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Abstract

We propose a finite dimensional method to compute the solution of nonlin-
ear ill-posed problems approximately and show that under certain conditions, the
convergence can be guaranteed. Moreover, we obtain the rate of convergence of
our method provided that the true solution satisfies suitable smoothness condi-
tion. Finally, we present two examples from the parameter estimation problems of
differential equations and illustrate the applicability of our method.
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1. Introduction

In this paper we consider the nonlinear problems of the form

F(z) = yq, (1)

where F': D(F) C X — Y is a nonlinear operator between real Hilbert spaces X and Y
and yo € R(F). The norms in X and Y will be denoted by |- || x and || ||y respectively.
We are mainly interested in those problems of the form (1) for which the solution does
not depend continuously on the right hand side. Such problems are called ill-posed.
We refer to [5] for a number of important inverse problems in natural sciences which
lead to such ill-posed problems.

Let L be a linear operator

L:D(L)CX —Z

with Z a Hilbert space (the norm is denoted by || - |z) and D(F) N D(L) # 0. L
need not be bounded and allows us to define a seminorm |- | on D(L) by means of
|z| :=||Lz|z. Let (z,2)r := (z,2)x + (Lz, Lz)z for each pair =,z € D(L), then (-,-)L
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is an inner product on D(L), and the induced norm is denoted by ||z||, = v/(z, z) for
z € D(L). If L is closed then (D(L), | -|) forms a Hilbert space.

Now we choose a concept of “solution” for problem (1). An element zy € X is
called an z*-minimum-seminorm-solution (z*-MSS) of problem (1) for given yy € YV
and z* € D(L) if

F(z0) = yo,

and
|Lao — La*||; = inf{|[La — La*| 1 | F(z) = yo, @ € D(F) N D(L)},

where * € D(L) is an a priori guess of g and it plays the role of a selection criterion.
In the following we always assume the existence of an z*-MSS z( for problem (1). Due
to the nonlinearity of F', this solution need not be unique.

Since in practice, we often only know the approximation data ys of yo, ||ys —yol| < 9,
regularization technique is required to obtain a reasonable solution to z*-MSS zy due
to the ill-posedness of problem (1). Tikhonov regularization is the well known method.
In [7], Tikhonov regularization method with the seminorm |- | in the regularization
term was introduced and the solution 2% of the minimization problem

i (IP(a) sl + ol Lo — La* ) 2
was used to approximate the z*-MSS of problem (1). By suitable choice of the regu-
larization parameter «, convergence and convergence rate of zJ were obtained. The
practical advantage of allowing for regularization with an operator L is given by the
fact that one can realize seminorm regularization terms, which penalize undesired os-
cillations in the numerical solution without significantly affecting its low modes.

In this paper we will present a finite dimensional method for solving nonlinear ill-
posed problems. We describe the method in Section 2 and show that this method is well-
defined and prove the existence of the approximate solutions. It is easy to see that our
method can be viewed as a modified form of the (generalized) Marti’s method if F is a
linear operator1%1% The analysis for convergence and convergence rates are presented
in Section 3 and two examples from the parameter estimation problems of differential
equations are given in Section 4 to illustrate the reasonability of our assumptions and
the applicability of our method. For the finite-dimensional approximation of Tikhonov
regularization of nonlinear ill-posed problems, F' is required to be compact!!-13] For
our method, this is not necessary.

2. The Description of the Method

Let zy be the sought z*-MSS of (1). Let {P,} be a sequence of bounded linear
operators of finite rank on X such that P,z¢o € D(F) N D(L) for sufficiently large n,
and we can choose positive number sequences {b,} and {c,} such that

|Pazo — wollx = olby),  lim b, =0, (3)

|L(Ppzo — x0)| 2z = O(cn), Jim_ ¢, = 0. (4)
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Let F,, be the approximations of F' with the properties that D(F,,) = D(F) for all
n and Ve > 0 there is a constant c(€) depending only on e such that

[1Fn () = F(z)lly < Cle)pn, Va € D(F)NUc(o), (5)

where p, = 0(1) and U, (z0) := {z € X | ||z — zo||x < €}.
Let y, be the observation data of yy such that

[yn — volly < n, (6)

where §,, is assumed to be known and

lim 4, = 0.

n— 00

Now we can define the set
Sn = Az | |[Fa(2) — ynlly <bn+0n+c(V)pn, =€ Po(X)NDF)ND(L)}  (7)
and construct z,, as follows:
Tn €Sy and ||Lz, — Lz*|z = inf{||Lz — Lz*||z | z € Sn}. (8)

We will use the sequence {z,} to approximate the z*-MSS z; of (1).

To show our method is well defined, we need the following assumptions.

Assumption 1. 1) F : D(F) C X — Y is Fréchet differentiable at each point
x € D(F) with Fréchet derivative F'(z) € L(X,Y), the adjoint of F’'(x) is denoted by
F'(2)*;

2) Let 0 <91 <2,0< 7y <1landy + v > 1. Ve > 0, there exists n :=n(e) > 0
such that for all z € D(F) N Uc(zg) there holds

IF(2) = F(z0) — F'(z0)(z — o)y < nllz — 2ol X | F(z) — Flzo)lly*.

Assumption 2. 1) For each fixed n, (F,,, L) : D(F)ND(L) C X — Y x Z is weakly
closed, i.e., for any sequence {zx} C D(F)ND(L), if oy, — =z in X, (Fy(zx), Lzg) —
(y,2z) inY x Z, then z € D(F)ND(L) and F,(z) =y, Lz = z. (Here “—” denotes the
weakly convergence).

2) For each fixed n, let {z\} be a sequence in D(F) N D(L), if {(F,(zk), Lzg)} is
bounded in Y x Z, then {z} is bounded in X.

Now we are in a position to prove the well-definedness of our method. we first prove
that for sufficiently large n there holds

[1F(Pazo) = F(zo)lly < bn- (9)

In fact, equation (3) implies that ||P,z¢ — z¢||x < 1 for sufficiently large n. Therefore,
Assumption 1 2) can be applied to obtain (here 7 := 7(1))

(|1 F(Poao) — F(x0) |y ™ = 1l Pazo — m0 ]| 1) || F(Pato) — F(0)||72



318 Q.N. JIN AND Z.Y. HOU
<||F'(z0) (Pno — o) ly- (10)

It |F(Pozo) — Flzo)l ™ < 20| Pazo — mo] 1, then

1 n
|F(Pazo) — F(zo)lly < (20) 7% || Pazg — zo]l ™.

il

L=
If ||F(Pazo) — Fl(ao)ly " > 20]| Pazo — woll ¢, then (10) gives

Since > 1, from (3) we immediately obtain (9) providing n large enough.

%HF(Pnfvo) — F(zo)lly < |1F' (w0) (Pazo — z0)lly-

Therefore
| F(Puzo) — F(zo)lly < 2F (w0)ll2(x )1 Pato — zol x,

and we again obtain (9) providing n large enough.
Thus from (5), (6) and (9) we get for sufficiently large n that

[ Fn(Pazo) — ynlly <[IF(Puwo) — F(zo)lly + lyn — volly + [[Fn(Pazo) — F(Pawo)lly
<bp + 6 + (1) pp.

This implies that P,z¢ € S,,. Therefore, without loss of generality, in the following we
always assume that S,, # () for all n.
Now for each fixed n, we define

dy, := inf{||Lz — Lz™||z | z € S},
and let {:vglk)} be a minimizing sequence. Therefore 2P e P,(X)ND(F)N D(L), and
1Pa(@) ~ yully <bo+ 0+ c(Dpn,  Jim Lol — La*ll; = dn.
This implies that {(Fn(rglk)), LZL‘q(lk))} is bounded in Y x Z. Thus from Assumption 2 2)

we know that {rglk)} is bounded in X. Since a bounded set in Hilbert space always has

a weakly convergent subsequence, there is a subsequence {.’Eq(lkl)} and elements z,, € X,
(Yn, 2n) € Y X Z such that

ek — g in X, (Fu(aF)), Le)) = (§,,2,) in Y x Z.

Hence Assumption 2 1) implies that z,, € D(F) N D(L), Fy(zn) = yn and Lz, = 2.
By the weak lower semicontinuity of Hilbert space norm we have

[ Fn(zn) = ynlly < lilrg(i)glfHFn(x,(lkl)) = Ynlly < bn + dn + c(1)pn.

Since a closed subspace in Banach space is always weakly closed, from z%kl) € P,(X)

and :vglkl) — 1, we know z,, € P, (X). Hence z,, € S,,. Note that

| Lt — La*||z < lim n Lz — La*| ; = dy,
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we have ||Lz, — Lz*||z = dp. Therefore we obtain the existence of z, defined by (8).

3. Convergence and Convergence Rates

In this section we present the analysis for convergence and convergence rates of our
method. The following additional assumptions are needed.

Assumption 3. (F,L): D(F)ND(L) C X — Y x Z is weakly closed.

Assumption 4. Let {z;} C D(L). If 2y — z in X and ||Lzy||z — ||Lz| 2z, then
T — ¢ in X.

We first give the convergence result for {z,,}.

Theorem 1. Let Assumptions 1 4 be fulfilled and D(F') be bounded in X, let {x,}
be the sequence defined by (8). Then there is a subsequence of {x,} convergent in
(D(L), || - |.) and the limit is an x*-MSS of (1). If in addition, the z*-MSS xq of (1)
18 unique, then

lim ||z, — x|z = 0.
n—oo

Proof. According to the analysis in Section 2 we know there is an N such that
Pyxy € S, for all n > N. Hence from the definition of z,, it follows that

[Lan — La*||z < [[L(Pawo — 37)|| 2 < [[L(Pawo — mo)llz + [ L(zo — 27|z (11)
Since z,, € S,, we have

[ Fn(Tn) — ynlly < bn + 0n + c(1)pn.

Due to the boundedness of D(F') in X, there is a constant M such that |z, —z||x < M,
Therefore (5) implies that

1F(zn) = yully < 1Fnlzn) — Flan)lly + [[Falzn) = yally
< by + 6p + c(1)pp + c(M)py. (12)

Combining the above we know that {(z,, F(z,), Lz,)} is bounded in X xY x Z. Thus
there is a subsequence {z,, } and elements z € X, y € Y, Z € Z such that

Tp, =~Zin X, (F(zp,),Lzy,)— (9,2) inY x Z

k

Now Assumptiom 3 implies that z € D(F) N D(L), F(z) = y and Lz = z. But from
(12) we know
T () = golly =0.

Therefore y = yo. Using (4), (11) and the weak lower semicontinuity of Hilbert space
norm we have
|Lz — Lz*||z <liminf || Lz,, — Lz*||,
k—o0

<limsup || Lz, — Lz*||z < ||Lzo — Lz*| 2.

k—o0



320 Q.N. JIN AND Z.Y. HOU
Since g is the z*-MSS of (1), we have
|\Lz — Lz*||z = |Lzo — Lz*||z, lim |Lz,, — Lz*||z = ||Lz — Lz*|| 7. (13)
k—o0
This implies that z is an z*-MSS of (1), and from
|Lxy, — Lz||% = || Lay, — La*||% — 2(Lay, — La*, Lz — La*) 7 + || Lt — Lz*|%

we know
|Lzp, — Lz||z = 0.

lim
k—o0
On the other hand, since z,, — Z in X, from (13) and Assumption 4 it follows that

li —Zzllx = 0.
lim Jz,,, — a]lx

Hence

li — | = 0.
lim 7, — o]l

If the *-MSS zy of (1) is unique, from above we know that each subsequence of

{zy} has a subsequence convergent to z¢ in (D(L),| - ||.). Therefore
nl;rgo |z — x|l = 0.

The above theorem provides us only the convergence result of {z, }. When the z*-
MSS zy of (1) satisfies suitable smoothness condition, we can derive the convergence
rate for {z,}.

Lemma 1. Let X, Y and Z be Hilbert spaces, let L : D(L) C X — Z be a closed
linear operator with R(L) closed in Z. If N(L) N N(F'(zg)) = {0} and there is a
constant 8 > 0 such that | F'(zo)v|ly > Bllv||x for all v € N(L), then there exists a
constant k > 0 such that

1F" (o)l + 1Lz > w*|l2]7, vz € D(L).

Proof. Please refer to [9].

Theorem 2. Let Assumptions 1-3 hold and D(F) be bounded in X, let q, :=
max{by,c,}, let L : D(L) C X — Z be a closed, densely defined linear operator with
R(L) closed in Z and N(L) N N(F'(zg)) = {0}, and there is a constant > 0 such
that ||F'(zo)vlly > Bllv|lx for all v € N(L). Let z* € D(F) N D(L) be chosen such
that ||Pyz* — z*||, < O(qn). If zo —2* € D(L*L) and there is an w € Y such that
L*L(zg — 2*) = F'(x0)*w, then for the sequence {x,}defined by (10), we have

|20 — zollL < O(Van +6n +pn) as n— o0

if one of the following conditions holds:

)71 =2, 92 =0, 2n||lwlly < k? with n:=n2||ro — 2*||x) and z, — z in X as
n — oo;

) 0<y <2,0< v <1 and vy + 2y, > 2.
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Proof. Obviously we always have vy, + 2 > 1. Thus from the argument in Section
2 it follows that there is an Ny such that P,xzy € S, for all n > Ny. Therefore, from
(11) and (4) we can obtain

|Lx,, — Lz*||z < |[Lzg — Lz*||z + O(qn)-
Hence
| Lz, — Lxzo||% = |Lzy, — La*||% + | Lo — Lz*||% — 2(La, — Lz*, Lzg — Lz*)y
< 2||Lzy — Lz*||% — 2(Lx,, — Lz*, Ly — Lz*) 7 + O(qy)
= 2(Lay — Ly, Lrg — Lz™) 7z + O(qy)
= 2(z0 — Tn, L' L(zg — 27))x + O(qn).
Applying the assumptions on 2y — z* yields

| Lz, — Laol|% < 2(zg — 2, F'(z0)*w) x + Olqy)
= 2(FI($U)($U — Zn), w)y + O(qn)
< 2|lwlly |F'(z0) (zn — zo)lly + O(gn).- (14)

Since D(F') is bounded in X, there is a constant M such that ||z, — z¢||x < M. Hence
by Assumption 1 2) we have (here 7 := n(M))

|F"(z0) (2 — m0) [y < D + nE] D). (15)

where we use the abbreviations D,, := ||F(z,) — F(zo)|ly and E, := ||z, — =] x.
Therefore, by adding || F'(zo)(xo — x,)|/? to the both sides of (14) and using Lemma 1
and (15) we can get

K2\l — woll, <||Lan — Lao||Z + |F (20) (2 — 20) |3
<2|wlly (Dp + nE} D)?) + 2D} + 20> E;* D3 + O(gy)
=2([lwlly + Dn)Dn + 20(llwlly +nE;t Di2) DR ESY + O(gn).-
(16)
Now we give the estimate of D,,. Noting the boundedness of {z,} in X, from (5) we can

choose a constant 75 independent of n such that || F,(z,) — F(z,)|ly < T0pn. Therefore

Dy, <||Fn(2n) — ynlly + llyn — wolly + [[Fn(zn) — F(2n)|ly
<bp + 6p + (1) pn + dp + T0pn = O(by, + 0 + pn)- (17)

In the following we are going to give the proof of the assertion.
i) When v; = 2 and 2 = 0, we have from (16) that

K |lon — aoll7, < 2(|lwlly + Dp) Dy + @nllwll + 20° ) |2y — zoll7, + Oan).  (18)

Since z, — o in X, we have E, < 2||zg — z*| x for sufficiently large n. Therefore n
appearing in (18) can be chosen as 7 := 5(2||zy — z*||x). Since 2n|w|y < &2, we can
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choose a constant ¢ > 0 and an integer Ny such that x? — (2n||wl|ly + 2n*E2) > ¢ for
all n > Ny. Therefore g||z, — zol|2 < 2(|lw|y + Dy)Dy + O(gn). By applying (17) we
obtain the desired result immediately.

ii) We first assume 7; < 2. Applying the implication (cf. [12])

_p_
a,b,c>0, p>q>0, a’ <c+ba! = da’ < O(c+brP9)

2
to (16) and noting 5 e > 1 it follows that
-N
272
2—
l#n — zoll7, < O(Dy + D" 4 gn) < Ogn + 0 + pu)- (19)

Now we consider the case y; = 2. From (17) it follows that 2n(||w||+nE2 D)?)D)> —
0 as n — oo. Therefore, by noting that

(5% = 2n(|lwll + 0By DY) D?)|zn — 0|7, < 2(lwlly + Dn)Dy + O(an),

we immediately obtain ||z, — zo|7 < O(gn + 6n + pn)-

Summing up, the proof is complete.

Remark 1. 1) In the above two theorems, we have assume that D(F') is bounded
in X. This is frequently used in parameter estimation problems (cf. [1,8]).

2) The assumption that D(F) is bounded in X is only needed to guarantee the
boundedness of {z,} in X. If L := I =identity, this assumption is not necessary.

3) When L := I, the assumptions on L in Theorem 2 and Assumptions 2 2) and
4 hold automatically and (4) is superfluous, the number x appearing in Theorem 2
should be replaced by « = 1 and z, — xp in X is not needed, and we also have
lzn = @ollx < O(Vbn + 6 + pn)-

4) To obtain the convegence rates, the following assumption has been assumed in
many papers (cf. [4,7,11]):

Ve > 0, there is a constant -y such that

|F'(z) = F'(zo)| < vllz — zollx, Yz € D(F)NUc(zy).
From this we can easily derive
|1F(z) = F(z0) — F'(z0)(z — 20)|| < %le — %

Therefore this is a special case of Assumption 1 2) with v =2, 79 = 0.

1
5) When 0 < 71 < 2,0 <y <landy +7 >1> om + 72, we can also obtain
272
the convergence rate for {z,}, but now the convergence rate is O((gn + 0n + pn) 271 ),

2
not O(v/qn + 0, + prn)- As a matter of fact, by noting that 5 72 < 1 we obtain this
-n

assertion from the proof of Theorem 2 at once.

6) When the condition ii) in Theorem 2 is fulfilled, the smallness condition 2n||w||y <

k2 can be removed.
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4. Examples

In this section we consider two parameter estimation problems of differential equa-
tions to illustrate the applicability of our method. These two problems are both non-
linear and ill-posed and have been studied in [4,13] by Tikhonov regularization.

Example 1. We treat the problem of estimating the parameter ¢ in the two point
boundary value problem

—Uzz +cu=f in (0,1), (20)
u(0) =0 =wu(1) (21)

from the noise measurement us € L2[0,1]. we assume ¢y > 0, |[cgl/;2 < K be the
sought solution corresponding to the unperturbed observation ug, i.e. u(cy) = ug. Here
u(eg) € H[0,1JNH?[0, 1] denotes the solution of (20), (21) with ¢ = ¢ and f € L?[0,1],

f # 0 and K is a given constant.

d
To implement of our method, we choose X =Y = Z := L?[0,1] and L := o and
x

define the nonlinear operator F' by

F:D(F):={ce L*0,1]| ¢ >0 ae.,|c|,> < K+ 1} C L*0,1] = L*[0,1],
c— F(c) :=ulc).

Clearly D(L) = H'[0,1] and L : D(L) C L%[0,1] = L2[0,1] is closed, densely defined
and surjective. Since F is weakly closed®!, Assumption 3 follows. Assumption 2 2)
follows immediately from the definition of D(F). It is well known that!!l F' is Fréchet
differentiable with

F'(c)h:= —A(c) Y (hu(c)),  ¢€ D(F), h € L?*[0,1],

and satisfies Assumption 1 with y; = 2 and 5 = 0, where A(c) : HINH?[0,1] — L?[0, 1]
is defined by A(c)u := —uzy + cu. Note that dimN (L) = 1 and R(L) = Z, Assumption
4 follows fron [7, Lemma 1].

Now suppose that h € N(L) N N(F'(cp)). This implies that h is a constant and
hA(c) '(u(e)) = 0. If h # 0 then this implies that u(co) = 0 which can happen only
if f =0, which is excluded. Since dimN (L) = 1, there is a constant 3 > 0 such that
| F'(co)hllz2 > Bl|h|/z2 for all h € N(L).

To give the finite dimensional approximation, let P,(X) be the space of the linear
splines on a uniform grid of n + 1 points in [0,1]. If ¢g satisfies: cg € H?[0,1], ¢g > 0,
then from [14, Corollary 7.3] we have

nlggo |Pyco — collre = 0.
This implies that P,co € D(F) N D(L) for sufficiently large n.

From [14] we also have

| Paco — collz2 < O(n?|lcoll2),
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|L(Paco — co)llz2 < O(n™Hico| r2).-

Thus we can choose the quantities b, and ¢, appearing in our method to be b, =
n2logn and ¢, = n~ ', hence ¢, = O(n~!). To define the approximation F, of F,
we choose Y, be the space of linear splines on a uniform grid of n + 1 points in [0, 1],
vanishing at 0 and 1, and define F), by

F, :D(F) C L*0,1] — L*[0,1],
¢ Fy(c) == un(c),

where uy,(c) is the unique solution of the variational equation
((un)as va)r2 + (cun,v)r2 = (f,v)r2, Vv €Y.
Then we have (cf.[2,13])
1Fn(c) = F(O)llrz < O((1 + llellz2)n?).

Thus we can choose p, = n~2. To show the applicability of our method, now we only
need to prove the weakly closedness of F,, for each fixed n. Suppose {cy} C D(F) be
a sequence such that ¢, — ¢ in L2[0,1] and u,(cg) — w in L?[0,1]. By the weakly
closedness of D(F), we have ¢ € D(F). Note that {c;} is bounded in L2[0, 1], {u,(cx)}
is bounded in H'[0,1] by the theory of elliptic equations. Since a bounded set in
a Hilbert space always has a weakly convergent subsequence, and by the embedding
theorem of Sobolev space and Ascoli-Arzela theorem we know there is a subsequence,
still denote it by {u,(cx)}, such that u,(cy) — @ in H'[0,1] and wu,(c;) — @ in the
maximum norm. Obviously 4 = 4 = u. Now letting k — oo in

((Un(ck))xavx)Lz + (Ckun(ck)av)L2 = (faU)LQa Yo ey,
we can obtain
(g, )2 + (cu,v) 2 = (f, )2, Yo €Y.

Since u € Y, due to the weakly closedness of Y,,, it follows that u = uy,(c).
Example 2. Consider the problem of estimating the diffusion coefficient a in

- (aul‘)x = f in (07 1)7 (22)
u(0) =0 = wu(1) (23)

with f € L2[0, 1] from the noise data us of the state variable ug, ||us — uol|;> < d. Let
ag be the sought solution and ug = u(ag). To put this problem into our framework, we
choose X = H'[0,1], Y = L?[0,1], and define the nonlinear operator F by

F:D(F):={a€ H'0,1] | a(z) > v c H'[0,1] = L0, 1],
a— F(a) = u(a),
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where u(a) is the unique solution of (22), (23) and v > 0 is a given constant. It is well
known that!* F' is weakly closed, continuous and Fréchet differentiable with

F'(a)h = A(a) Y (hu(a)y)e, a € D(F), he HY0,1],

and A(a) : H} N H?[0,1] — L2[0,1] is defined by A(a)u := —(au,),. We can show
thatlf there is an ¢y > 0 such that for every 0 < e < ¢ there is an 7 := 7(e) such that
for all a € D(F) N U(ayp),

I1F(a) — F(ao) — F'(ao)(a — ao)llr2 < nlla — aoll m [1F(a) — F(ao)| 2.

If we choose L := I, then Assumptions 2 and 4 and the assumptions on L in Theorem
2 hold automatically. To give the finite dimensional approximation, let X, and Y, be
as in Example 1, and let u,(a) be the unique solution of the variational equation

(a(u”)I7UI)L2 = (f?IU)L27 Vo € Yna
and define the approximation F;, of F' by

F, :D(F) c H'0,1] — L?*[0,1],
a— Fy(a) = up(a).

Then we can show that F;, is weakly closed for each fixed n as in Example 1 and have
the estimate (cf.[2,13])

1Fn(a) — Fa)] 2 < O((1 + llallgn)n ).

Hence we can choose p, = n 2. If the sought solution ag satisfies: ay € HQ[O, 1], ag > v,
then [14, Corollary 7.3] implies P,aq € D(F') for sufficiently large n and

1Paao — aollm < O(n™|aol|p2).

Hence we can choose b, = n~ ! logn. Thus we also verify the applicability of our method
to this parameter estimation problem.
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