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Abstract

The Riemann problem for two-dimensional flow of polytropic gas with three
constant initial data is considered. Under the assumption that each interface of
initial data outside of the origin projects exactly one planar wave of shock, rar-
efaction wave or contact discontinuity, it is proved that only two kinds of combi-
nations, JRS and Js, are reasonable. Numerical solutions are obtained by using
a nonsplitting second order accurate MmB Scheme, and they efficiently reflect the
complicated configurations and the geometric structure of solutions of gas dynamics
system.
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1. Introduction

It is well known that the Riemann problem plays an essential role in developing
one-dimensional theory of hyperbolic conservation laws!® and it is the simplest one of
general Cauchy problem and much easier to clarify the explicit structure of its solutions.
On the other hand, the solution of the Cauchy problem can be locally approached by
the solutions of Riemann problem. Hence the Riemann problem serves as the touch-
stone and the building block of mathematical theory of hyperbolic conservation laws.
Of course, the most interesting and important model is the Euler equations in gas
dynamics.

The Riemann Problem for two-dimensional unsteady flow of inviscid, polytropic
gas with four piece constant in each quadrant was investigated by Zhang and Zheng in
[10], and Chang, Chen and Yang in [2] etc.. With the characteristic analysis and the
numerical method, a set of conjecture on the structure of solutions is formulated. Un-
fortunately, nothing analytic has eventually been solved, although there are still many
mathematicians who present various simplified models and try to approach the conjec-
ture and to explain the complicated configurations in gas dynamics system. Therefore
it is worthwhile to consider much simpler Riemann initial data in two dimensions.
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The present paper deals in detail with the Riemann problem in three pieces for gas
dynamics system, i.e.

pt + (pu)z + (pv)y =0,
(pu)e + (pu® + )z + (puv)y =0,
() + (o) + (o v? +p), =0, (1.1)
u ’U u2 ’U2 u2 ’1)2
(p(e+"57)), + (u(r+575)), + (oo (s 575)), =00
b

where p, (u,v) and p, e h=e+ ]—7, v > 1 denote density, velocity, pres-
P

BCER

sure, specific internal energy, specific enthalty and polytropic index respectively. And
Riemann data in three pieces are described as follows,

(papauav)‘t:(] =1, (Z = 172a3)a (12)

where T; are constant states (See Fig.1.1),
being selected under the assumption (H)
that exactly one planar wave of shock, rar-
efaction wave or contact discontinuity issues

from each interface of initial data outside ‘ . Bl o \T1
of the origin. It’s proved that only two y

cases, JRS and three Js, are in theory

reasonable. Here we use a nonsplitting sec- A Ts I3

ond order accurate MmB (locally Maximum-

minimum Bounds preserving) scheme to ob- Fig.1.1 Distribution of the initial data

tain the numerical results for these two cases. MmB schemes are basically derived from
the structure of the equation and the solution properties of scalar conservation laws!
and are generalized to hyperbolic systems. The nonsplitting Mmb schemes have the
second order accurate, high resolution and nonoscillatory properties, and have been
used to solve many other problems concerning discontinuous solutions fruitfully®:7].

This paper is organized as follows. Section 2 gives the necessary preliminaries. In
Section 3 we discuss the distribution of initial data carefully. And the characteristic
analyses are presented and the corresponding numerical results are illustrated in Section
4.

2. Preliminaries

In this section we begin by recalling the main results in [2, 10] as our necessary
preliminaries.

Noting that the dynamic similarity of (1.1) and lack of characteristic length param-
eter imply that the solutions be the functions of the variables ¢ and 7, where £ = z/t,
n = y/t, we seek the self-similar solutions.

(0, u,v) = (p,p,u,v)(&,n)- (2.1)
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The characteristic for (1.1) in (&, n)-plane is either

\%4
A=A = i (pseudoflow characteristic), (2.2)

or

UV +/2(U2+V? - 2)
- U2 _ 2
V2—62
UV FJEU2+VZ—2)

A=At

(pseudowave characteristics), (2.3)

where (U, V) = (u — &,v —n) (pseudovelocity) and ¢? = yp/p (the sound speed). Due
to the well known reasons, it’s natural to consider discontinuous solutions. Assume
n = n(&) to be the discontinuity line, by Rankine-Hugoniot condition we have then
linear(contact) discontinuity
dn V. _ Vo, (2.4)
d U U

or nonlinear discontinuities,

dy UV \[E(U + V3 - )

= 2.5

dg Uz — & 7 (2:9)

where (p, p, u,v) and (pg,p ug,vo) denote the left and right states along any disconti-
. . 2 __D—DPo
nuity line, and ¢ = ——.
P — pPo

The system (1.1) must be supersonic at the infinity in (&, 7)-planel, and the infinity
can be considered as a Cauchy support. In the neighborhood of the infinity, the solution
must consists of planar waves (p, p, u, v)(u€ + vn), which involves:

(i). constant states (pg, po, uo, Vo);

(ii). rarefaction waves (R);

Ut,1 = Ut,2,

Up1 = Upo T —dp,

R:{ T e /,,2 p? (2.6)
p1 < p2 Or p1 > P2,
pipy | =papy

(iii) shock waves (S);

(U1 = U2,

3

/
Y40

Up,1 = Up2 T (p1 — p2),
S P1P2 (2.7)

n_(r+Dp = (y=1)po
p2 (Y+1L)p2— (v Dp
\ p1 > p2 Or p1 < p3;

)
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(iv) positive and negative slip lines (J¥)

Up,1 = Un,2,
J* p1=po (2.8)
curl(up,uy)|y = £oo,
where u, and u; denote the normal and the tangential components of the velocity along
any characteristic or discontinuity line, curl (u,v) = v, — uy, ply = ey
‘ pL— p2

According to [10], we have conjectures for the general pseudostationary flow that:

(1). The pseudostationary is continuous on the whole plane if and only if it is continuous
and rarefactive in the neighborhood of infinity; (2). The psedo-stationary flow is smooth
(i.e. C') on the whole plane if and only if it is a constant state.

3. Analysis of Distribution of Initial Data

In this section, we will discuss the distribution of initial data in detail. At first, we
give the classification.
3.1. Classification.

Under the assumption (H), in the neighborhood of infinity, the solution only consists
of three planar elementary waves in addition to the constant states. One can easily
find that the possible combinations of waves are as follows.

(a). three Rs; (b). three Ss; (c¢). one S and two Rs, or one R and two Ss; (d). one
J and two Rs, or one J and two Ss; (e). one J and one R and one S; (Abbr.JRS) (f).
three Js.

Next, we will show the following theorem holds.

Theorem. The first four cases are impossible, and only the last two cases are
reasonable theoretically.

Remark. In the experiment that a planar moving incident shock wave encounters
a sharp compressive corner [1], regular reflection, Mach reflection etc. are observed.
Case (b) shows that in the neighborhood of the triple point, there may exist a slip line
besides the incident shock wave, the reflected shock wave and the Mach Stem.

3.2 The proof of the theorem

By the nature of system (1.1), We always think that [; coincides with y-axis in
the initial plane under a suitable rotation transformation of the coordinate system (cf.
Fig.1.1) Next, we will prove the theorem case by case.

Case (a) In this case, we just consider the subcase p3 < ps < p1, and the other
subcases are similar.

Obviously, the relations (2.10) hold, i.e.

2V A 9 9
Rpp:{ W1 —u2= 5(012 —p2? ), (3.1)
U1 V2,
ub = ul,
R23 y—1 y—1 (3 2)
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and
"no__ .
Uy = ug,
R31 : y—1 y—1 (33)
" n_ 2y/Ay 2 2
U1 U3 = 53 (p1® —p3” )
where

u' =wu-cos(f—7w/2) +v-sin(f — 7/2) =u-sinf —v-cosf, (3.4)
v/ =—u-sin(f —7/2) +v-cos(f—7/2) =u-cosB+v-sinf, '
v =wu-sina+v-cos a,

" . (3.5)
v = —u-Ccosa—+0-sinaq,

and A is the entropy.
By (3.1) (3.3), one can get

1 1
vt = (7 sin,3+sina)(vlivg)’ (36)
and
uyp — ug = —(cot a + cot B)(vy — v3). (3.7)

(3.6) and (3.7) show that
sin(a + () = sina — sin f3,

ie.

sina = sin 3 + sin~y. (3.8)
Furthermore, we have

sin# = sin~y + sin a, (3.9)

siny = sin & + sin 3. (3.10)
(3.8) (3.10) lead to

sina = sin 3 = siny = 0, (3.11)

which means

a,B,7y=0, or m. (3.12)

This show that it is impossible that there are only three planar rarefaction waves issuing
from the jumps in initial data.
Case (b) By Rankine-Hugoniot condition, we have

pi _ (y+Dpi—(y=1Dp; . . o
pi _ (1,5 = 1,2,3,1 # ),
{ Dj (v + 1);0]' —(vy=1p; (3.13)
pi # Py
which implies that
P T pt Yy —p (3.14)

12z 1 p2z 1 p2y’
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y=-1 —~—pp p _ p
T T e T Ty
Noting that

where p? =

z = xy, (3.15)

we obtain that
(x -1y —1(z—1)=0. (3.16)

It follows that at least one of x,y and z equals to 1, which contradicts to (3.13).
Case (c) For this case, if suffices to notice the following lemma.
Consider the properties in the phase plane (7,p), and let

R(Qo) = {(7.p)|pT" = pory },
S(Qo) = {(1,p)|7(p + p’*po) = To(po + 1°p)}, (3.17)

1
where 7 = —, we have the lemma.

)

Lemma. (1) S(Qo) N S(Q1) = 0 if Q1 € R(Qv)- (2) R(Qo) N R(Q1) = 0 if
@1 € R(Qo)-

The proof of this lemma is trivial and omitted, from which it is easy to know that
it is impossible for this case to appear.

Case (d) The two subclasses are similar, we only consider the latter. Without loss
of generality, suppose the Riemann data are selected such that the following relations

hold,

U] = U9,

Jia : { P (3.18)
p1 = p2;
( UIQ = ué’

pl
UIQ - Ué = = (p2 - p3)7
Sos : V p2p3 (3.19)

p2_ (y+Dp2— (v —Dps

p3 (y+1)ps— (v —1)p2’

\ p2 < p3,
and ) ull o
1 = U3,
!
of — ol = [ 2 (o1 — ps),
Si3 : pips (3.20)

o (r+Dp—(y—1)ps
ps (Y+1)ps—(y—Dm
\ p1 <Pps,

where (u',v'") and (u”,v"”) are the same as in (3.4) and (3.5). By Rankine-Hugoniot
condition, we obtain

3

From (3.18) (3.21), it is not difficult to get tan § = — tan «. It follows that

a+pB=m. (3.22)
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Thus the 2-D Riemann problem (1.1) (1.2) degenerates to the 1-D problem, i.e. there
are only one shock issuing from the jumps in initial data. This completes the proof.

4. The Characteristic Analysis and Numerical Results

We will employ the characteristic method to understand the structure of solutions,

and evaluate them by comparing with the corresponding numerical results.
a. JRS

ry(1)

T ) / ®

Py

T3

! Jas ®

a. Distribution of Initial data

101

10 30 50 70 90 10 30 50 70 90
c. Pressure Contour curves d. Density Contour curves

Fig. 4.1 Mesh points 401 x 401, Time steps n = 480

Through our analysis carefully, it suffices to consider the distribution of Riemann
data as shown in Fig.4.1. The relevant compatibility conditions should be

( 772013=U3*\/&P' =ur — &P'
§:U2 +C, p3 13 pl 13»
P2 ¢ up = us,
Uy :U2+/ ;dp,
R Jp S13: P1 — P3
12 V1 = VU2, 1 13 U1 = U3 — —(Pl - /)3),
AR p1p3(p1 — p3)
gl (Plyy
o ) P (r+Dp—(y—1)ps
(ps (v+1D)ps— (v —1)p1’
and
b2 = Pp3,
J23! U9 — U3

= —tan .
vy — U3



334 J.Q. LI AND S.L. YANG

We know that the solution consists of Ri9, S13 and Jog besides the three constant states
in the neighborhood of infinity in (£, n)-plane. Taking the infinity as a Cauchy support
and extending the solution along characteristic lines or stream lines, we obtain that
R15 must meet the sonic stem P; P, and Si3 can arrive at the sonic circle of the state
Ti at Q1 before they meet Ry since 013 < u1, and that Jo3g reach the sonic circle
of Ty at (Qs. Across the circle of Ty, the flow is subsonic and Sy3, which cuts the
constant states 73 from a subsonic region and form a free-boundary value problem,
should match smoothly. From the numerical results, we find it becomes weaker and
weaker (See Fig.4.1).
The distribution of initial data is as follows,

U1:0 1)1:0 p1:1 p1:50
uy = —6.86099 vy =0 p2 = 0.408327 po = 14.2686
ug =0 v3 = 6.86099 p3 = 0.431515 p3 = 14.2686
At At
dd=—=—=0.05
an Az Ay
b. Three Js
I
Yy nv Q1
£ u ?g 2)
Ly
T r o O
T> T I_ Q3 J3_1
T3 (1) @
1 Q3 Q2 Jt
@ 23
a. Distribution of Initial data b. Sketch Picture of Solution
90r 1 90r
701 1 70
50 1 50,
30} ] 30}
10 B 10_
10 30 50 70 90 10 30 50 70 90
c. Pressure Contour curves d. Density Contour curves

Fig.4.2 Mesh points 401 x 401, Time steps n = 420

In this case, the pressure p is constant. Due to the difference of J~ and JT, this
case is classified as two kinds of subcases.

Subcase 1. 2J* + J~ The three jumps, J;}, J;é and J, from infinity meet the
sonic circles of states Ty, and T3 at 1, Q)2 and @3 firstly. We draw the characteristic



Two Dimensional Riemann Problem for gas Dynamics System in Three Pieces 335

lines 'y (1),T'4(2) and T'_ (1) through Q1, Q2 and Qs3, respectively. It’s easy to see that
the determination region € of T} is encompassed by J;5, Ji3, T4 (1) and T'_ (1), while
Joz, T'_(3), the part of the sonic circle of (1) Q304 and J13 bound the determined region
Q3 of the state T3. Obviously, €2; and {23 may overlap. According to the characteristic
theory, there will appear a discontinuous solution which consists of shock waves or/and
contact discontinuities. From the numerical results, we observe that Ji9 and Jo3 may
interact each other and produce two shock waves, which bound the pseudo-subsonic
region, and a contact discontinuity or other new nonlinear waves which have not been
testified yet in this region (See Fig.4.2).

The distribution of initial data is as follows,

U1:—1 ’U1:—1 p1:15 p1:1
uy = —1 vy =1 p2 =0.5 po =
U3:1 1)3:*1 p3:1 p3:1

_ At _ At __

Subcase 2. 3J s. This subcase is similar to the 4Js discussed in [6], our necessary
and significant supplement is that a spiral may appear, which is the result of the
interaction of Js (see Fig.4.3).

Yy nv
§u
T
T2 x
Ts
l _
Jas 1©
a. Distribution of Initial data b. Sketch Picture of Solution
120t 120F
100+ 100f
80r 80r
60r 60F
40t 401
20K 20t
>
20 40 60 80 100 120 20 40 60 80 100 120
c. Pressure Contour curves d. Density Contour curves

Fig.4.3 Mesh points 401 x 401, Time steps n = 360
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The table of initial data is as follows,

’LL1:1 ’Ul:*l ,01:1.5 pP1 =
’LL2=1 1)2:1 ,02:05 p2:2
U3:—1 ’1)3:—1 p3:1 p3:2
At At
dA=-——=——=0.2.
an Ax Ay

5. Conclusion

From the above analyses and numerical results, we know that Riemann problem
are the simplest in 2-D gas dynamics, the structure of solutions is the basis for the
study of phenomena appearing in gas dynamics. Furthermore, we find many interesting
phenomena similar to those of Riemann problem in multipieces, such as spiral, and the
interaction of S and R etc.. Especially, the interaction of J* and J~ may produce a
new kind of a shock, which we call a delta wave of the solutions!”). Now we keep on
doing both numerical experiments and theoretical proof to check it.

In addition, we find the numerical results are in accordance to the theoretical anal-
yses, which shows that MmB schemes are dependable once again.
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