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Abstract

To improve the numerical evaluation of integrals in Number-Theoretic Methods,
we give a two-stage algorithm. The main idea is that we distribute the points
according to the variations of the quadrature on the subdomains to reduce errors.
The simulations results are also given.
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1. Introduction

The Number-Theoretic Method (NTM) is a special method which represents a com-
bination of number theory and numerical analysis. The widest range of applications
and indeed the historical origin of this method is found in numerical integration. Also
related problems such as interpolation and the numerical solutions of integral equa-
tions and differential equations, optimization and experimental design in statistics can
be dealt with successfully. [1-4] give a comprehensive review in bibliographic setting.

In this paper we consider the problem of evaluating integration. Let D be a domain
in R® (s-dimension) and f(X) be a continuous function defined on D. We want to
calculate the definite integral

100) = [ rxyax (1

There are two main approaches in evaluation of I(f). One is Monte Carlo method
(MCM) developed by S. Ulam and J. Von Neumann. The basic idea of the Monte
Carlo method is to replace an analytic problem by a probabilistic problem with the
same solution, and then investigate the latter problem by statistical simulation. For
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simplicity, we consider D = [0, 1]* first. Suppose that X is a random vector which is
uniformly distributed on [0,1]*. Then

BU(X) = [ /(X)X = 1(f)
with
9 9 1/2
= [ [ r2x)ax - wrx)y]
if they exist. Let X1, Xo,---, X, be independent samples of X and

> fIX (2)

i=1

3|>—‘

By the strong law of large numbers, I(f,n) converges to I(f) with probability one
as n — oo. Moreover, I(f,n) is approximately normally distributed when n is large
by the central limit theorem. Also the law of the iterated logarithm shows that with

nlLrIgosup V 21In( lnn ‘ Zf ‘ - 02(f(X))

Another approach is the use of the number-theoretic method (NTM). The number-
theoretic method for evaluation of the integral is based on the theory of the uniform
distribution. Let P, = {X,k =1,2,---,n} be an NT-net on [0, 1]° with low discrep-
ancy (cf. Fand and Wand (1994)). Then we may use

probability one

1 n
= > f( (3)
k=1
as an approximation for I(f).
Definition. Let (n;hq,ho,---,hs) be a vector with integral components satisfying

1 < h; <mn, hy # hj (i # j), s < n and the greatest common divisors (n,h;) = 1,
1=1,---,s. Let
{ ki = khi(modn)
ki = (2gki —1)/2n

where we use the usual multiplicative operation module n such that gi; is confined by
1 < ggi < n. Then the set P, = { Xy, k = 1,2,---,n} is called the lattice point set
1

:1727"'7n7i:1727'”75 (4)

of the generating vector (n;hy, ho,---,hs). If the set P, has the discrepancy o(n” 2),
then the set P, is called a glp set. It can be seen that xy; defined in (4) can be easily

calculated by
2kh; — 1
Tki = {QZT} (5)

where {x} stands for the fraction part of x. In one dimension case P, = {(2k — 1)/2n,
k=1,2,---,n}. The convergence rate of I(f, P,) can reach O(n *(logn)®) which is
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better than Monte Carlo method. This is why the error of I(f, P,) is smaller than that
of I(f,n). Example 1 gives the comparison.

1 1
Example 1. Let f(z) = 2—672(22%_”:3) which is normal density of N(0,I). Of
m

course, the true value of the integral on [0,00]% is 0.25. Table 1 gives the errors of
evaluation of the integral by using NTM (glp) with different n and A, where we truncate
[0,¢]? by [0, A]?. We list the errors of Monte Carlo method on Table 2. Tt is clear that
NTM (glp) is better than MCM.

Table 1
n\A 55 89 144 233 377 610 987 1597
2 —.02052 | —.02071 | —.02158 | —.02165 | —.02198 | —.02201 | —.02214 | —.02215
3 .00043 .00121 —.00068 | —.00038 | —.00109 | —.00098 | —.00125 | —.00121
4 —.00010 .00185 —.00006 .00067 —.00004 .00023 —.00004 .00007
5 —.00212 .00015 —.00083 .00003 —.00032 .00001 —.00012 .00000
6 —.00542 | —.00244 | —.00213 | —.00099 | —.00082 | —.00038 | —.00032 | —.00015
7 —.01144 | —.00601 | —.00445 | —.00234 | —.00172 | —.00090 | —.00066 | —.00035
8 —.02034 | —.01045 | —.00778 | —.00404 | —.00299 | —.00155 | —.00115 | —.00059
9 —.03123 | —.01580 | —.01177 | —.00608 | —.00450 | —.00233 | —.00172 | —.00089
10 —.04292 | —.02209 | —.01600 | —.00846 | —.00610 | —.00324 | —.00233 | —.00124
11 —.05461 | —.02933 | —.02025 | —.01118 | —.00770 | —.00428 | —.00294 | —.00164
12 —.06602 | —.03757 | —.02453 | —.01426 | —.00932 | —.00546 | —.00356 | —.00209
Table 2
n\A 55 89 144 233 377 610 987 1597
2 —.02437 | —.00280 | —.00698 | —.01060 | —.00971 | —.01605 | —.01799 | —.02232
3 —.02562 .01603 .01276 .01210 .01389 .00494 .00210 —.00354
4 —.06736 | —.00818 | —.00665 | —.00099 .00570 —.00023 | —.00448 | —.00896
5 —.11436 | —.03963 | —.03148 | —.02290 | —.00968 | —.01069 | —.01642 | —.01889
6 —.15438 | —.06759 | —.050564 | —.04436 | —.02603 | —.02310 | —.03006 | —.03012
7 —.18583 | —.09100 | —.06324 | —.06298 | —.04055 | —.03524 | —.04353 | —.04136
8 —.20941 | —.11033 | —.07181 | —.07882 | —.05183 | —.04549 | —.05535 | —.05186
9 —.22603 | —.12591 | —.07804 | —.09239 | —.05968 | —.056335 | —.06494 | —.06139
10 —.23688 | —.13844 | —.08299 | —.10419 | —.06474 | —.05916 | —.07244 | —.07000
11 —.24336 | —.14890 | —0.8733 | —.11460 | —.06800 | —.06359 | —.07837 | —.07794
12 —.24691 | —.15825 | —.09153 | —.12392 | —.07044 | —.06731 | —.08331 | —.08542

Even so, in this paper we shall discuss a Two-Stage Algorithm (TSA) of numerical
evaluation of integrals on NTM. In Section 2 we shall give discussions of improvement.
Two-Stage Algorithm of one dimension and s-dimension will be given in Section 3 and
Section 4 respectively.

2. Discussions of the Accuracy in Evaluations by NTM

Although the NTM is a very good tool to solve the problems of numerical evaluation
of multiple integrals, as we saw in Section 1. In some situations, the results are not
accurate enough and we need some modifications.

(i) Suppose that the integrant function f(X) is a continuous function defined on



288 K.T. FANG AND Z.K. ZHENG

D =0, 00]*. We want to evaluate

1) = [ rxyix

by NTM. After choosing n, the number of points to evaluate the integrals, we should
truncate [0, 00]®* by D' = [0, A]® or D' = [0, A1] x [0, A3] x -+ x [0, As] and spread the
points on it. It seems a dilemma: Since I(f) < oo and f(z) > 0 as z; (1 =1,2,---,n)
goes to oo, if we pick small A (or A;) we lose the integral on D/D’ which can not be
negligible, if we pick large A (or A;), the large area leads the low density of the points,
which may affect the accuracy of the integral since many points fall the area on which
f(x) almost vanishes. We may find that if we can choose a suitable pair of n and A, we
can get the good evaluation. For instance, (55,4), (89, 5), (144, 4), (233, 5), (377, 4)
in Table 1 are good pairs. On the other hand, large A leads poor evaluation. Pair (55,
4) is better than (1597, 7), that is we use more than 1500 points and get worse result
if A is not suitable. The question here is how to choose n with a suitable A.

(ii) Suppose that D = [a,b]® with —00 < a < b < 400 and f(X) is a continuous
function on D. If the variation of f(X) is huge, only a few points of n are available for
evaluating the integrals.

Example 2. Let f(X) = 5023°23" and D = [0,1]2. The values of f(X) are small
except £1 = 1 and z9 = 1. NTM distributes the points uniformly and f(X) vanishes
at most points. The remained points at which f(X) is not near zero gives the poor
results by NTM. Table 3 gives the poor results by MCM and NTM. The true value of
I(f) is 0.11338.

Table 3

n ho MCM NTM
55 34 | .00544 | .64713
89 55 | .00348 | .48143
144 | 89 | .00562 | .35306
233 | 144 | .04543 | .26534
377 | 233 | .06712 | .20787
610 | 377 | .13816 | .17195
987 | 610 | .11869 | .14944

(iii) NTM gives good evaluation of integral on whole D but not on the subdomains
of it.

Example 3. Let f(X) = 50(2?° + 23°) and D = [0,1]>. We pick n = 144,
ho = 89 and get the evaluation of the integral 4.75788 by NTM. It is quite well. The

1 1
true value of integral is 4.76191. Now, we divide D into subdomains: [0, g] X [0, —],

o« 52 Bl (2 52 < o) (52 [ 2) (1] 2]

2] % [0.5] 1] % [5.2] and [2.1] % [2.1]- Then we evaluate the integral on
subdomains.
Table 4 tells us that on some D; NTM underestimates the integrals (i.g. [%, 1] X

1
[0, g}) and on some D; NTM overestimates the integrals (i.g. [2/3,1], x[2/3,1]). The
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total integral is evaluated very well but on some subdomains it is very bad, for instance
on [2/3,1] x [2/3,1], the error is 0.5239911 over 33%. This also shows that NTM only
views the whole pictures in average.

To overcome such difficulties, we suggest a Two-Stage method of NTM. The main
idea is that we distribute the points according to the variations of the quadrature on
the subdomains to detect the details.

Table 4
D; NTM # (points) True
[0, 2] x [0, 4] | 1.3643 x 107 "° 16 15174 x 10~ 1°
[0, 4] x [£,2] | 22884 x 10°* 17 1.5912 x 107
[0,3] x [2,1] 0.6024776 15 0.7934917
[,2] x [0,2] | 22884 x 10°* 17 1.5912 x 107
[2.2] x [5,2] | 20909 x 10~* 15 3.1823 x 10~*
[1,2] x [2,1] 0.7206415 16 0.7936507
[2,1] x [0, 3] 0.6024764 15 0.7934917
[2,1] x [£,2] 0.7206495 16 0.7936507
[2,1] x [2,1] 2.110974 17 1.586983
Total 4.75788 144 476191

3. One Dimension Case

We start with one dimension case. Let f(z) be a continuous function on [a,b].
Two-Stage Algorithm:

Step 1. Distribute m points {z;} on [a,b] uniformly, that is, a = 21 < z9 <
Ty < Type1 = b with same A = x4 — x; (If @ = —o0, we choose 27 = ag such that
f(ap) is small enough. Similar thing happens if b = +0c). Calculate the values of f(z;)
(zi=1,2,---,m+1).

Step 2. Investigate the variations of f(z) in each interval. Let h; = |f(z;41)— f ()]

m

as a measure of variation on [z;,x;11] and define H = Zhi’ the “total variation”.

1
Furthermore, let

{nhi} . nh; > 1
=) UH H
1 if "g’ <1

where [z] denotes the integer part of x.

Step 3. Use n; as the number of points to evaluate the integral on [z;, z; 1] by
NTM.

Step 4. Sum up the values obtained in Step 3.

m
Remark. (i) The total number we used is n* = (n 4+ 1) + Y _ n;;

1
(ii) It seems that the good evaluation will be gotten by increasing m as increasing

Example 4. Let f(z) = 5022° on [0,1], Table 5 compares the errors of evaluations
of integral by MCM, NTM and TSA. The true value of integral is 2.380952.
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Example 5. Denote by ®(z), the normal distribution function, that is

o) = [ e au= [ g
x . me U . ¢(u)du
Table 5
n MCM NTM(gp) | TSA (m=3) | n*
10 | —2.237063 | —0.377930 —0.056817 11
15 | —2.081293 | —0.177232 —0.023938 16
20 0.042024 —0.101614 —0.013241 21
25 —0.432550 | —0.065614 —0.008479 26
30 —0.756873 | —0.045786 —0.005956 31
40 0.867197 —0.025880 —0.003503 41
50 1.217550 —0.016600 —0.002387 51
60 1.462220 —0.011541 —0.001790 61
80 0.709920 —0.006500 —0.001202 81
100 0.602445 —0.004162 —0.000933 101
150 | —0.126244 | —0.001850 —0.000669 151
200 0.082538 —0.001041 —0.000578 201
Table 6
n=n" MCM NTM (gp) | TSA (m=3) | > n,
1
9 0.02706314 | 0.02137493 0.02188900 5
10 0.02435687 | 0.02163402 0.02216353 6
11 0.03733996 | 0.02182641 0.02231307 7
12 0.03427031 | 0.02197313 0.02240336 8
13 0.03163413 | 0.02208753 0.02246202 9
14 0.02937456 | 0.02217845 0.02250227 10
15 0.02749133 | 0.02225188 0.02253105 11
16 0.02577312 | 0.02231203 0.02255236 12
17 0.02425705 | 0.02236193 0.02256857 13
18 0.03112461 | 0.02240377 0.02258119 14
19 0.02948647 | 0.02243919 0.02259121 15
20 0.02807975 | 0.02246945 0.02259929 16
21 0.02674478 | 0.02249550 0.02260590 17
22 0.02552911 | 0.02251809 0.02261138 18
23 0.03105132 | 0.02253780 0.02261597 19
24 0.02975789 | 0.02255510 0.02261986 20
29 0.02506723 | 0.02261650 0.02263257 25
34 0.02156441 | 0.02265289 0.02263929 30
39 0.01946303 | 0.02267622 0.02264327 35
44 0.02431821 | 0.02269205 0.02264583 40
104 0.02254400 | 0.02273972 0.02265266 100

We want to evaluate 1 —®(2). Since ¢(x) goes to zero as u — oo quickly and 1 —®(7) <
1079, we consider the interval[2, 7] and compute ®(7) — ®(2) by MCM, NTM and TSA.

m
Table 6 lists the results where we let n* = (m + 1) + an The value of ®(7) — ®(2)

1
is 0.02275 by the statistical table. Table 6 gives us the impression that for small n
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(up to 29) TSA is better than NTM and MCM, but for large n NTM is better. Here

we point out: we prefer choosing large m when n is a fixed large number. Although
m

in this situation Z n;, the number of points which we use to evaluate the integral, is

!
smaller relatively, the accuracy will be promoted. On the last line of Table 6, the value

of TSA (m = 3) is 0.02265266. It is worse than that of NTM. But if we let m = 20, it
is 0.02273807; and if we let m = 30, it is 0.02274179. It seems that there is a suitable
a = a(n) < 1 and we can get good result by choosing m = na.

4. S-dimension Case

We develop the idea of Section 3 to s-dimension case. Let D be a domain in R® and
f(X) be a continuous function on D. We want to calculate

106) = [ p(x0ax
D
First of all, we can find a rectangle of D, say D*, on which f(X) is bounded such that

A = F(X)dX (8)
Jp /D

can be negligible. Then we evaluate

10) = | #x)ix )

Two-Stage Algorithm:

Step 1. Divide D* into r rectangles and let the volumes of the rectangles as equal
as possible.

Step 2. Let Ey, Fs, -+, E, be the rectangles in Step 1, we measure the variations
of f(X) in B, = [ailubil] X [aig,big] X - X [ais,bis] by

hi:HUl%;(‘f(U)_f(V)‘ (i=1,2,---,5)

where U,V are corner points of E;, i.e., U,V with the form of (e;1, eio, -, eis) (eij =
Qg5 OT b”)
T
Step 3. Let n; = [nh;/H] + 1, where H = Zhi

i=1
Step 4. Use n; as the number of points to evaluate the integral on E;

Step 5. Sum up the values obtained in Step 4.

Example 6. We compute multivariate normal distribution for s = 2 with u; =
po =0, 01 = 09 = 1 and p13 = 0. The probability that X falls on the first orthant is
called the orthant probability. Gupta (1963) provided a comprehensive review. Steak
(1962) gave a substantial review of the results pertaining to orthant probabilities in the
equicorrelated case, and Johnson and Kotz (1972) presented some additional results
and references. Here we choose D = [0,10] x [0, 10] and believe that the probability X
falls on [0, co] x [0, 00]/[0,10] x [0,10] is very small.
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Table 7
n(h2) Evaluation
55 (34) | 0.2070753
89 (55) | 0.2279124
144 (89) | 0.2340000

233 (144) | 0.2415409
377 (233) | 0.2439044
610 (377) | 0.2467571
987 (610) | 0.2476715

Table 7 lists the results by NTM (glp). It converges slowly to 0.25. If we use TSA,
we only choose n = 144 and the evaluation is 0.2481206 which is better than NTM
(glp) of n = 987.

The details are the following:

10

1 1 1
4

16 | 3 1
2

112 16 1

2 4 10
Figure 1

Let lines 71 = 2, 1 = 4, x9 = and 5 = 4 divide [0, 10] x [0, 10] into 9 rectangles as

1 1
Fig.1. Measure the variation of ¢(z1,z9) = (27) L exp (— ix% - ?E%) in each rectangle
and distribute 144 points according to ¢; (see Fig.1). They almost concentrate on

[0,2] x [0,2].
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