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A FINITE DIMENSIONAL METHOD FOR SOLVINGNONLINEAR ILL-POSED PROBLEMS�1)Qi-nian Jin(Institute of Mathemati
s, Nanjing University, Nanjing 210008, China)Zong-yi Hou(Institute of Mathemati
s, Fudan University, Shanghai 200433, China)Abstra
tWe propose a �nite dimensional method to 
ompute the solution of nonlin-ear ill-posed problems approximately and show that under 
ertain 
onditions, the
onvergen
e 
an be guaranteed. Moreover, we obtain the rate of 
onvergen
e ofour method provided that the true solution satis�es suitable smoothness 
ondi-tion. Finally, we present two examples from the parameter estimation problems ofdi�erential equations and illustrate the appli
ability of our method.Key words: Nonlinear ill-posed problems, Finite dimensional method, Convergen
eand 
onvergen
e rates. 1. Introdu
tionIn this paper we 
onsider the nonlinear problems of the formF (x) = y0; (1)where F : D(F ) � X ! Y is a nonlinear operator between real Hilbert spa
es X and Yand y0 2 R(F ). The norms in X and Y will be denoted by k�kX and k�kY respe
tively.We are mainly interested in those problems of the form (1) for whi
h the solution doesnot depend 
ontinuously on the right hand side. Su
h problems are 
alled ill-posed.We refer to [5℄ for a number of important inverse problems in natural s
ien
es whi
hlead to su
h ill-posed problems.Let L be a linear operator L : D(L) � X ! Zwith Z a Hilbert spa
e (the norm is denoted by k � kZ) and D(F ) \ D(L) 6= ;. Lneed not be bounded and allows us to de�ne a seminorm j � j on D(L) by means ofjxj := kLxkZ . Let (x; z)L := (x; z)X + (Lx;Lz)Z for ea
h pair x; z 2 D(L), then (�; �)L� Re
eived O
tober 31, 1996.1)This work is 
arried out during the �rst author's stay at Fudan University and is supported byNational Natural S
ien
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316 Q.N. JIN AND Z.Y. HOUis an inner produ
t on D(L), and the indu
ed norm is denoted by kzkL =p(z; z)L forz 2 D(L). If L is 
losed then (D(L); k � kL) forms a Hilbert spa
e.Now we 
hoose a 
on
ept of \solution" for problem (1). An element x0 2 X is
alled an x�-minimum-seminorm-solution (x�-MSS) of problem (1) for given y0 2 Yand x� 2 D(L) if F (x0) = y0;and kLx0 � Lx�kZ = inffkLx� Lx�kZ j F (x) = y0; x 2 D(F ) \D(L)g;where x� 2 D(L) is an a priori guess of x0 and it plays the role of a sele
tion 
riterion.In the following we always assume the existen
e of an x�-MSS x0 for problem (1). Dueto the nonlinearity of F , this solution need not be unique.Sin
e in pra
ti
e, we often only know the approximation data yÆ of y0, kyÆ�y0k � Æ,regularization te
hnique is required to obtain a reasonable solution to x�-MSS x0 dueto the ill-posedness of problem (1). Tikhonov regularization is the well known method.In [7℄, Tikhonov regularization method with the seminorm j � j in the regularizationterm was introdu
ed and the solution xÆ� of the minimization problemminx2D(F )\D(L)fkF (x) � yÆk2Y + �kLx� Lx�k2Zg (2)was used to approximate the x�-MSS of problem (1). By suitable 
hoi
e of the regu-larization parameter �, 
onvergen
e and 
onvergen
e rate of xÆ� were obtained. Thepra
ti
al advantage of allowing for regularization with an operator L is given by thefa
t that one 
an realize seminorm regularization terms, whi
h penalize undesired os-
illations in the numeri
al solution without signi�
antly a�e
ting its low modes.In this paper we will present a �nite dimensional method for solving nonlinear ill-posed problems. We des
ribe the method in Se
tion 2 and show that this method is well-de�ned and prove the existen
e of the approximate solutions. It is easy to see that ourmethod 
an be viewed as a modi�ed form of the (generalized) Marti's method if F is alinear operator[10;15℄. The analysis for 
onvergen
e and 
onvergen
e rates are presentedin Se
tion 3 and two examples from the parameter estimation problems of di�erentialequations are given in Se
tion 4 to illustrate the reasonability of our assumptions andthe appli
ability of our method. For the �nite-dimensional approximation of Tikhonovregularization of nonlinear ill-posed problems, F is required to be 
ompa
t[11;13℄. Forour method, this is not ne
essary.2. The Des
ription of the MethodLet x0 be the sought x�-MSS of (1). Let fPng be a sequen
e of bounded linearoperators of �nite rank on X su
h that Pnx0 2 D(F ) \D(L) for suÆ
iently large n,and we 
an 
hoose positive number sequen
es fbng and f
ng su
h thatkPnx0 � x0kX = o(bn); limn!1 bn = 0; (3)kL(Pnx0 � x0)kZ = O(
n); limn!1 
n = 0: (4)



A Finite Dimensional Method for Solving Nonlinear Ill-Posed Problems 317Let Fn be the approximations of F with the properties that D(Fn) = D(F ) for alln and 8� > 0 there is a 
onstant 
(�) depending only on � su
h thatkFn(x)� F (x)kY � C(�)�n; 8x 2 D(F ) \ U�(x0); (5)where �n = o(1) and U�(x0) := fx 2 X j kx� x0kX � �g.Let yn be the observation data of y0 su
h thatkyn � y0kY � Æn; (6)where Æn is assumed to be known andlimn!1 Æn = 0:Now we 
an de�ne the setSn := fx j kFn(x)� ynkY � bn + Æn + 
(1)�n; x 2 Pn(X) \D(F ) \D(L)g (7)and 
onstru
t xn as follows:xn 2 Sn and kLxn � Lx�kZ = inffkLx� Lx�kZ j x 2 Sng: (8)We will use the sequen
e fxng to approximate the x�-MSS x0 of (1).To show our method is well de�ned, we need the following assumptions.Assumption 1. 1) F : D(F ) � X ! Y is Fr�e
het di�erentiable at ea
h pointx 2 D(F ) with Fr�e
het derivative F 0(x) 2 L(X;Y ), the adjoint of F 0(x) is denoted byF 0(x)�;2) Let 0 < 
1 � 2, 0 � 
2 � 1 and 
1 + 
2 � 1. 8� > 0, there exists � := �(�) > 0su
h that for all x 2 D(F ) \ U�(x0) there holdskF (x)� F (x0)� F 0(x0)(x� x0)kY � �kx� x0k
1X kF (x) � F (x0)k
2Y :Assumption 2. 1) For ea
h �xed n, (Fn; L) : D(F )\D(L) � X ! Y �Z is weakly
losed, i.e., for any sequen
e fxkg � D(F ) \D(L), if xk * x in X, (Fn(xk); Lxk) *(y; z) in Y �Z, then x 2 D(F )\D(L) and Fn(x) = y, Lx = z. (Here \*" denotes theweakly 
onvergen
e).2) For ea
h �xed n, let fxkg be a sequen
e in D(F ) \D(L), if f(Fn(xk); Lxk)g isbounded in Y � Z, then fxkg is bounded in X.Now we are in a position to prove the well-de�nedness of our method. we �rst provethat for suÆ
iently large n there holdskF (Pnx0)� F (x0)kY � bn: (9)In fa
t, equation (3) implies that kPnx0 � x0kX � 1 for suÆ
iently large n. Therefore,Assumption 1 2) 
an be applied to obtain (here � := �(1))(kF (Pnx0)� F (x0)k1�
2Y � �kPnx0 � x0k
1X )kF (Pnx0)� F (x0)k
2Y



318 Q.N. JIN AND Z.Y. HOU�kF 0(x0)(Pnx0 � x0)kY : (10)If kF (Pnx0)� F (x0)k1�
2Y � 2�kPnx0 � x0k
1X , thenkF (Pnx0)� F (x0)kY � (2�) 11�
2 kPnx0 � x0k 
11�
2X :Sin
e 
11� 
2 � 1, from (3) we immediately obtain (9) providing n large enough.If kF (Pnx0)� F (x0)k1�
2Y � 2�kPnx0 � x0k
1X , then (10) gives12kF (Pnx0)� F (x0)kY � kF 0(x0)(Pnx0 � x0)kY :Therefore kF (Pnx0)� F (x0)kY � 2kF 0(x0)kL(X;Y )kPnx0 � x0kX ;and we again obtain (9) providing n large enough.Thus from (5), (6) and (9) we get for suÆ
iently large n thatkFn(Pnx0)� ynkY �kF (Pnx0)� F (x0)kY + kyn � y0kY + kFn(Pnx0)� F (Pnx0)kY�bn + Æn + 
(1)�n:This implies that Pnx0 2 Sn. Therefore, without loss of generality, in the following wealways assume that Sn 6= ; for all n.Now for ea
h �xed n, we de�nedn := inffkLx� Lx�kZ j x 2 Sng;and let fx(k)n g be a minimizing sequen
e. Therefore x(k)n 2 Pn(X) \D(F ) \D(L), andkFn(x(k)n )� ynkY � bn + Æn + 
(1)�n; limk!1 kLx(k)n � Lx�kZ = dn:This implies that f(Fn(x(k)n ); Lx(k)n )g is bounded in Y �Z. Thus from Assumption 2 2)we know that fx(k)n g is bounded in X. Sin
e a bounded set in Hilbert spa
e always hasa weakly 
onvergent subsequen
e, there is a subsequen
e fx(kl)n g and elements xn 2 X,(�yn; �zn) 2 Y � Z su
h thatx(kl)n * xn in X; (Fn(x(kl)n ); Lx(kl)n ) * (�yn; �zn) in Y � Z:Hen
e Assumption 2 1) implies that xn 2 D(F ) \D(L), Fn(xn) = �yn and Lxn = �zn.By the weak lower semi
ontinuity of Hilbert spa
e norm we havekFn(xn)� ynkY � lim infl!1 kFn(x(kl)n )� ynkY � bn + Æn + 
(1)�n:Sin
e a 
losed subspa
e in Bana
h spa
e is always weakly 
losed, from x(kl)n 2 Pn(X)and x(kl)n * xn we know xn 2 Pn(X). Hen
e xn 2 Sn. Note thatkLxn � Lx�kZ � lim infl!1 kLx(kl)n � Lx�kZ = dn;
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e of xn de�ned by (8).3. Convergen
e and Convergen
e RatesIn this se
tion we present the analysis for 
onvergen
e and 
onvergen
e rates of ourmethod. The following additional assumptions are needed.Assumption 3. (F;L) : D(F ) \D(L) � X 7! Y � Z is weakly 
losed.Assumption 4. Let fxkg � D(L). If xk * x in X and kLxkkZ ! kLxkZ , thenxk ! x in X.We �rst give the 
onvergen
e result for fxng.Theorem 1. Let Assumptions 1{4 be ful�lled and D(F ) be bounded in X, let fxngbe the sequen
e de�ned by (8). Then there is a subsequen
e of fxng 
onvergent in(D(L); k � kL) and the limit is an x�-MSS of (1). If in addition, the x�-MSS x0 of (1)is unique, then limn!1 kxn � x0kL = 0:Proof. A

ording to the analysis in Se
tion 2 we know there is an N su
h thatPnx0 2 Sn for all n � N . Hen
e from the de�nition of xn it follows thatkLxn � Lx�kZ � kL(Pnx0 � x�)kZ � kL(Pnx0 � x0)kZ + kL(x0 � x�)kZ : (11)Sin
e xn 2 Sn, we have kFn(xn)� ynkY � bn + Æn + 
(1)�n:Due to the boundedness ofD(F ) inX, there is a 
onstantM su
h that kxn�x0kX �M ,Therefore (5) implies thatkF (xn)� ynkY � kFn(xn)� F (xn)kY + kFn(xn)� ynkY� bn + Æn + 
(1)�n + 
(M)�n: (12)Combining the above we know that f(xn; F (xn); Lxn)g is bounded in X�Y �Z. Thusthere is a subsequen
e fxnkg and elements �x 2 X, �y 2 Y , �z 2 Z su
h thatxnk * �x in X; (F (xnk); Lxnk) * (�y; �z) in Y � Z:Now Assumptiom 3 implies that �x 2 D(F ) \D(L), F (�x) = �y and L�x = �z. But from(12) we know limn!1 kF (xn)� y0kY = 0:Therefore �y = y0. Using (4), (11) and the weak lower semi
ontinuity of Hilbert spa
enorm we have kL�x� Lx�kZ � lim infk!1 kLxnk � Lx�kZ� limsupk!1 kLxnk � Lx�kZ � kLx0 � Lx�kZ :
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e x0 is the x�-MSS of (1), we havekL�x� Lx�kZ = kLx0 � Lx�kZ ; limk!1kLxnk � Lx�kZ = kL�x� Lx�kZ : (13)This implies that �x is an x�-MSS of (1), and fromkLxnk � L�xk2Z = kLxnk � Lx�k2Z � 2(Lxnk � Lx�; L�x� Lx�)Z + kL�x� Lx�k2Zwe know limk!1kLxnk � L�xkZ = 0:On the other hand, sin
e xnk * �x in X, from (13) and Assumption 4 it follows thatlimk!1 kxnk � �xkX = 0:Hen
e limk!1kxnk � �xkL = 0:If the x�-MSS x0 of (1) is unique, from above we know that ea
h subsequen
e offxng has a subsequen
e 
onvergent to x0 in (D(L); k � kL). Thereforelimn!1 kxn � x0kL = 0:The above theorem provides us only the 
onvergen
e result of fxng. When the x�-MSS x0 of (1) satis�es suitable smoothness 
ondition, we 
an derive the 
onvergen
erate for fxng.Lemma 1. Let X, Y and Z be Hilbert spa
es, let L : D(L) � X ! Z be a 
losedlinear operator with R(L) 
losed in Z. If N(L) \ N(F 0(x0)) = f0g and there is a
onstant � > 0 su
h that kF 0(x0)vkY � �kvkX for all v 2 N(L), then there exists a
onstant � > 0 su
h thatkF 0(x0)xk2Y + kLxk2Z � �2kxk2L; 8x 2 D(L):Proof. Please refer to [9℄.Theorem 2. Let Assumptions 1{3 hold and D(F ) be bounded in X, let qn :=maxfbn; 
ng, let L : D(L) � X ! Z be a 
losed, densely de�ned linear operator withR(L) 
losed in Z and N(L) \ N(F 0(x0)) = f0g, and there is a 
onstant � > 0 su
hthat kF 0(x0)vkY � �kvkX for all v 2 N(L). Let x� 2 D(F ) \ D(L) be 
hosen su
hthat kPnx� � x�kL � O(qn). If x0 � x� 2 D(L�L) and there is an w 2 Y su
h thatL�L(x0 � x�) = F 0(x0)�w, then for the sequen
e fxngde�ned by (10), we havekxn � x0kL � O(pqn + Æn + �n) as n!1if one of the following 
onditions holds:i) 
1 = 2, 
2 = 0, 2�kwkY < �2 with � := �(2kx0 � x�kX) and xn ! x0 in X asn!1;ii) 0 < 
1 � 2, 0 < 
2 � 1 and 
1 + 2
2 � 2.
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1 + 
2 � 1. Thus from the argument in Se
tion2 it follows that there is an N0 su
h that Pnx0 2 Sn for all n � N0. Therefore, from(11) and (4) we 
an obtainkLxn � Lx�kZ � kLx0 � Lx�kZ +O(qn):Hen
ekLxn � Lx0k2Z = kLxn � Lx�k2Z + kLx0 � Lx�k2Z � 2(Lxn � Lx�; Lx0 � Lx�)Z� 2kLx0 � Lx�k2Z � 2(Lxn � Lx�; Lx0 � Lx�)Z +O(qn)= 2(Lx0 � Lxn; Lx0 � Lx�)Z +O(qn)= 2(x0 � xn; L�L(x0 � x�))X +O(qn):Applying the assumptions on x0 � x� yieldskLxn � Lx0k2Z � 2(x0 � xn; F 0(x0)�w)X +O(qn)= 2(F 0(x0)(x0 � xn); w)Y +O(qn)� 2kwkY kF 0(x0)(xn � x0)kY +O(qn): (14)Sin
e D(F ) is bounded in X, there is a 
onstant M su
h that kxn�x0kX �M . Hen
eby Assumption 1 2) we have (here � := �(M))kF 0(x0)(xn � x0)kY � Dn + �E
1n D
2n : (15)where we use the abbreviations Dn := kF (xn) � F (x0)kY and En := kxn � x0kX .Therefore, by adding kF 0(x0)(x0 � xn)k2Y to the both sides of (14) and using Lemma 1and (15) we 
an get�2kxn � x0k2L �kLxn � Lx0k2Z + kF 0(x0)(xn � x0)k2Y�2kwkY (Dn + �E
1n D
2n ) + 2D2n + 2�2E2
1n D2
2n +O(qn)=2(kwkY +Dn)Dn + 2�(kwkY + �E
1n D
2n )D
2n E
1n +O(qn): (16)Now we give the estimate of Dn. Noting the boundedness of fxng inX, from (5) we 
an
hoose a 
onstant �0 independent of n su
h that kFn(xn)�F (xn)kY � �0�n. ThereforeDn �kFn(xn)� ynkY + kyn � y0kY + kFn(xn)� F (xn)kY�bn + Æn + 
(1)�n + Æn + �0�n = O(bn + Æn + �n): (17)In the following we are going to give the proof of the assertion.i) When 
1 = 2 and 
2 = 0, we have from (16) that�2kxn � x0k2L � 2(kwkY +Dn)Dn + (2�kwk + 2�2E2n)kxn � x0k2L +O(qn): (18)Sin
e xn ! x0 in X, we have En � 2kx0 � x�kX for suÆ
iently large n. Therefore �appearing in (18) 
an be 
hosen as � := �(2kx0 � x�kX). Sin
e 2�kwkY < �2, we 
an
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hoose a 
onstant q > 0 and an integer N1 su
h that �2 � (2�kwkY + 2�2E2n) � q forall n � N1. Therefore qkxn � x0k2L � 2(kwkY +Dn)Dn + O(qn). By applying (17) weobtain the desired result immediately.ii) We �rst assume 
1 < 2. Applying the impli
ation (
f. [12℄)a; b; 
 � 0; p > q � 0; ap � 
+ baq =) ap � O(
+ b pp�q )to (16) and noting 2
22� 
1 � 1 it follows thatkxn � x0k2L � O(Dn +D 2
22�
1n + qn) � O(qn + Æn + �n): (19)Now we 
onsider the 
ase 
1 = 2. From (17) it follows that 2�(kwk+�E2nD
2n )D
2n !0 as n!1. Therefore, by noting that(�2 � 2�(kwk + �E2nD
2n )D
2n )kxn � x0k2L � 2(kwkY +Dn)Dn +O(qn);we immediately obtain kxn � x0k2L � O(qn + Æn + �n).Summing up, the proof is 
omplete.Remark 1. 1) In the above two theorems, we have assume that D(F ) is boundedin X. This is frequently used in parameter estimation problems (
f. [1,8℄).2) The assumption that D(F ) is bounded in X is only needed to guarantee theboundedness of fxng in X. If L := I =identity, this assumption is not ne
essary.3) When L := I, the assumptions on L in Theorem 2 and Assumptions 2 2) and4 hold automati
ally and (4) is super
uous, the number � appearing in Theorem 2should be repla
ed by � = 1 and xn ! x0 in X is not needed, and we also havekxn � x0kX � O(pbn + Æn + �n).4) To obtain the 
onvegen
e rates, the following assumption has been assumed inmany papers (
f. [4,7,11℄):8� > 0, there is a 
onstant 
 su
h thatkF 0(x)� F 0(x0)k � 
kx� x0kX ; 8x 2 D(F ) \ U�(x0):From this we 
an easily derivekF (x)� F (x0)� F 0(x0)(x� x0)k � 
2 kx� x0k2:Therefore this is a spe
ial 
ase of Assumption 1 2) with 
1 = 2, 
2 = 0.5) When 0 < 
1 < 2, 0 < 
2 < 1 and 
1 + 
2 � 1 > 12
1 + 
2, we 
an also obtainthe 
onvergen
e rate for fxng, but now the 
onvergen
e rate is O((qn + Æn + �n) 2
22�
1 ),not O(pqn + Æn + �n). As a matter of fa
t, by noting that 2
22� 
1 < 1 we obtain thisassertion from the proof of Theorem 2 at on
e.6) When the 
ondition ii) in Theorem 2 is ful�lled, the smallness 
ondition 2�kwkY <�2 
an be removed.
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tion we 
onsider two parameter estimation problems of di�erential equa-tions to illustrate the appli
ability of our method. These two problems are both non-linear and ill-posed and have been studied in [4,13℄ by Tikhonov regularization.Example 1. We treat the problem of estimating the parameter 
 in the two pointboundary value problem � uxx + 
u = f in (0; 1); (20)u(0) = 0 = u(1) (21)from the noise measurement uÆ 2 L2[0; 1℄. we assume 
0 � 0, k
0kL2 � K be thesought solution 
orresponding to the unperturbed observation u0, i.e. u(
0) = u0. Hereu(
0) 2 H10 [0; 1℄\H2[0; 1℄ denotes the solution of (20), (21) with 
 = 
0 and f 2 L2[0; 1℄,f 6= 0 and K is a given 
onstant.To implement of our method, we 
hoose X = Y = Z := L2[0; 1℄ and L := ddx , andde�ne the nonlinear operator F byF : D(F ) : = f
 2 L2[0; 1℄ j 
 � 0 a.e.; k
kL2 � K + 1g � L2[0; 1℄ 7! L2[0; 1℄;
 7! F (
) := u(
):Clearly D(L) = H1[0; 1℄ and L : D(L) � L2[0; 1℄ 7! L2[0; 1℄ is 
losed, densely de�nedand surje
tive. Sin
e F is weakly 
losed[3℄, Assumption 3 follows. Assumption 2 2)follows immediately from the de�nition of D(F ). It is well known that[4℄ F is Fr�e
hetdi�erentiable withF 0(
)h := �A(
)�1(hu(
)); 
 2 D(F ); h 2 L2[0; 1℄;and satis�es Assumption 1 with 
1 = 2 and 
2 = 0, where A(
) : H10\H2[0; 1℄ 7! L2[0; 1℄is de�ned by A(
)u := �uxx+ 
u. Note that dimN(L) = 1 and R(L) = Z, Assumption4 follows fron [7, Lemma 1℄.Now suppose that h 2 N(L) \ N(F 0(
0)). This implies that h is a 
onstant andhA(
)�1(u(
)) = 0. If h 6= 0 then this implies that u(
0) = 0 whi
h 
an happen onlyif f = 0, whi
h is ex
luded. Sin
e dimN(L) = 1, there is a 
onstant � > 0 su
h thatkF 0(
0)hkL2 � �khkL2 for all h 2 N(L).To give the �nite dimensional approximation, let Pn(X) be the spa
e of the linearsplines on a uniform grid of n+ 1 points in [0; 1℄. If 
0 satis�es: 
0 2 H2[0; 1℄, 
0 > 0,then from [14, Corollary 7.3℄ we havelimn!1 kPn
0 � 
0kL1 = 0:This implies that Pn
0 2 D(F ) \D(L) for suÆ
iently large n.From [14℄ we also havekPn
0 � 
0kL2 � O(n�2k
0kH2);
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0 � 
0)kL2 � O(n�1k
0kH2):Thus we 
an 
hoose the quantities bn and 
n appearing in our method to be bn =n�2 log n and 
n = n�1, hen
e qn = O(n�1). To de�ne the approximation Fn of F ,we 
hoose Yn be the spa
e of linear splines on a uniform grid of n + 1 points in [0; 1℄,vanishing at 0 and 1, and de�ne Fn byFn :D(F ) � L2[0; 1℄ 7! L2[0; 1℄;
 7! Fn(
) := un(
);where un(
) is the unique solution of the variational equation((un)x; vx)L2 + (
un; v)L2 = (f; v)L2 ; 8v 2 Yn:Then we have (
f.[2,13℄)kFn(
)� F (
)kL2 � O((1 + k
kL2)n�2):Thus we 
an 
hoose �n = n�2. To show the appli
ability of our method, now we onlyneed to prove the weakly 
losedness of Fn for ea
h �xed n. Suppose f
kg � D(F ) bea sequen
e su
h that 
k * 
 in L2[0; 1℄ and un(
k) * u in L2[0; 1℄. By the weakly
losedness of D(F ), we have 
 2 D(F ). Note that f
kg is bounded in L2[0; 1℄, fun(
k)gis bounded in H1[0; 1℄ by the theory of ellipti
 equations. Sin
e a bounded set ina Hilbert spa
e always has a weakly 
onvergent subsequen
e, and by the embeddingtheorem of Sobolev spa
e and As
oli-Arzela theorem we know there is a subsequen
e,still denote it by fun(
k)g, su
h that un(
k) * ~u in H1[0; 1℄ and un(
k) ! �u in themaximum norm. Obviously ~u = �u = u. Now letting k !1 in((un(
k))x; vx)L2 + (
kun(
k); v)L2 = (f; v)L2 ; 8v 2 Ynwe 
an obtain (ux; vx)L2 + (
u; v)L2 = (f; v)L2 ; 8v 2 Yn:Sin
e u 2 Yn due to the weakly 
losedness of Yn, it follows that u = un(
).Example 2. Consider the problem of estimating the di�usion 
oeÆ
ient a in� (aux)x = f in (0; 1); (22)u(0) = 0 = u(1) (23)with f 2 L2[0; 1℄ from the noise data uÆ of the state variable u0, kuÆ � u0kL2 � Æ. Leta0 be the sought solution and u0 = u(a0). To put this problem into our framework, we
hoose X = H1[0; 1℄, Y = L2[0; 1℄, and de�ne the nonlinear operator F byF : D(F ) : = fa 2 H1[0; 1℄ j a(x) � � � H1[0; 1℄ 7! L2[0; 1℄;a 7! F (a) := u(a);
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onstant. It is wellknown that[4℄ F is weakly 
losed, 
ontinuous and Fr�e
het di�erentiable withF 0(a)h = A(a)�1(hu(a)x)x; a 2 D(F ); h 2 H1[0; 1℄;and A(a) : H10 \ H2[0; 1℄ 7! L2[0; 1℄ is de�ned by A(a)u := �(aux)x. We 
an showthat[6℄ there is an �0 > 0 su
h that for every 0 < � � �0 there is an � := �(�) su
h thatfor all a 2 D(F ) \ U�(a0),kF (a) � F (a0)� F 0(a0)(a� a0)kL2 � �ka� a0kH1kF (a) � F (a0)kL2 :If we 
hoose L := I, then Assumptions 2 and 4 and the assumptions on L in Theorem2 hold automati
ally. To give the �nite dimensional approximation, let Xn and Yn beas in Example 1, and let un(a) be the unique solution of the variational equation(a(un)x; vx)L2 = (f; v)L2 ; 8v 2 Yn;and de�ne the approximation Fn of F byFn :D(F ) � H1[0; 1℄ 7! L2[0; 1℄;a 7! Fn(a) := un(a):Then we 
an show that Fn is weakly 
losed for ea
h �xed n as in Example 1 and havethe estimate (
f.[2,13℄) kFn(a)� F (a)kL2 � O((1 + kakH1)n�2):Hen
e we 
an 
hoose �n = n�2. If the sought solution a0 satis�es: a0 2 H2[0; 1℄, a0 > �,then [14, Corollary 7.3℄ implies Pna0 2 D(F ) for suÆ
iently large n andkPna0 � a0kH1 � O(n�1ka0kH2):Hen
e we 
an 
hoose bn = n�1 log n. Thus we also verify the appli
ability of our methodto this parameter estimation problem.Referen
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