895
0.1 234 | 0.0925765 204 0.0951964
1.E-3| 0.01 24 0.0923209 21 0.0951448
0.001 3 0.090044 2.85 3 0.0897274 2.84
0.0001 1 0.0746789 1 0.0743447
0.1 3211 | 0.0514845 3140 | 0.0518935
0.01 321 0.0514816 314 0.0518892
1.E-4| 0.001 33 0.0514126 33 0.0516766
0.0001 4 0.0485582 4.86 4 0.0513982 5.14
0.00001 1 0.0485005 2 0.0486051
0.1 6318 | 0.0488675
0 0.01 631 0.0488669
0.001 64 0.0488657
0.0001 8 0.0487074

The last group of results, i.e., with 6 = 0, are those for unperturbed equation (5.1),
and the corresponding k = k(J) are determined by the condition

[Zgm — 2|
Whem =7 1 <1 1. (5.6)
|z — 2|
Example 5.2. Consider equation (5.3) again but with
mt 2 mt

x(t) = cos 5 y(t) = - sinE (5.7)
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Then z € X, for any v > 0. The perturbations used in computation are the same as
in Ex 5.1.

In this case, (4.12) suggest that o ~ 1 and the corresponding numerical results are
underlined in Table 5.2.

The numerical results of Examples 5.1 and 5.2 coincide quite well with the theoritical

analysis in previous sections. Especially these results show the key role of parameter «
in controlling the numbers of iteration.

Table 5.2 Numerical results for Ex 5.2

pert.1 pert.2
b | o [FO) [ehs o [ [ws — o 70 [ KO) [Tt — o 1 | o — =711/
1 9 5.35372E-2 0.535 5 | 1.29844E-1 1.30
1.E-1| 0.1 2 7.83470E-2 1 1.40757E-1
0.01 1 2.99041E-1 1 2.27441E-2
1 16 | 6.95028E-3 0.695 12 1.20215E-2 1.20
1.E-2| 0.1 4 1.35180E-2 3 5.60373E-3
0.01 2 5.60419E-2 2 2.65899E-3
0.001 1 1.55571E-1 1 1.06857E-2
1 22 | 9.67112E-4 0.967 18 | 1.55617E-3 1.56
0.1 5 1.67115E-3 4 1.09980E-3
1.E-3| 0.01 2 5.62067E-3 2 5.23116E-4
0.001 2 2.31765E-2 2 1.95685E-3
0.0001| 1 2.82141E-2 1 5.99294E-3
1 29 | 1.56561E-4 1.57 25 | 1.89798E-4 1.90
0.1 6 2.57750E-4 6 3.44274E-4
1.E-4| 0.01 3 7.82692E-4 3 1.95665E-4
0.001 2 2.30535E-3 2 3.47650E-4
0.0001 | 2 3.08864E-3 2 9.88501E-4

6. Comparison and conclusions

In this paper we propose a kind of implicit iterative methods to solve linear ill-
posed operator equations, and discuss properties of the methods in which the control
parameter « is fixed. The results presented in the paper show that for any fixed o >
0, Algorithm 4.1, which is constructed together with Morozov discrepancy principle,
always leads to the optimal convergence rate (3.8). Thus Algorithm 4.1 is a robust
regularization algorithm®l. Another remarkable feature of the new method is that
one can efficiently control the number of iteration by varying the parameter a. This
property is valuable in practical applications. Each one of r-methods discussed in
[5-7] forms for all ¥ > 0 a family of sequent robust regularization algorithms(®l. A
trouble with a family of such algorithms is how to choose a suitable value v in practical
computation, since the smoothness property of the generalized solution z* is usually
unknown. Another difficulty with a r-method is that one has to estimate accurately the
norm ||A*A||, otherwise the method may not lead to satisfactory result (recall the same
situation for the Chebeshev acceleration in finite-dimensional cases!'?)). Tikhonov-type
regularization methods are another important approaches to solve ill-posed problems.
For example, the nth Tikhonov iterative method!!3!4 and the Tikhonov regularization
in Hilbert scales!!®16l are also sequent robust families of regularization algorithms.
Therefore, use of these methods still faces the trouble of choosing a suitable individual



284 G.Q. HE AND L.X. LIU

one in the families. Besides, when any a posteriori principle is used to determine the
regularization parameter, one has to solve a supplementary nonlinear equation. This
will result in extra difficulty. The implicit iterative methods discussed in the paper,
however, have no such troubles, and may become an efficient approach to solve linear
ill-posed problems. Furthermore, if the control parameter a varies suitably in the
iteration procedure, we may obtain even more efficient algorithms. The further work
is now underway.
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