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Subspace Search Method for Quadratic Programming with Box
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Zi-luan Wei
(ICMSEC, Chinese Academy of Sciences, Beijing 100080, China)

Abstract

A subspace search method for solving quadratic programming with box con-
straints is presented in this paper. The original problem is divided into many
independent subproblem at an initial point, and a search direction is obtained by
solving each of the subproblem, as well as a new iterative point is determined such
that the value of objective function is decreasing. The convergence of the algorithm
is proved under certain assumptions, and the numerical results are also given.
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1. Introduction

In this paper, we consider the problem of minimizing a quadratic convex program-
ming with box constrained variables:

Minf (z)
s.t.x € Q (1.1)

where Q ={z e R": | <z <u}, f(z) = %LETHLU—l-bTLE, and H is an n by n symmetric
positive definite matrix, and b, [, u are given constant vectors in R".

This problem arises in several areas of applications, such as optimal control and
disign engineering, linear least square problem with bounded variables and implemen-
tation of robust method for nonlinear programming, etc. Many successful algorithms
for solving this type of large scale problem have been studied based on active set strate-
gies. A popular approach is to use an active-set algorithm that solves a sequence of
subproblems of the form

Min f(z +d) st.d;=0, i€V (1.2)

where Vj, is the index set of active constraints, indicating the set of varaibles that would
remain fixed at one of their bounds. Obviously, it is necessary to identify a candidate
active set, and to solve the problem (1.2) exactly in the active set algorithm. Especially,
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obtaining the exact minimizer of (1.2) may require many conjugate gradient iterations,
and adding constaints at a time to the working set may lead to an excessive number of
iterations for large scale problem. In order to avoid the above disadvantages, a different
type of algorithm, based on the gradient projection, and combination of the gradient
projection with conjugate gradient, have been proposed by several authors. These
algorithms have finite convergence if the problem is strictly convex and the solution
is nondegeneratel'?. A similar algorithm combines conjugate gradient with gradient
projection technique, and uses a new strategy for the decision of leaving the current
face and make it possible to obtain finite convergence even for a singular Hessian and
in the presence of dual degeneracym. A primal-dual interior point algorithm is also
used to solve large problem (1.1), and the numerical experiments have shown that the
algorithm requires only a few steps and is very efficient!9).

In this paper, we present a subspace search method for solving the problem (1.1).
The main steps of the algorithm are to divide the problem (1.1) into independent
subproblems at an initial feasible point and solve each of these subproblems to obtain
a search direction, and then to determine a new feasible iterative point such that
the objective function is decreasing. The convergence of the algorithm is proved under
certain assumptions. The main feature of the algorithm is that large scale problom (1.1)
can be transformed into many small independent subproblems, and all the subproblems
can be solved simultaneously.

This paper is organized as follows. In Section 2 we describe the algorithm. The
convergence results are proved under certain assumptions and numerical results are
also given in Section 3.

2. Derivation of the Algorithm

Now we consider the problem (1.1). Without loss of generality, assume that vector
x € R" can be divided into (z7, 27, ... 2]), and z; € R™, and that ny =ny = --- =ny
and tn; = n. Accordingly, matrix H and vectors b,l,u can be also subdivided into
t x t block submatrices Hij(Hij € R"M*M g 4 = 1,2,---,t) and subvectors b;,l;, u;
(biylj,u; € R™ i =1,2,---,t), respectively. Therefore, the obJectlve function f(z) can
be rewritten as follows.

ZZ:)} HUI]—I—Zb T; (2.1)

zlgl

Assume that an initial vector Z € (2 is a strictly interior point, that is, | < & < u, and
that « belongs to the neighborhood of z, then we have

=T+ (zr—T) (2.2)

Substituting (2.2) into (2.1), it is easy to derive that

t t t t
. 1
Z@Tb Z i — i) b 522(% — ;)" Hij(zj — ;) (2.3)
im1 i=1 i=1j=1

l\DI»—l
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t t
where b; = (Z H;;z;+2b;), b; = (Z Hij:f:j—i—bi). Clearly, f(z) is non-separable in the
7=1 7=1
expression (2.3), so the problem (1.1) can not be split into ¢ independent subproblems.
One possibility to overcome this difficulty is to define the following functions

1 4 1 _
@i(mi,:i) = Ef?bl + 5(:132 — :fz)TH”(TZ — fl) + (Tl — :fi)Tbi (2.4)
and .
p(z,2) = @i(wi, ) (2.5)
=1

It follows from (2.5) that ¢(x,z) is a quadratic function defined on X; x Xy X --- X}
(here X; = {z; € R™: I; < z; <w;},i=1,2,---,t), and it is easy to verify that

and

flz) —p(z,2) =5 Z > (zi — 7)) Hij(z; — 1)) (2.8)

If p(z,x) is used to replace f(z) in (1.1), thus, the original problem (1.1) can be
replaced locally by the following problem

min ¢(z,z) s.t. z € (2.9)

It is obvious that ¢(z,z) is separable function, hence, minimizing (2.9) is equivalent to
solve the following ¢ independent subproblems

min @;(z;,z) st. z; € X; (2.10)

Suppose that & is an optimal solution to the problem (2.10), it is easy to see that the
value of objective function f(z) is decreasing at z along the direction d = & — z. If
matrix H can be divided into Hy and Hy (H = H; + H») such that

yr(Hy — Hy)y > 0 (2.11)

holds for any y(y # 0) € R", where H; is a block diagonal matrix of H consisting
of ¢t diagonal blockes of H ( from Hyy to Hy), and Hy = H — Hy. Obviosly, if H
is a symmetric nonsingular M -matrix[? or block-diagonal dominant matrix2, then it
is easy to verify that H can be split into H; and Hs such that (2.11) holds for any
y(y # 0) € R". As a result, a new iterative point x = & can be generated such that
f(z) < f(z). Based on the above description we are able to construct the following
subspace search algorithm for solving the problem (1.1).

Algorithm A:

Let 2° € Q be a given initial point, ¢ > 0 be some prescribed accuracy. And k := 0,

then zFt! is obtained by the following steps.
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(i) Let z = z*, and solve the problem (2.10) for 4 = 1,2,---,¢, and obtain an
optimal solution Z*.

(ii) If ||z* — 2¥||2 < e, then stop, and Z* is an approximate solution for the problem
(1.1), Otherwise, let z**! = 3% and k := k + 1, and return to (i).

It follows from the definition of algorithm A that the main computational work
is from solving problem (2.10) for i = 1,2,---,t at each iteration. There are some

different algorithms, which can be used to solve the problem (2.10).

3. Convergence Results

This section deals with the convergence of the algorithm A. We prove that sequence
z¥ generated by the algorithm A converges to an optimal solution z* of problem (1.1)
under certain assumptions. Several lemmas are introduced in order to prove the con-
vergent conclusion.

Lemma 3.1. Suppose that H is an n by n symmetric positive definite matriz, and
b,l,u are given constant vectors in R"™, then x* is an optimal solution of problem (1.1)
if and only if x* € Q and there is y* > 0, 2" > 0 such that

Hz*+b=2z"—y*, (u—azly* =0, (z*-0Iz*=0. (3.1)

hold.
Lemma 3.2. Suppose that p(z,x) is defined by (2.5), and that x* is an minimizer
of o(x,x) on X1 X X9 X -+ X Xy, then

t

. o 1
pla*,7) < p(@,7) — 5 > di Hiid; (3.2)
i=1
where d; = z} — 24,1 =1,2,--- 1.

Proof. Tt follows from the assumption that ¢(z,z) is a separable function, so z*
can be obtain from (2.10) for ¢ = 1,2,---,¢. A necessary and sufficient condition for z
being a solution of (2.10) is

H”(T;k *Ii‘i)-l-i)i:qi, 1=1,2,---,¢. (33)
where
>0, (27)r = (Li)r
a8 <0, (z7)r = (ui)r (3.4)
0, i)y < (27)r < (ui)r

and ( ), denotes the r-th component of a vector. From (3.3) and (3.4), it is easy to
verify that
dl Hyid; +dl'b; <0, i=1,2,---,t (3.5)

On the other hand, ¢(z, %) is a quadratic function, so one can easily derive that

1
(,D(IL‘*,JZ‘) :@(jai) + dTV(p(j,j) + 5dTV2‘p(jai)d
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t B 1 t
—(Z, %) + Y d] [Hid; + b;] — 3 > d} Hid; (3.6)
=1 i=1
By (3.5) and (3.6), it is straightforward to obtain
1 t
=1

which proves the conclusion of the lemma.
Lemma 3.3. Suppose that z € 2 and H is divided Hy and Hy such that (2.11)
satisfies, and that T is generated by the algorithm A with the starting point T, then

f(#) < f(z) (3.7)

holds.
Proof. Tt follows from the assumptions that Z is obtained from (i) of Algorithm A.
By (2.8), it is clear that

Hence

From (3.2), (3.8) and (2.11), it is straightforward to show that

1(8) < pla.2) ~ S(d Hid — d"Hod) = [(2) s (Hy -~ H)d  (39)

DN | =

This implies that (3.7) holds, which proves the lemma.

Theorem 3.4. Suppose that H is a nonsingular M -matriz or block-diagonal dom-
inant matriz and that H is divided into Hy, and Hy such that H = Hy + Hy and z° € Q
is an initial point. Assume that sequence @* and z* are generated by the algorithm A,

ko (&Ko is an optimal solution of

then there exists an integer ky > 0 such that &% = x
problem (1.1)) or
lim (2% — 2%) = 0 (3.10)
k—o0
and the accumulation point of =¥ is a solution of the problem (1.1).

Proof. From the assumptions that H is a nonsingular M-matrix or block-diagonal
dominant matrix, then, it is easy to show that H can be divided into H; and Hy (
H = Hy + Hy ) such that (2.11) holds for any y(y # 0) € R", where Hy is a block
diagonal matrix of H consisting of ¢ diagonal blockes of H. As the result, the algorithm
A is well defined. Assume that sequence ¥ and z* is generated by the algorithm
A. If there exists an integer kg such that ¥ = %o then, from (3.3) (3.4), it is easy to

see that £¥0 (or z¥0) is an optimal solution for the problem (1.1).
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If the above description is not true, from (2.11) and (3.9), it is striaghtforward to
verify that the sequence f(z*) is convergent. Thus,

lim || d*|ly = lim ||2% — 2|, = 0 (3.11)
k—oo k—o0

which implies that (3.10) holds. Let z* be a limit of a convergent subsequence of the
sequence z¥, and let Z* be an accumulation point of the corresponding subsequence of
&, By (3.10) or (3.11), it is obvious that z* = &*. Hence

V(a®,z) = V(2" z) = V(")

From (3.1), the necessary and sufficient conditions of optimality for problem (1.1) hold
at x*, which proves the conclusion of the theorem.

The following corollary is a direct result of Theorem 3.4.

Corollary 3.5. Suppose that z° € Q is an initial point and H is a symmetric

positive definite martriz with diagonal dominant, and that H is divided into Hy and Hy
such that H = Hy1+ Hy and Hy is a block diagonal matriz, and sequence % and z* are
generated by the algorithm A. Then there exists an integer ko > 0 such that Z%o = zko
(zF0 is an optimal solution of problem (1.1)) or

lim (2% — 2%) = 0 (3.12)

k—o0

and the accumulation point of z* is a solution of the problem (1.1).

Now we discuss the numerical experiments of our algorithm. The algorithm A
was implemented in double precision Fortran, and the code was tested on randomly
generated problems. The matrix H is defined by H = S +vv”, The elements of v € R"
are generated randomly in the interval (—1,1), and v'v = 1, S is a diagonal matrix, and
S =al (@ > 0) and I is an identify matrix. Without loss of generality, assume that

[ =0,u=-e,e € R" and all the elements in e are equal to 1, and the number of active
oL
have positive gradient, and the other half have negative. So the optimal solution z* is

constraints at the optimal solution z* is chosen as and half of the active variables

chosen such that
1, z; =0
(Vf(xz)i=4¢ —1, zFy=1 (4.7)
0, O<zi<l1

*
2
*
2

Finally we set b = —Hz* + V f(z*).
If | f (#%) — f(z*)| < € is used for the termination rule, and set £ = 1075 and a = 1.0,
then the computational results are shown in Table 1 for n (from 100 to 1000).

where n,n;,t and NI denote the size of the problems, the size of subproblem, number
of the subproblems and number of iteration for each problem, respectively.



Subspace Search Method for Quadratic Programming with Box Constraints 313

Table 1.
n n;xt | NI lzF — z* |2 n n; xt NI lzF — z* |2
10x10 | 12 | 0.40632x103 15x40 | 15 | 0.50520x10~3
100 | 5%x20 | 13 | 0.51831x107* | 600 | 30x20 | 14 | 0.71878x10®
20x5 | 13 | 0.29122x1072 40x15 | 14 | 0.54251x1073
20x10 | 12 | 0.56617x10~° 35x20 | 15 | 0.43237x107°
200 | 40x5 | 10 | 0.43943x107* | 700 | 70x10 | 13 | 0.64135x10®
50x4 | 9 | 0.40737x1073 20x35 | 15 | 0.57402x1072
30x10 | 12 | 0.49600x10~° 40x20 | 15 | 0.45446x10°>
10%x30 | 13 | 0.58339x10~3 20x40 | 15 | 0.59770x1073
300 | 50x6 | 11 | 0.31306x107* | 800 | 50x16 | 14 | 0.67480x10~*
20x15 | 13 | 0.41242x1073 80x10 | 13 | 0.65477x10~3
15%20 | 13 | 0.52632x107° 10x80 | 15 | 0.50097x107?
40x10 | 13 | 0.40337x107* 30x30 | 16 | 0.45173x10 3
20%20 | 14 | 0.48924x103 60x15 | 15 | 0.46720x10~°
400 | 50x8 | 12 | 0.50962x107* | 900 | 15x60 | 15 | 0.73217x107*
25%16 | 14 | 0.40236x1073 10x90 | 15 | 0.59535%x10~2
16x25 | 14 | 0.54003x10°3 90x10 | 14 | 0.44213x107%
50x10 | 13 | 0.54079x10~3 100x10 | 14 | 0.45201x10~3
25%x20 | 14 | 0.66207x10°3 50%x20 | 15 | 0.33196x10°2
500 | 20x25 | 11 | 0.29122x10~2 | 1000 | 20x50 | 16 | 0.48603x10~3
10x50 | 14 | 0.75915%x10°2 25%x40 | 16 | 0.49682x10°%
100x5 | 11 | 0.29018x1073 10x100 | 15 | 0.59320x10~3
Table 2.
a [ NI1| JzF—z"> [ N2 | |zf -z

0.90 | 16 | 0.11285%x10~2 | 18 | 0.10277x10~ 2
0.80 | 21 | 0.11397x107% | 24 | 0.11242x1072
0.75 | 26 | 0.90089x10°% | 30 | 0.98295x10°%
0.70 | 32 | 0.11379%x10~% | 39 | 0.10953x1072
0.65 | 45 | 0.10712x107% | 58 | 0.12360x10~>

The second and third column, and the fourth and fifth column denote the numerical
results for n = 500 (n; = 25, = 20) and n = 900(n; = 30,¢ = 30), respectively.

The author wishes to thank Prof. Y.Yuan for many valuable suggestion and com-
ments.

References

[1] D.P. Bertsekas, Projected Newton method for optimization problems with simple con-
straints, SIAM J. Control Optimization, 20 (1982), 221-246.

[2] Zhongzhi Bai, Parallel matrix multisplitting block relaxation methods, Math. Numer.
Sinica, 17 (1995), 238 252 (in Chinese).

[3] A.Berman , R.J. Plemmons, Nonnegative Matrices in the Mathematical Sciences, Academic
Press, New York, 1979.

[4] T.F. Coleman, L.A. Hulbert, A direct active set algorithm for large sparse quadratic pro-
gram with simple bounds, Mathematical Programming, 45 (1989), 373 406.

[5] A.R. Conn, N.ILM. Gould , Ph.L. Toint, Testing a class of methods for solving minimization
problems with simple bounds on variables, Math. Comp., 50 (1988), 399-430.



314 Z.L. WEIL

[6] J.C. Dunn, On the convergence of projected gradient processes to singular critical point, J.
Optim. Theory Appl., 55 (1987), 203-216.

[7] A. Friedlander, J.M. Martinez, On the maximization of a concave quadratic function with
box constraints, SIAM J. Optimization, 4 (1994), 177 192.

[8] R. Fletcher, Practical Methods of Optimization, 2-nd ed., John Wiley, Chichester, New
York, 1987.

[9] C.G. Han, P.M. Pardalos, Y. Ye, Computational aspects of an interior point algorithm
for quadratic programming problem with box constraints, in Large Scale Numerical Op-
timization, T.Coleman and Y.Ye, eds., Society for Industrial and Applied Mathematics,
Philadephia, PA; 1990.

[10] O.L. Mangasarian, Parallel gradient distribution in unconstrained optimizatin, SIAM J.
Control and Optimization, 4 (1995), 1916-1925.

[11] J.J. More, G. Toraldo, Algorithm for bound constrained quadratic programming problems,
Numerical Math., 55 (1989), 277-400.

[12] , On the solution of large quadratic programming problems with bound constraints,
SIAM J. Optimization, 1 (1991), 93 113.

[13] M.P. Mekenna, J.P. Mesirov, S.A. Zenios, Data parallel quadratic programming on box
constrained problem, STAM J. Optimization, 4 (1995), 570-589.

[14] R.S. Varga, Matrix Iterative Analysis, Pientice-Hall, Englewood Cliffs, N.J., 1962.

[15] Y. Yuan, Numerical Methods for Nonlinear Programming, Shanghai Scientific and Technical
Publishers, 1993 (in Chinese).



