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Subspa
e Sear
h Method for Quadrati
 Programming with BoxConstraints�1)Zi-luan Wei(ICMSEC, Chinese A
ademy of S
ien
es, Beijing 100080, China)Abstra
tA subspa
e sear
h method for solving quadrati
 programming with box 
on-straints is presented in this paper. The original problem is divided into manyindependent subproblem at an initial point, and a sear
h dire
tion is obtained bysolving ea
h of the subproblem, as well as a new iterative point is determined su
hthat the value of obje
tive fun
tion is de
reasing. The 
onvergen
e of the algorithmis proved under 
ertain assumptions, and the numeri
al results are also given.Key words: Subspa
e sear
h method, Quadrati
 programing, Matrix splitting1. Introdu
tionIn this paper, we 
onsider the problem of minimizing a quadrati
 
onvex program-ming with box 
onstrained variables:Minf(x)s.t.x 2 
 (1.1)where 
 = f x 2 Rn: l � x � ug, f(x) = 12xTHx+ bTx, and H is an n by n symmetri
positive de�nite matrix, and b; l; u are given 
onstant ve
tors in Rn.This problem arises in several areas of appli
ations, su
h as optimal 
ontrol anddisign engineering, linear least square problem with bounded variables and implemen-tation of robust method for nonlinear programming, et
. Many su

essful algorithmsfor solving this type of large s
ale problem have been studied based on a
tive set strate-gies. A popular approa
h is to use an a
tive-set algorithm that solves a sequen
e ofsubproblems of the form Min f(x+ d) s.t. di = 0; i 2 Vk (1.2)where Vk is the index set of a
tive 
onstraints, indi
ating the set of varaibles that wouldremain �xed at one of their bounds. Obviously, it is ne
essary to identify a 
andidatea
tive set, and to solve the problem (1.2) exa
tly in the a
tive set algorithm. Espe
ially,� Re
eived O
tober 4, 1996.1)This resear
h supported partially by The National Natural S
ien
e Foundation of China(No.19771079) and State Key Laboratory of S
ienti�
 and Engineering Computing.



308 Z.L. WEIobtaining the exa
t minimizer of (1.2) may require many 
onjugate gradient iterations,and adding 
onstaints at a time to the working set may lead to an ex
essive number ofiterations for large s
ale problem. In order to avoid the above disadvantages, a di�erenttype of algorithm, based on the gradient proje
tion, and 
ombination of the gradientproje
tion with 
onjugate gradient, have been proposed by several authors. Thesealgorithms have �nite 
onvergen
e if the problem is stri
tly 
onvex and the solutionis nondegenerate[12℄. A similar algorithm 
ombines 
onjugate gradient with gradientproje
tion te
hnique, and uses a new strategy for the de
ision of leaving the 
urrentfa
e and make it possible to obtain �nite 
onvergen
e even for a singular Hessian andin the presen
e of dual degenera
y[7℄. A primal-dual interior point algorithm is alsoused to solve large problem (1.1), and the numeri
al experiments have shown that thealgorithm requires only a few steps and is very eÆ
ient[9℄.In this paper, we present a subspa
e sear
h method for solving the problem (1.1).The main steps of the algorithm are to divide the problem (1.1) into independentsubproblems at an initial feasible point and solve ea
h of these subproblems to obtaina sear
h dire
tion, and then to determine a new feasible iterative point su
h thatthe obje
tive fun
tion is de
reasing. The 
onvergen
e of the algorithm is proved under
ertain assumptions. The main feature of the algorithm is that large s
ale problom (1.1)
an be transformed into many small independent subproblems, and all the subproblems
an be solved simultaneously.This paper is organized as follows. In Se
tion 2 we des
ribe the algorithm. The
onvergen
e results are proved under 
ertain assumptions and numeri
al results arealso given in Se
tion 3. 2. Derivation of the AlgorithmNow we 
onsider the problem (1.1). Without loss of generality, assume that ve
torx 2 Rn 
an be divided into (xT1 ; xT2 ; � � � ; xTt ), and xi 2 Rni , and that n1 = n2 = � � � = ntand tni = n. A

ordingly, matrix H and ve
tors b; l; u 
an be also subdivided intot � t blo
k submatri
es Hij(Hij 2 Rni�ni ; i; j = 1; 2; � � � ; t) and subve
tors bi; li; ui(bi; li; ui 2 Rni , i = 1; 2; � � � ; t); respe
tively. Therefore, the obje
tive fun
tion f(x) 
anbe rewritten as follows. f(x) = 12 tXi=1 tXj=1xTi Hijxj + tXi=1 bTi xi (2.1)Assume that an initial ve
tor �x 2 
 is a stri
tly interior point, that is, l < �x < u, andthat x belongs to the neighborhood of �x, then we havex = �x+ (x� �x) (2.2)Substituting (2.2) into (2.1), it is easy to derive thatf(x) = 12 tXi=1 �xTi b̂i + tXi=1(xi � �xi)T�bi + 12 tXi=1 tXj=1(xi � �xi)THij(xj � �xj) (2.3)
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 Programming with Box Constraints 309where b̂i = � tXj=1Hij�xj+2bi), �bi = � tXj=1Hij�xj+bi�. Clearly, f(x) is non-separable in theexpression (2.3), so the problem (1.1) 
an not be split into t independent subproblems.One possibility to over
ome this diÆ
ulty is to de�ne the following fun
tions'i(xi; �x) = 12 �xTi b̂i + 12(xi � �xi)THii(xi � �xi) + (xi � �xi)T�bi (2.4)and '(x; �x) = tXi=1 'i(xi; �x) (2.5)It follows from (2.5) that '(x; �x) is a quadrati
 fun
tion de�ned on X1 �X2 � � � �Xt(here Xi = fxi 2 Rni : li � xi � uig, i = 1; 2; � � � ; t), and it is easy to verify thatf(�x) = '(�x; �x) (2.6)rf(�x) = r'(�x; �x) (2.7)and f(x)� '(x; �x) = 12 tXi=1Xj 6=i(xi � �xi)Hij(xj � �xj) (2.8)If '(x; �x) is used to repla
e f(x) in (1.1), thus, the original problem (1.1) 
an berepla
ed lo
ally by the following problemmin '(x; �x) s.t. x 2 
 (2.9)It is obvious that '(x; �x) is separable fun
tion, hen
e, minimizing (2.9) is equivalent tosolve the following t independent subproblemsmin 'i(xi; �x) s.t. xi 2 Xi (2.10)Suppose that x̂ is an optimal solution to the problem (2.10), it is easy to see that thevalue of obje
tive fun
tion f(x) is de
reasing at �x along the dire
tion d = x̂ � �x. Ifmatrix H 
an be divided into H1 and H2 (H = H1 +H2) su
h thatyT (H1 �H2)y > 0 (2.11)holds for any y(y 6= 0) 2 Rn, where H1 is a blo
k diagonal matrix of H 
onsistingof t diagonal blo
kes of H ( from H11 to Htt), and H2 = H � H1. Obviosly, if His a symmetri
 nonsingular M -matrix[3℄ or blo
k-diagonal dominant matrix[2℄, then itis easy to verify that H 
an be split into H1 and H2 su
h that (2.11) holds for anyy(y 6= 0) 2 Rn. As a result, a new iterative point x = x̂ 
an be generated su
h thatf(x̂) < f(�x). Based on the above des
ription we are able to 
onstru
t the followingsubspa
e sear
h algorithm for solving the problem (1.1).Algorithm A:Let x0 2 
 be a given initial point, " > 0 be some pres
ribed a

ura
y. And k := 0,then xk+1 is obtained by the following steps.



310 Z.L. WEI(i) Let �x = xk, and solve the problem (2.10) for i = 1; 2; � � � ; t, and obtain anoptimal solution x̂k.(ii) If kx̂k�xkk2 � ", then stop, and x̂k is an approximate solution for the problem(1.1), Otherwise, let xk+1 = x̂k and k := k + 1, and return to (i).It follows from the de�nition of algorithm A that the main 
omputational workis from solving problem (2.10) for i = 1; 2; � � � ; t at ea
h iteration. There are somedi�erent algorithms, whi
h 
an be used to solve the problem (2.10).3. Convergen
e ResultsThis se
tion deals with the 
onvergen
e of the algorithm A. We prove that sequen
exk generated by the algorithm A 
onverges to an optimal solution x� of problem (1.1)under 
ertain assumptions. Several lemmas are introdu
ed in order to prove the 
on-vergent 
on
lusion.Lemma 3.1. Suppose that H is an n by n symmetri
 positive de�nite matrix, andb; l; u are given 
onstant ve
tors in Rn, then x� is an optimal solution of problem (1.1)if and only if x� 2 
 and there is y� � 0, z� � 0 su
h thatHx� + b = z� � y�; (u� x�)T y� = 0; (x� � l)T z� = 0: (3.1)hold.Lemma 3.2. Suppose that '(x; �x) is de�ned by (2:5), and that x� is an minimizerof '(x; �x) on X1 �X2 � � � � �Xt, then'(x�; �x) � '(�x; �x)� 12 tXi=1 dTi Hiidi (3.2)where di = x�i � �xi; i = 1; 2; � � � ; t.Proof. It follows from the assumption that '(x; �x) is a separable fun
tion, so x�
an be obtain from (2.10) for i = 1; 2; � � � ; t. A ne
essary and suÆ
ient 
ondition for x�ibeing a solution of (2.10) isHii(x�i � �xi) + �bi = qi; i = 1; 2; � � � ; t: (3.3)where qir8><>: > 0; (x�i )r = (li)r< 0; (x�i )r = (ui)r0; (li)r < (x�i )r < (ui)r (3.4)and ( )r denotes the r-th 
omponent of a ve
tor. From (3.3) and (3.4), it is easy toverify that dTi Hiidi + dTi �bi < 0; i = 1; 2; � � � ; t: (3.5)On the other hand, '(x; �x) is a quadrati
 fun
tion, so one 
an easily derive that'(x�; �x) ='(�x; �x) + dTr'(�x; �x) + 12dTr2'(�x; �x)d
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 Programming with Box Constraints 311='(�x; �x) + tXi=1 dTi [Hiidi +�bi℄� 12 tXi=1 dTi Hiidi (3.6)By (3.5) and (3.6), it is straightforward to obtain'(x�; �x) � '(�x; �x)� 12 tXi=1 dTi Hiidiwhi
h proves the 
on
lusion of the lemma.Lemma 3.3. Suppose that �x 2 
 and H is divided H1 and H2 su
h that (2:11)satis�es, and that x̂ is generated by the algorithm A with the starting point �x, thenf(x̂) < f(�x) (3.7)holds.Proof. It follows from the assumptions that x̂ is obtained from (i) of Algorithm A.By (2.8), it is 
lear that jf(x̂)� '(x̂; �x)j = 12 ��� tXi=1Xj 6=i dTi Hijdj���Hen
e f(x̂) � '(x̂; �x) + 12 ��� tXi=1Xj 6=i dTi Hijdj��� (3.8)From (3.2), (3.8) and (2.11), it is straightforward to show thatf(x̂) � '(�x; �x)� 12(dTH1d� dTH2d) = f(x)� 12dT (H1 �H2)d (3.9)This implies that (3.7) holds, whi
h proves the lemma.Theorem 3.4. Suppose that H is a nonsingular M -matrix or blo
k-diagonal dom-inant matrix and that H is divided into H1 and H2 su
h that H = H1+H2 and x0 2 
is an initial point. Assume that sequen
e x̂k and xk are generated by the algorithm A,then there exists an integer k0 > 0 su
h that x̂k0 = xk0 (x̂k0 is an optimal solution ofproblem (1:1)) or limk!1(x̂k � xk) = 0 (3.10)and the a

umulation point of xk is a solution of the problem (1:1).Proof. From the assumptions that H is a nonsingular M-matrix or blo
k-diagonaldominant matrix, then, it is easy to show that H 
an be divided into H1 and H2 (H = H1 + H2 ) su
h that (2.11) holds for any y(y 6= 0) 2 Rn, where H1 is a blo
kdiagonal matrix of H 
onsisting of t diagonal blo
kes of H. As the result, the algorithmA is well de�ned. Assume that sequen
e x̂k and xk is generated by the algorithmA. If there exists an integer k0 su
h that x̂k0 = xk0 , then, from (3.3){(3.4), it is easy tosee that x̂k0 (or xk0) is an optimal solution for the problem (1.1).



312 Z.L. WEIIf the above des
ription is not true, from (2.11) and (3.9), it is striaghtforward toverify that the sequen
e f(xk) is 
onvergent. Thus,limk!1 k dkk2 = limk!1 kx̂k � xkk2 = 0 (3.11)whi
h implies that (3.10) holds. Let x� be a limit of a 
onvergent subsequen
e of thesequen
e xk, and let x̂� be an a

umulation point of the 
orresponding subsequen
e ofx̂k, By (3.10) or (3.11), it is obvious that x� = x̂�. Hen
er'(x�; �x) = r'(x̂�; �x) = rf(x�)From (3.1), the ne
essary and suÆ
ient 
onditions of optimality for problem (1.1) holdat x�, whi
h proves the 
on
lusion of the theorem.The following 
orollary is a dire
t result of Theorem 3.4.Corollary 3.5. Suppose that x0 2 
 is an initial point and H is a symmetri
positive de�nite martrix with diagonal dominant, and that H is divided into H1 and H2su
h that H = H1+H2 and H1 is a blo
k diagonal matrix, and sequen
e x̂k and xk aregenerated by the algorithm A. Then there exists an integer k0 > 0 su
h that x̂k0 = xk0(x̂k0 is an optimal solution of problem (1:1)) orlimk!1(x̂k � xk) = 0 (3.12)and the a

umulation point of xk is a solution of the problem (1:1).Now we dis
uss the numeri
al experiments of our algorithm. The algorithm Awas implemented in double pre
ision Fortran, and the 
ode was tested on randomlygenerated problems. The matrix H is de�ned by H = S+vvT , The elements of v 2 Rnare generated randomly in the interval (�1; 1), and vtv = 1, S is a diagonal matrix, andS = �I (� > 0) and I is an identify matrix. Without loss of generality, assume thatl = 0; u = e; e 2 Rn and all the elements in e are equal to 1, and the number of a
tive
onstraints at the optimal solution x� is 
hosen as n2 , and half of the a
tive variableshave positive gradient, and the other half have negative. So the optimal solution x� is
hosen su
h that (rf(x�))i = 8><>: 1; x�i = 0�1; x�i = 10; 0 < x�i < 1 (4.7)Finally we set b = �Hx� +rf(x�).If jf(xk)�f(x�)j < " is used for the termination rule, and set " = 10�6 and � = 1:0,then the 
omputational results are shown in Table 1 for n (from 100 to 1000).where n; ni; t and NI denote the size of the problems, the size of subproblem, numberof the subproblems and number of iteration for ea
h problem, respe
tively.
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 Programming with Box Constraints 313Table 1.n ni�t NI kxk � x�k2 n ni�t NI kxk � x�k210�10 12 0.40632�10�3 15�40 15 0.50520�10�3100 5�20 13 0.51831�10�3 600 30�20 14 0.71878�10�320�5 13 0.29122�10�3 40�15 14 0.54251�10�320�10 12 0.56617�10�3 35�20 15 0.43237�10�3200 40�5 10 0.43943�10�3 700 70�10 13 0.64135�10�350�4 9 0.40737�10�3 20�35 15 0.57402�10�330�10 12 0.49600�10�3 40�20 15 0.45446�10�310�30 13 0.58339�10�3 20�40 15 0.59770�10�3300 50�6 11 0.31306�10�3 800 50�16 14 0.67480�10�320�15 13 0.41242�10�3 80�10 13 0.65477�10�315�20 13 0.52632�10�3 10�80 15 0.50097�10�340�10 13 0.40337�10�3 30�30 16 0.45173�10�320�20 14 0.48924�10�3 60�15 15 0.46720�10�3400 50�8 12 0.50962�10�3 900 15�60 15 0.73217�10�325�16 14 0.40236�10�3 10�90 15 0.59535�10�316�25 14 0.54003�10�3 90�10 14 0.44213�10�350�10 13 0.54079�10�3 100�10 14 0.45201�10�325�20 14 0.66207�10�3 50�20 15 0.33196�10�3500 20�25 11 0.29122�10�3 1000 20�50 16 0.48603�10�310�50 14 0.75915�10�3 25�40 16 0.49682�10�3100�5 11 0.29018�10�3 10�100 15 0.59320�10�3Table 2.� NI1 kxk � x�k2 NI2 kxk � x�k20.90 16 0.11285�10�2 18 0.10277�10�20.80 21 0.11397�10�2 24 0.11242�10�20.75 26 0.90089�10�3 30 0.98295�10�30.70 32 0.11379�10�2 39 0.10953�10�20.65 45 0.10712�10�2 58 0.12360�10�2The se
ond and third 
olumn, and the fourth and �fth 
olumn denote the numeri
alresults for n = 500 (ni = 25; t = 20) and n = 900(ni = 30; t = 30), respe
tively.The author wishes to thank Prof. Y.Yuan for many valuable suggestion and 
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