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A GOLDSTEIN'S TYPE PROJECTION METHOD FOR A CLASSOF VARIANT VARIATIONAL INEQUALITIES�1)Bing-sheng He(Department of Mathemati
s, Nanjing University, Nanjing 210008, China)Abstra
tSome optimization problems in mathemati
al programming 
an be trans-lated to a variant variational inequality of the following form: Find a ve
toru�, su
h thatQ(u�) 2 
; �v �Q(u�)�Tu� � 0; 8v 2 
:This paper presents a simple iterative method for solving this 
lass of vari-ational inequalities. The method 
an be viewed as an extension of theGoldstein's proje
tion method. Some results of preliminary numeri
al ex-periments are given to indi
ate its appli
ations.Key words: Variational inequality, Goldstein proje
tion method.1. Introdu
tionThe 
lassi
al variational inequality (VI) is to determine a ve
tor u in a 
losed 
onvexsubset 
 of the n-dimentional Eu
leaden spa
e Rn su
h that(v � u)TF (u) � 0; 8v 2 
; (1)where F is a mapping from Rn into itself. Let � > 0, sin
e the early work of Eaves[3℄, it has been known that the variational inequality problem (VI) is equivalent to aproje
tion equation u = P
[u� �F (u)℄;where P
(�) denotes the orthogonal proje
tion map on 
. In other words, to solve (VI)is equivalent to �nding a zero point of the residue fun
tione(u; �) := u� P
[u� �F (u)℄:� Re
eived July 12, 1996.1)This Proje
t Supported by NSFC 19671041 and the Natural S
ien
e Foundation of Provin
eJiangsu of China.



426 B.S HEAmong the existing methods (e.g., see [5{11,16,18{20℄) for nonlinear variational in-equality problems, the simplest is the Goldstein's proje
tion method [6℄ whi
h, startingwith any u0 2 Rn, iteratively updates uk+1 a

ording to the formulauk+1 = P
[uk � �kF (uk)℄; (2)where �k is a 
hosen positive stepsize. In 
ontrast with Douglas{Ra
hford operatorsplitting method [2,12,13℄ for (VI), this proje
tion method 
an be viewed as a simpleexpli
it method, be
ause uk+1 o

urs only on the left-hand side of the equation in (2).Its 
onvergen
e results 
an be found in [1,4℄ and [6℄.In this paper, however, we 
onsider a 
lass of variant variational inequalities (VI)v :Find an u, su
h thatQ(u) 2 
; (v �Q(u))Tu � 0; 8v 2 
; (3)where Q(u) : Rn ! Rn is a fun
tion and 
 � Rn is a 
losed 
onvex set. The existen
eresults on su
h a problem have been investigated re
ently by Pang and Yao [17℄.There are some methods in literature ([12,14{16℄), whi
h 
an be used for solving(VI)v . However, our interest in this paper is to develop the simplest method{Goldstein'stype proje
tion method for solving the variant problem (3). Throughout this paper weassume that the solution set of (VI)v, denoted by S�, is nonempty and the proje
tionon 
 is simple to 
arry out. The Eu
liden norm in this paper will be denoted by k � k.2. Motivation and the MethodAs the 
lassi
al variational inequality is equivalent tou = P
[u� �F (u)℄with a � > 0, it is easy to prove that the variant variational inequality (3) is equivalentto the following proje
tion equation (PE)Q(u) = P
[Q(u)� �u℄: (4)Let r(u; �) := 1� (Q(u)� P
[Q(u)� �u℄) (5)denote the s
aled residue of the (PE). Then we haveu 2 S� () r(u; �) = 0:This tells us that to solve the variant variational inequality is equivalent to �nding azero point of r(u; �). Note that the Goldstein's proje
tion s
heme (2) for (VI) 
an beviewed as uk+1 = uk � e(uk; �k): (6)



A Goldstein's Type Proje
tion Method for a Class of Variant Variational Inequalities 427A natural question is whether we 
an build a similar method for (VI)v based on r(u; �).Thus, we 
onsider the following iterative s
heme:Proje
tion method for (VI)vGiven u0 2 Rn,For k = 0; 1; : : : ; if uk 62 S� then do:uk+1 = uk � r(uk; �k): (7)Remark. S
heme (7) 
an be also written asuk+1 = � 1�k f(Q(uk)� �kuk)� P
[Q(uk)� �kuk℄g: (8)As in Goldstein's proje
tion method for (VI), ea
h iteration of the presented methodfor (VI)v 
onsists of a fun
tion evaluation and a proje
tion on 
. Therefore, we saythis method is a Goldstein's type method for (VI)v .3. Some LemmasIn this se
tion, we prove some lemmas, whi
h are useful for the 
onvergen
e analysisof the proje
tion method.Lemma 1. Let 
 be a 
losed 
onvex set in Rn, then we havek(v � P
(v))� (w � P
(w))k � kv � wk; 8v; w 2 Rn: (9)Proof. Using a well-known inequality of the proje
tion mapping,(v � P
(v))T (u� P
(v)) � 0; 8v 2 Rn; u 2 
;we 
an prove(v � w)T (P
(v) � P
(w)) � kP
(v)� P
(w)k2; 8v; w 2 Rn:It follows thatk(v � P
(v)) � (w � P
(w))k2= kv � wk2 � 2(v � w)T (P
(v)� P
(w)) + kP
(v)� P
(w)k2� kv � wk2 � kP
(v)� P
(w)k2and the lemma is proved.Lemma 2. The sequen
e fukg generated by the proje
tion method for (VI)v satis�eskuk+1 � u�k � k(uk � u�)� 1�k (Q(uk)�Q(u�))k (10)



428 B.S HEand kr(uk+1; �k)k � k(uk+1 � uk)� 1�k (Q(uk+1 �Q(uk))k: (11)Proof. By using (8) andu� = u� � r(u�; �k) = � 1�k f(Q(u�)� �ku�)� P
[Q(u�)� �ku�℄gwe get uk+1 � u� = � 1�k f(Q(uk)� �kuk)� P
[Q(uk)� �kuk℄g+ 1�k f(Q(u�)� �ku�)� P
[Q(u�)� �ku�℄g:Substituting v = Q(uk)� �kuk and w = Q(u�)� �ku� in (9) we get the assertion (10).Similarly, using (5) and (8) we getr(uk+1; �k) = 1�k f(Q(uk+1)� �kuk+1)� P
[Q(uk+1 � �kuk+1℄g� 1�k f(Q(uk)� �kuk)� P
[Q(uk)� �kuk℄g:Then the assertion (11) follows immediately from Lemma 1.4. Convergen
eThe proje
tion method for (VI)v in this paper generates an in�nite sequen
e fukg,whi
h is not ne
essarily 
ontained in the feasible set (fu : Q(u) 2 
g), but undersuitable assumptions, will be asymptoti
ally feasible and 
onverge to a solution of(VI)v . For u� 2 S� and an arbitrary start point u0, we denoteS0(u�) := fu 2 Rn j ku� u�k � ku0 � u�kg;and use the following de�nitions as in literature [4℄ and [17℄.De�nition 1. The fun
tion Q is said to be Lips
hitz 
ontinuous on set S0(u�) ifthere is a 
onstant L > 0 su
h thatu; v 2 S0(u�) ) k(Q(u) �Q(v))k � Lku� vk:De�nition 2. The fun
tion Q is said to bei) monotone on the set S0(u�) ifu; v 2 S0(u�) ) (u� v)T (Q(u)�Q(v)) � 0;ii) strongly monotone on the set S0(u�) if there exists a 
onstant � > 0 su
h thatu; v 2 S0(u�) ) (u� v)T (Q(u)�Q(v)) � �ku � vk2:



A Goldstein's Type Proje
tion Method for a Class of Variant Variational Inequalities 429Now we prove the following 
onvergen
e theorem.Theorem 1. If the mapping Q is Lips
hitz 
ontinuous (with a 
onstant L > 0)and strongly monotone (with a 
onstant modulus � > 0) on S0(u�), and the stepsize �ksatis�es �k > L22�; (12)then the sequen
e fukg generated by the proje
tion method is 
ontained in S0(u�), more-over, fukg satis�es kuk+1 � u�k � 
k � kuk � u�k (13)and kr(uk+1; �k)k � 
k � kr(uk; �k)k; (14)where 
k = s1� 2��k + L2�2k :Proof. The proof follows from indu
tion. Assume that uk 2 S0(u�), it follows fromthe assumptions and (10) thatkuk+1 � u�k2 � k(uk � u�)� 1�k (Q(uk)�Q(u�))k2= kuk � u�k2 � 2�k (uk � u�)T (Q(uk)�Q(u�)) + 1�2k kQ(uk)�Q(u�)k2� �1� 2��k + L2�2k �kuk � u�k2:Sin
e �k > L22� , we have 0 � 
k < 1 and uk+1 2 S0(u�). Similarly, from (11) we getkr(uk+1; �k)k2 � k(uk+1 � uk)� 1�k (Q(uk+1 �Q(uk))k� �1� 2��k + L2�2k �kuk+1 � ukk2= �1� 2��k + L2�2k �kr(uk; �k)k2:From Theorem 1 we get dire
tlyCorollary 1. If the assumptions of Theorem 1 is satis�ed and the stepsize inproje
tion method for (VI)v satis�es�L � �k � �Uwith �L > L22� , then the method is globally linear 
onvergent. Moreover, if we take a
onstant stepsize �k � �
 > L22� , then both fkuk � u�kg and fr(uk; �
)g globally andlinearly 
onverge to zero.



430 B.S HEIn the 
ase that Q is the gradient of a fun
tion, say q, we have the following:Theorem 2. Let q(u) : Rn ! R be a twi
e 
ontinuous di�erentiable fun
tion onS0(u�) and �(r2q(u)) denote the set of the eigenvalues of the Hessian matrix of q,moreover, �min := inff� 2 �(r2q(u)) j u 2 S0(u�)gand �max := supf� 2 �(r2q(u)) j u 2 S0(u�)g:If Q(u) = rq(u) is monotone on S0(u�), then for all �k > �max2 the sequen
e fukgprodu
ed by the proje
tion method for (VI)v satis�eskuk+1 � u�k � dk � kuk � u�k (15)and kr(uk+1; �k)k � dk � kr(uk; �k)k; (16)where dk = maxf j1� �min�k j; j1� �max�k j g:Proof. Under the assumptions follows dire
tlykuk+1 � u�k � k(uk � u�)� 1�k (Q(uk)�Q(u�))k= k(uk � u�)� 1�k (r2q(u� + t(uk � u�))(uk � u�)k� kI � 1�kr2q(u� + t(uk � u�))k � kuk � u�k= dk � kuk � u�k;with a t 2 (0; 1). Q is monotone means that �min � 0. Sin
e �k > �max2 , we have0 � dk � 1 and uk+1 2 S0(u�). Similarly, from (11) we getkr(uk+1; �k)k2 � k(uk+1 � uk)� 1�k (Q(uk+1 �Q(uk))k= k(uk+1 � uk)� 1�k (r2q(uk + t(uk+1 � uk))(uk+1 � uk)k� kI � 1�kr2q(uk + t(uk+1 � uk))k � kr(uk; �k)k= dk � kr(uk; �k)k:As a 
onsequen
e of Theorem 2 we haveCorollary 2. If the assumptions of Theorem 2 is satis�ed and �min > 0, and thestepsize in proje
tion method for (VI)v satis�es�L � �k � �U



A Goldstein's Type Proje
tion Method for a Class of Variant Variational Inequalities 431with �L > �max2 , then the method is globally linear 
onvergent. Moreover, if we take a
onstant stepsize �k � �
 > �max2 , then both fkuk � u�kg and fr(uk; �
)g globally andlinearly 
onverge to zero.5. An Example of Appli
ationsMany optimization problems in mathemati
al programming are equivalent to a
lassi
al variational inequality. However, some of the problems may be formulatedto low dimensional variant problems of the form (3), and thereby 
an be solved bythe proposed method in this paper advantageously. As an example we 
onsider thefollowing least distan
e problem: min 12kx� 
k2s.t. Ax 2 B (17)where A 2 Rm�n, 
 2 Rn and B � Rm is a 
losed 
onvex set. We assume that theproje
tion to B is simple to 
arry out. This problem 
an be written asmin 12kx� 
k2s.t. Ax� � = 0� 2 B (18)The Lagrangean fun
tion of problem (18) isL(x; �; y) = 12xTx� 
Tx� yT (Ax� �);whi
h de�ned on Rn�B �Rm. Under proper regularity assumption, there is a triplet(x�; ��; y�) 2 Rn �B �Rm, whi
h is a saddle point of the Lagrangean fun
tion, i.e.,L(x�; ��; y) � L(x�; ��; y�) � L�2B(x; �; y�): (19)From above inequalities we know that (x�; ��; y�) is a solution of the following (2m+n)-dimensional variational inequality:8>><>>:x� = AT y� + 
;(� � ��)T y� � 0; 8� 2 B;Ax� = ��: (20)Substituting the �rst and the third equation in the se
ond of system (20), we get am-dimensional variant variational inequality(AAT y� +A
) 2 B; (� � (AAT y� +A
))T y� � 0; 8� 2 B: (21)



432 B.S HETherefore, we 
an solve problem (17) by solving the (VI)v problem (21), after obtaininga solution of (21), say y�, we get x� = AT y�+
, whi
h is the solution of the least distan
eproblem. 6. Preliminary Numeri
al ResultsThis se
tion tests the least distan
e problem des
ribed in the last se
tion with thepresented method. We form the test problem as follows: The matrix A is 
onstru
tedsyntheti
ally su
h that it has a pres
ribed distribution of its singular values. This isa

omplished by setting A := U�V T ;where U = Im � 2 uuTkuk22 ;V = In � 2 vvTkvk22 ;are Householder matri
es and � = diag(�k)is a m� n diagonal matrix. The ve
tors u, v and 
 
ontain pseudorandomnumbers:u1 = 13846ui = (31416ui�1 + 13846)mod 46261 i = 2; : : : ;mv1 = 13846vj = (42108vj�1 + 13846)mod 46273 j = 2; : : : ; n
1 = 13846
i = (45278bi�1 + 13846)mod 46219 i = 2; : : : ;m:The 
losed 
onvex set B in (17) is de�ned asB := fz 2 Rm j kzk � agwith a pres
ribted a. In the test problems we set �k = 
os k�l+1 + 1; k = 1; : : : ; l =minfm;ng. The singular values of matrix A tend to 
luster at the endpoints of theinterval [0; 2℄.We take y0 = 0 as starting point and the iteration formulayk+1 = yk � 1� f(AAT yk +A
)� PB [(AAT yk +A
)� �yk℄gwith 
onstant steplength � = 2:5(> �max(AAT )2 � 42 ). Note that in the 
ase kA
k > a,kAAT y� + A
k = a (otherwise y� = 0 is the trivial solution). Therefore, we test the



A Goldstein's Type Proje
tion Method for a Class of Variant Variational Inequalities 433problem with di�erent a < kA
k and the stopping 
riterion is if both���kAAT y +A
k � aa ��� � " and kr(y; 1)ka � "are satis�ed for toleran
e " = 5 � 10�6.The 
ode was written in FORTRAN. The 
al
ulations have been performed on a486 personal 
omputer (without Weitek 
opre
essor). In following tables k denotes theiteration number by the simple proje
tion method until the 
onvergen
e 
riterium wasmet.m = 500; n = 1000a k0:05 � kA
k 5930:10 � kA
k 2080:15 � kA
k 1120:20 � kA
k 720:25 � kA
k 510:30 � kA
k 380:35 � kA
k 290:40 � kA
k 240:45 � kA
k 190:50 � kA
k 160:55 � kA
k 140:60 � kA
k 11

m = 1000; n = 500a k0:05 � kA
k 6810:10 � kA
k 2310:15 � kA
k 1230:20 � kA
k 780:25 � kA
k 540:30 � kA
k 400:35 � kA
k 310:40 � kA
k 250:45 � kA
k 200:50 � kA
k 170:55 � kA
k 140:60 � kA
k 12

m = 1000; n = 1000a k0:05 � kA
k 5350:10 � kA
k 1900:15 � kA
k 1030:20 � kA
k 670:25 � kA
k 480:30 � kA
k 360:35 � kA
k 280:40 � kA
k 250:45 � kA
k 190:50 � kA
k 150:55 � kA
k 130:60 � kA
k 11Con
lusion remark. The main advantage of the presented method is its simpli
ity.Our preliminary numeri
al results show, that the method may be eÆ
ient for some largeproblems. However, we would like to point out, as the Goldstein's method for (VI), themethod 
onvergens under stri
t 
onditions and it is easy to 
onstru
t a small examplefor whi
h the presented method runs very poorly. For more eÆ
ient (but expensive)methods, we refer the readers to 
onsult the papers ([12,15-16℄).Referen
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