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A TWO-STAGE ALGORITHM OF NUMERICAL EVALUATIONOF INTEGRALS IN NUMBER-THEORETIC METHODS�1)Kai-tai Fang(Department of Mathemati
s, Hong Kong Baptist University; Institute of AppliedMathemati
s, Chinese A
ademy of S
ien
es, Beijing 100080, China)Zu-kang Zheng(Department of Statisti
s and Operations Resear
h, Fudan University, Shanghai 200433,China; Department of Mathemati
s, Hong Kong Baptist University)Abstra
tTo improve the numeri
al evaluation of integrals in Number-Theoreti
 Methods,we give a two-stage algorithm. The main idea is that we distribute the pointsa

ording to the variations of the quadrature on the subdomains to redu
e errors.The simulations results are also given.Key words: Numeri
al integration, Monte Carlo method, Number-theoreti
 method.1. Introdu
tionThe Number-Theoreti
 Method (NTM) is a spe
ial method whi
h represents a 
om-bination of number theory and numeri
al analysis. The widest range of appli
ationsand indeed the histori
al origin of this method is found in numeri
al integration. Alsorelated problems su
h as interpolation and the numeri
al solutions of integral equa-tions and di�erential equations, optimization and experimental design in statisti
s 
anbe dealt with su

essfully. [1{4℄ give a 
omprehensive review in bibliographi
 setting.In this paper we 
onsider the problem of evaluating integration. Let D be a domainin Rs (s-dimension) and f(X) be a 
ontinuous fun
tion de�ned on D. We want to
al
ulate the de�nite integral I(f) = ZD f(X)dX (1)There are two main approa
hes in evaluation of I(f). One is Monte Carlo method(MCM) developed by S. Ulam and J. Von Neumann. The basi
 idea of the MonteCarlo method is to repla
e an analyti
 problem by a probabilisti
 problem with thesame solution, and then investigate the latter problem by statisti
al simulation. For� Re
eived April 29, 1996.1) The work was �nished when the se
ond author visited Hong Kong Baptist University as aCrou
her Foundation Visiting Fellow.
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ity, we 
onsider D = [0; 1℄s �rst. Suppose that X is a random ve
tor whi
h isuniformly distributed on [0; 1℄s. ThenE(f(X)) = ZD f(X)dX = I(f)with �(f(X)) = h ZD f2(X)dX � (Ef(X))2i1=2if they exist. Let X1;X2; � � � ;Xn be independent samples of X andI(f; n) = 1n nXi=1 f(Xi) (2)By the strong law of large numbers, I(f; n) 
onverges to I(f) with probability oneas n ! 1. Moreover, I(f; n) is approximately normally distributed when n is largeby the 
entral limit theorem. Also the law of the iterated logarithm shows that withprobability one limn!1 sups n2 ln(lnn) ��� 1n nXi=1 f(Xi)� I(f)��� = �2(f(X))Another approa
h is the use of the number-theoreti
 method (NTM). The number-theoreti
 method for evaluation of the integral is based on the theory of the uniformdistribution. Let Pn = fXk; k = 1; 2; � � � ; ng be an NT-net on [0; 1℄s with low dis
rep-an
y (
f. Fand and Wand (1994)). Then we may useI(f; Pn) = 1n nXk=1 f(Xk) (3)as an approximation for I(f).De�nition. Let (n;h1; h2; � � � ; hs) be a ve
tor with integral 
omponents satisfying1 � hi < n, hi 6= hj (i 6= j), s < n and the greatest 
ommon divisors (n; hi) = 1,i = 1; � � � ; s. Let( gki = khi(mod n)xki = (2gki � 1)=2n k = 1; 2; � � � ; n; i = 1; 2; � � � ; s (4)where we use the usual multipli
ative operation module n su
h that gki is 
on�ned by1 � gki � n. Then the set Pn = fXk; k = 1; 2; � � � ; ng is 
alled the latti
e point setof the generating ve
tor (n;h1; h2; � � � ; hs). If the set Pn has the dis
repan
y o(n�12 ),then the set Pn is 
alled a glp set. It 
an be seen that xki de�ned in (4) 
an be easily
al
ulated by xki = n2khi � 12n o (5)where fxg stands for the fra
tion part of x. In one dimension 
ase Pn = f(2k� 1)=2n,k = 1; 2; � � � ; ng. The 
onvergen
e rate of I(f; Pn) 
an rea
h O(n�1(log n)s) whi
h is
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 Methods 287better than Monte Carlo method. This is why the error of I(f; Pn) is smaller than thatof I(f; n). Example 1 gives the 
omparison.Example 1. Let f(x) = 12�e�12 (x21+x22) whi
h is normal density of N(0; I2). Of
ourse, the true value of the integral on [0;1℄2 is 0.25. Table 1 gives the errors ofevaluation of the integral by using NTM (glp) with di�erent n and A, where we trun
ate[0;1℄2 by [0; A℄2. We list the errors of Monte Carlo method on Table 2. It is 
lear thatNTM (glp) is better than MCM. Table 1nnA 55 89 144 233 377 610 987 15972 �:02052 �:02071 �:02158 �:02165 �:02198 �:02201 �:02214 �:022153 :00043 :00121 �:00068 �:00038 �:00109 �:00098 �:00125 �:001214 �:00010 :00185 �:00006 :00067 �:00004 :00023 �:00004 :000075 �:00212 :00015 �:00083 :00003 �:00032 :00001 �:00012 :000006 �:00542 �:00244 �:00213 �:00099 �:00082 �:00038 �:00032 �:000157 �:01144 �:00601 �:00445 �:00234 �:00172 �:00090 �:00066 �:000358 �:02034 �:01045 �:00778 �:00404 �:00299 �:00155 �:00115 �:000599 �:03123 �:01580 �:01177 �:00608 �:00450 �:00233 �:00172 �:0008910 �:04292 �:02209 �:01600 �:00846 �:00610 �:00324 �:00233 �:0012411 �:05461 �:02933 �:02025 �:01118 �:00770 �:00428 �:00294 �:0016412 �:06602 �:03757 �:02453 �:01426 �:00932 �:00546 �:00356 �:00209Table 2nnA 55 89 144 233 377 610 987 15972 �:02437 �:00280 �:00698 �:01060 �:00971 �:01605 �:01799 �:022323 �:02562 :01603 :01276 :01210 :01389 :00494 :00210 �:003544 �:06736 �:00818 �:00665 �:00099 :00570 �:00023 �:00448 �:008965 �:11436 �:03963 �:03148 �:02290 �:00968 �:01069 �:01642 �:018896 �:15438 �:06759 �:05054 �:04436 �:02603 �:02310 �:03006 �:030127 �:18583 �:09100 �:06324 �:06298 �:04055 �:03524 �:04353 �:041368 �:20941 �:11033 �:07181 �:07882 �:05183 �:04549 �:05535 �:051869 �:22603 �:12591 �:07804 �:09239 �:05968 �:05335 �:06494 �:0613910 �:23688 �:13844 �:08299 �:10419 �:06474 �:05916 �:07244 �:0700011 �:24336 �:14890 �0:8733 �:11460 �:06800 �:06359 �:07837 �:0779412 �:24691 �:15825 �:09153 �:12392 �:07044 �:06731 �:08331 �:08542Even so, in this paper we shall dis
uss a Two-Stage Algorithm (TSA) of numeri
alevaluation of integrals on NTM. In Se
tion 2 we shall give dis
ussions of improvement.Two-Stage Algorithm of one dimension and s-dimension will be given in Se
tion 3 andSe
tion 4 respe
tively.2. Dis
ussions of the A

ura
y in Evaluations by NTMAlthough the NTM is a very good tool to solve the problems of numeri
al evaluationof multiple integrals, as we saw in Se
tion 1. In some situations, the results are nota

urate enough and we need some modi�
ations.(i) Suppose that the integrant fun
tion f(X) is a 
ontinuous fun
tion de�ned on



288 K.T. FANG AND Z.K. ZHENGD = [0;1℄s. We want to evaluateI(f) = ZD f(X)dXby NTM. After 
hoosing n, the number of points to evaluate the integrals, we shouldtrun
ate [0;1℄s by D0 = [0; A℄s or D0 = [0; A1℄� [0; A2℄� � � � � [0; As℄ and spread thepoints on it. It seems a dilemma: Sin
e I(f) <1 and f(x)! 0 as xi (i = 1; 2; � � � ; n)goes to 1, if we pi
k small A (or Ai) we lose the integral on D=D0 whi
h 
an not benegligible, if we pi
k large A (or Ai), the large area leads the low density of the points,whi
h may a�e
t the a

ura
y of the integral sin
e many points fall the area on whi
hf(x) almost vanishes. We may �nd that if we 
an 
hoose a suitable pair of n and A, we
an get the good evaluation. For instan
e, (55,4), (89, 5), (144, 4), (233, 5), (377, 4)in Table 1 are good pairs. On the other hand, large A leads poor evaluation. Pair (55,4) is better than (1597, 7), that is we use more than 1500 points and get worse resultif A is not suitable. The question here is how to 
hoose n with a suitable A.(ii) Suppose that D = [a; b℄s with �1 < a < b < +1 and f(X) is a 
ontinuousfun
tion on D. If the variation of f(X) is huge, only a few points of n are available forevaluating the integrals.Example 2. Let f(X) = 50x201 x202 and D = [0; 1℄2. The values of f(X) are smallex
ept x1 �= 1 and x2 �= 1. NTM distributes the points uniformly and f(X) vanishesat most points. The remained points at whi
h f(X) is not near zero gives the poorresults by NTM. Table 3 gives the poor results by MCM and NTM. The true value ofI(f) is 0.11338. Table 3n h2 MCM NTM55 34 .00544 .6471389 55 .00348 .48143144 89 .00562 .35306233 144 .04543 .26534377 233 .06712 .20787610 377 .13816 .17195987 610 .11869 .14944(iii) NTM gives good evaluation of integral on whole D but not on the subdomainsof it.Example 3. Let f(X) = 50(x201 + x202 ) and D = [0; 1℄2. We pi
k n = 144,h2 = 89 and get the evaluation of the integral 4.75788 by NTM. It is quite well. Thetrue value of integral is 4.76191. Now, we divide D into subdomains: h0; 13i � h0; 13i,h0; 13i � h13 ; 23i, h0; 13i � h23 ; 1i, h13 ; 23i � h0; 13i, h13 ; 23i � h13 � 23i, h13 ; 23i � h23 ; 1i,h23 ; 1i � h0; 13i, h23 ; 1i � h13 ; 23i, and h23 ; 1i � h23 ; 1i. Then we evaluate the integral onsubdomains.Table 4 tells us that on some Di NTM underestimates the integrals �i.g. h23 ; 1i �h0; 13i� and on some Di NTM overestimates the integrals (i.g. [2=3; 1℄;�[2=3; 1℄). The
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 Methods 289total integral is evaluated very well but on some subdomains it is very bad, for instan
eon [2=3; 1℄ � [2=3; 1℄, the error is 0.5239911 over 33%. This also shows that NTM onlyviews the whole pi
tures in average.To over
ome su
h diÆ
ulties, we suggest a Two-Stage method of NTM. The mainidea is that we distribute the points a

ording to the variations of the quadrature onthe subdomains to dete
t the details. Table 4Di NTM # (points) True�0; 13�� �0; 13� 1:3643 � 10�10 16 1:5174 � 10�10�0; 13�� �13 ; 23� 2:2884 � 10�4 17 1:5912 � 10�4�0; 13�� �23 ; 1� 0.6024776 15 0.7934917�13 ; 23�� �0; 13� 2:2884 � 10�4 17 1:5912 � 10�4�13 ; 23�� �13 ; 23� 2:0909 � 10�4 15 3:1823 � 10�4�13 ; 23�� �23 ; 1� 0:7206415 16 0.7936507�23 ; 1�� �0; 13� 0:6024764 15 0.7934917�23 ; 1�� �13 ; 23� 0:7206495 16 0.7936507�23 ; 1�� �23 ; 1� 2:110974 17 1.586983Total 4.75788 144 4.761913. One Dimension CaseWe start with one dimension 
ase. Let f(x) be a 
ontinuous fun
tion on [a; b℄.Two-Stage Algorithm:Step 1. Distribute m points fxig on [a; b℄ uniformly, that is, a = x1 < x2 <� � � xm < xm+1 = b with same � = xi+1 � xi (If a = �1, we 
hoose x1 = a0 su
h thatf(a0) is small enough. Similar thing happens if b = +1). Cal
ulate the values of f(xi)(xi = 1; 2; � � � ;m+ 1).Step 2. Investigate the variations of f(x) in ea
h interval. Let hi = jf(xi+1)�f(xi)jas a measure of variation on [xi; xi+1℄ and de�ne H = mX1 hi, the \total variation".Furthermore, let ni = 8><>: hnhiH i if nhiH � 11 if nhiH < 1where [x℄ denotes the integer part of x.Step 3. Use ni as the number of points to evaluate the integral on [xi; xi+1℄ byNTM.Step 4. Sum up the values obtained in Step 3.Remark. (i) The total number we used is n� = (n+ 1) + mX1 ni;(ii) It seems that the good evaluation will be gotten by in
reasing m as in
reasingn. Example 4. Let f(x) = 50x20 on [0; 1℄, Table 5 
ompares the errors of evaluationsof integral by MCM, NTM and TSA. The true value of integral is 2.380952.



290 K.T. FANG AND Z.K. ZHENGExample 5. Denote by �(x), the normal distribution fun
tion, that is�(x) = Z x�1 1p2�e�12u2du = Z x�1 �(u)duTable 5n MCM NTM(gp) TSA (m = 3) n�10 �2:237063 �0:377930 �0:056817 1115 �2:081293 �0:177232 �0:023938 1620 0.042024 �0:101614 �0:013241 2125 �0:432550 �0:065614 �0:008479 2630 �0:756873 �0:045786 �0:005956 3140 0:867197 �0:025880 �0:003503 4150 1.217550 �0:016600 �0:002387 5160 1.462220 �0:011541 �0:001790 6180 0.709920 �0:006500 �0:001202 81100 0.602445 �0:004162 �0:000933 101150 �0:126244 �0:001850 �0:000669 151200 0:082538 �0:001041 �0:000578 201Table 6n = n� MCM NTM (gp) TSA (m = 3) mX1 ni9 0.02706314 0.02137493 0.02188900 510 0.02435687 0.02163402 0.02216353 611 0.03733996 0.02182641 0.02231307 712 0.03427031 0.02197313 0.02240336 813 0.03163413 0.02208753 0.02246202 914 0.02937456 0.02217845 0.02250227 1015 0.02749133 0.02225188 0.02253105 1116 0.02577312 0.02231203 0.02255236 1217 0.02425705 0.02236193 0.02256857 1318 0.03112461 0.02240377 0.02258119 1419 0.02948647 0.02243919 0.02259121 1520 0.02807975 0.02246945 0.02259929 1621 0.02674478 0.02249550 0.02260590 1722 0.02552911 0.02251809 0.02261138 1823 0.03105132 0.02253780 0.02261597 1924 0.02975789 0.02255510 0.02261986 2029 0.02506723 0.02261650 0.02263257 2534 0.02156441 0.02265289 0.02263929 3039 0.01946303 0.02267622 0.02264327 3544 0.02431821 0.02269205 0.02264583 40104 0.02254400 0.02273972 0.02265266 100We want to evaluate 1��(2). Sin
e �(x) goes to zero as u!1 qui
kly and 1��(7) <10�9, we 
onsider the interval[2, 7℄ and 
ompute �(7)��(2) by MCM, NTM and TSA.Table 6 lists the results where we let n� = (m+ 1) + mX1 ni. The value of �(7) � �(2)is 0.02275 by the statisti
al table. Table 6 gives us the impression that for small n
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 Methods 291(up to 29) TSA is better than NTM and MCM, but for large n NTM is better. Herewe point out: we prefer 
hoosing large m when n is a �xed large number. Althoughin this situation mXl ni, the number of points whi
h we use to evaluate the integral, issmaller relatively, the a

ura
y will be promoted. On the last line of Table 6, the valueof TSA (m = 3) is 0.02265266. It is worse than that of NTM. But if we let m = 20, itis 0.02273807; and if we let m = 30, it is 0.02274179. It seems that there is a suitable� = �(n) < 1 and we 
an get good result by 
hoosing m �= n�.4. S-dimension CaseWe develop the idea of Se
tion 3 to s-dimension 
ase. Let D be a domain in Rs andf(X) be a 
ontinuous fun
tion on D. We want to 
al
ulateI(f) = ZD f(X)dXFirst of all, we 
an �nd a re
tangle of D, say D�, on whi
h f(X) is bounded su
h that� = ZD=D� f(X)dX (8)
an be negligible. Then we evaluateI(f) = ZD� f(X)dX (9)Two-Stage Algorithm:Step 1. Divide D� into r re
tangles and let the volumes of the re
tangles as equalas possible.Step 2. Let E1; E2; � � � ; Er be the re
tangles in Step 1, we measure the variationsof f(X) in Ei = [ai1; bi1℄� [ai2; bi2℄� � � � � [ais; bis℄ byhi = maxU;V jf(U)� f(V )j (i = 1; 2; � � � ; s)where U ;V are 
orner points of Ei, i.e., U ;V with the form of (ei1; ei2; � � � ; eis) (eij =aij or bij).Step 3. Let ni = [nhi=H℄ + 1, where H = rXi=1 hiStep 4. Use ni as the number of points to evaluate the integral on EiStep 5. Sum up the values obtained in Step 4.Example 6. We 
ompute multivariate normal distribution for s = 2 with �1 =�2 = 0, �1 = �2 = 1 and �12 = 0. The probability that X falls on the �rst orthant is
alled the orthant probability. Gupta (1963) provided a 
omprehensive review. Steak(1962) gave a substantial review of the results pertaining to orthant probabilities in theequi
orrelated 
ase, and Johnson and Kotz (1972) presented some additional resultsand referen
es. Here we 
hoose D = [0; 10℄� [0; 10℄ and believe that the probability Xfalls on [0;1℄ � [0;1℄=[0; 10℄ � [0; 10℄ is very small.



292 K.T. FANG AND Z.K. ZHENGTable 7n(h2) Evaluation55 (34) 0.207075389 (55) 0.2279124144 (89) 0.2340000233 (144) 0.2415409377 (233) 0.2439044610 (377) 0.2467571987 (610) 0.2476715Table 7 lists the results by NTM (glp). It 
onverges slowly to 0.25. If we use TSA,we only 
hoose n = 144 and the evaluation is 0.2481206 whi
h is better than NTM(glp) of n = 987.The details are the following:

Figure 1Let lines x1 = 2, x1 = 4, x2 = and x2 = 4 divide [0; 10℄� [0; 10℄ into 9 re
tangles asFig.1. Measure the variation of �(x1; x2) = (2�)�1 exp�� 12x21� 12x22� in ea
h re
tangleand distribute 144 points a

ording to 
i (see Fig.1). They almost 
on
entrate on[0; 2℄ � [0; 2℄. Referen
es[1℄ N.M. Korobov, Number Theoreti
 Methods in Approximate Analysis, Fizmatigiz, Mos
ow,1963.[2℄ L-K. Hua, Y. Wang, Appli
ation of Number Theory to Numeri
al Analysis, Springer, Berlin,1981.[3℄ H. Niederreiter, Random Number Generation and Quasi-Monte Carlo Methods, So
. In-dustr. Appl. Math. (SIAM), Philadelphia, 1992.[4℄ K-T. Fang, Y. Wang, Number-Theoreti
 Methods in Statisti
s, Chapman and Hall London,1994.


