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Abstract

This paper deals with the stability analysis of numerical methods for the solu-
tion of delay differential equations. We focus on the behaviour of three 8-methods
in the solution of the linear test equation u'(t) = A(t)u(t) + B(t)u(r(t)) with ()
and A(t), B(t) continuous matrix functions. The stability regions for the three
f-methods are determined.
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1. Introduction

1.1. The three f-methods
We deal with the numerical solution of the initial value problem:

{ W (t) = f(tult)u(r(t), t>to.

u(t) = ug(t), t < to. (L)

Here f,uq, T denote given functions with 7(¢) < ¢, whereas u(t) is unknown (for ¢ > tg).
With the so-called one-leg #-method, linear #-method and new 6-method, one can
compute approximations u, to u(t) at the gridpoint ¢, = tq + nh, where h > 0 denotes
the stepsize and n =1,2,3, - -.

The one-leg f-method was considered in [1, 2, 3, 4]

Upt1 = Uy + hf Oty + (1 = 0)ty, Ouyrr + (1 — Q)uy,
(7Ot + (1 — 0)t,))), n>0 (1.2a)

where 6 is a parameter, with 0 < 8 <1 specifying the method.
Further we define v/ (t) as follows:

u(t) = up(t), t <t

tpo1 —t t—t
uﬂw::lﬁﬁ——un+——ﬁﬂumH, t € (tn,tns1], n>0.

* Received October 12, 1997.
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The linear -method to problem of type (1.1) gives rise to the following formula

Ung1 =t + {OF (tns1, un g, w (7 (Eng1)) + (1= 0)f (tn, un, u"(7(ta)))}, m 20,

((1.2b))
which was considered in [1, 2, 4-7].
Finally,we consider the new #-method as follows:
Upt1 = Uy + hf Oty + (1 = 0)ty, Ouprr + (1 — Q)uy,
Ou"(7(tns1)) + (1 = O)u"(7(ta))), n >0, (1.2¢)
which was considered in [1].
1.2. The test problem
Consider the test problem
u'(t) = A(t)u(t) + B(t)u(T(t)), t> to, (1.3)
u(t) = up(t), t <ty. '

Here A, B : [ty,00) — C (d > 1), t — 7(t) > 79 (t > tg), 70 is a positive constant,
ug(t) is a known complex function for ¢ < #.
Applying (1.2a), (1.2b), (1.2¢) to (1.3) we have the following recurrence relations:

(I - ez(tn+0))un+l :(I + (1 - H)I(tn+0))un + 5(tn+6)y(tn+9)unfm(tn+g)+1
+ (1= 6(tn40))y(tn40)tn-m(t, ), (1 =m), (1.4a)
Here

T(tn+0)

(tnto) = = 7(tn+0),

tnes) = [L0)) 5(1,40) € 0.0)

m(tn+6) =n- 7q(thrG)a tntg = tn + Oh,
2(t) = hA(f), y(t) = hB(?).

(I - 9I(t"+1))u"+1 :(I + (1 - a)x(tn))un + Qy(tn+1)(6(tn+1)un+27m(tn+1)
+ (1 = 6(tn+1))Uns1-mt,sr)) + (1= 0)y(n) (6 (tn) U1 —m(sn)
+ (1= 600tn)tn—m(,)): n>m (1.4b)

and

(I = 0x(tnto))unt1 =(I + (1 — O)x(tnip))un + Qy(tn+6)(5(tn+1)un+27m(tn+1)
+ (1= 0(tnt1))Uns1—m(tnsr)) T (1 = ) y(tnte) (0(En)Unt1—m(tn)

+ (1 =6(tn))tn-—m(,)), n=>m. (1.4c)
Here, 6(t) = ? —r(t),r(t) = [%] 0<d(t) <1, m(t) = % —r(t).
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In what follows we give our basic definition of the stability.

Definition 1.1. For all 6(t) € [0,1) and z,y be given complex d x d-matrice
functions. A method is called stable at (z,y) if and only if any application of the
method to problem (1.3) satisfies

(I) the matriz I — Ox(t) — 0(t)0y(t) is invertible whenever t > tq,0 € [0,1].

(IT) the method yields approximations u, to u(t,) (n=1,2,---).
such that

fon| < max o ()] (0= 1,2,

whenever ty, T, h, A, B,uy are given with A(t) = ?, B(t) = ? and m(t) is nonneg-
ative integer (t > tg). l

Definition 1.2. The set consisting all pairs (x,y) at which a numerical method is
stable is called stability region.

For the one-leg §-method we denote the stability region by Sy and for the linear
9-method by Sy and for the new 6-method by Sy respectively.

In the literature,several authors have dealt with the scalar case (d = 1) of test
equation (1.3) in order to arrive at conclusions about the stability of numerical methods
for delay differential equations (cf. [3, 9]). From these investigations, a complete
characterzation for the set Gy of all pairs of complex numbers (z,y) at which precesses
(1.4) is stable can easily be obtained®). Further, the question has been studied whether
or not, for given , the condition H C Gy is fulfilled, where H = {(z(t),y(t))|z(t) € CY,
y(t) € C% |ly@®)| < —p(z(t)}, || - || is a given norm and pu(-) is the corresponding
logarithmic norm®), With the scalar case (d = 1), [3, 9] considered the test equation:

{ u'(t) = a(t)u(t) +b(t)u(t — 1), t>tg, (L15)

U(t) = ’LLO(t), t S to.
Here 7 > 0 is constant, a(t), b(t) are complex function (¢ > tg). It is knownl?! that

b{t)] < ~Rea®)) = u(t)| < max uo(0)].
The general case of test equation (1.5) seems not to have been studied in the literature
so far. In this paper we shall consider the test equation (1.3) with the general case of
(1.5), i.e. the test equation (1.3) with arbitrary dimension d(> 1) and arbitrary delay
function 7(t) with t — 7(¢) > 79 > 0.

1.3. Scope of our paper

The main purpose of the present paper is to determine all sets Sy, S'g, Sg. In Section
2 we derive a complete characterization for the set of all pairs of complex d x d-matrices
(z(t),y(t)) at which process (1.4) is stable.

In Section 3, we obtain a criterion on the matrices A(t), B(t) such that all exact
solution u(t) to test equation (1.3) satisfy [Ju(t)]| < max |luo(t)|| for ¢ > to. This

generalizes the criterion of [3], which dealt with the case where d = 1.
In Section 4 we make the comparision of the three #-methods and prove all three
f-methods are PN-stable if and only if § = 1.
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2. Stability Regions of the §-Methods

In this section we shall determine the sets Sy, S'g and S'g.
For a given matrix norm induced by an inner product, we denote

a§) = [I —0x(©)] I+ (1 - 0)x(©)],  BE) =[I —02(6)] 'y(©),
My(&) =l + 18N, o(&m) =T - Oz ()]~ [1 + (1~ 0)z(¢)],
Y& m) =1~ 0z(m)] " y(€),  My(&m) = llo(&n)ll + 018l + (1 — )|+

We have the following theorem:

Theorem 2.1. Let d = 1, then the 8-methods are stable at (x,y) if and only if

a) My(&) <1, for all € >ty (if @ = 0) and for all € >ty (if 6 # 0).

b) My (&,m) <1, for alln > & > to.

c) My(&) <1, for all £ >ty (if 6 = 0) and for all € > tg (if @ # 0).
for one-leg O-method, linear 8-method, new 0-method respectively.

We shall prove Theorem 2.1 only for the one-leg 6-method, since the technique
of the proof for other two #-method is completely analogous to that for the one-leg
#-method.

To prove Theorem 2.1, we shall need the following Lemma:

Lemma 2.1. Let d > 1,0,&,n be given, it hold

i) If My(&) < 1, then

12— 0z(&) — oy(&)] 'L + (1~ Ozl + (1 — SEDITL — 0z(&) — dy(€)]'y(&)] < 1
for all §(&) with 0 < (&) < 1, & > .

Il = 8z(n) — 3(n)y(n)] ' [ + (1 = O)z(&)]]
+ (1= 8(m)OIlI — Oz (n) — 6(n)0y(n)] " y(n)]
+ (1= Ol = Ox(n) = 05(n)y(n)]~"y(€)l < 1

for all 6(n) with 0 < d(n) <1, t > .
Proof. 1) It is sufficient to prove

11— 0(&) — 8(€)y()] ™ [ + (1 = O)z ()]l + [T — 6(¢) — 3(€)8y(€)] "y (&)l
<L+ (I — 0(€) — 8(Ey(O)] y(©)I.

It is easy to see from My(£) < 1 that

17 = 02(&) = 8()y ()] [ + (1 = Oz (&Il + [ — 6(8) - 3(€)y(€)] "y (&)l
<||[1 = (&) = 8] [I = (&)l = 1 +8(E)[I — 0 (&)
— 3y @) < 1+ 8N = 02(8) = 3(€)y(€)] ' y(E)I.

ii) The inequality is equivalent to

17 = 0 (n) = 08(m)y(n)] ' [1 + (1 = O)x ()]l + OI|[I — Oz (n) — 6(m)0y(n)] " y(n)]
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+ (1= )1 — 0z(n) — 03(m)y(m]~ y(©)]
<L+ ()OIl — O(n) — d(n)y(m)] ™ y(m)].

Then from My (¢, 1) < 1, it can be obtained that

17 = 0 () = 08(m)y(n)] ' [1 + (1 = O)x ()]l + OI|[ — Oz (n) — 6(m)0y(n)] " y(n)]

+ (1= Ol — 0z (n) = 03(m)y(n)] " y(€)|
<||[Z = Oz(n) = 0(m)y(m)] "1 = Oz ()]l = || + 5(n)6[I — 0 (n)

= 05(n)y(m)] ™"yl < 1+ 8Ol = bz(n) — d(n)y(m)]~"y(m)]. O

The proof of Theorem 2.1
(1) Assume that (a) holds. We obtain from (1.4a) and Lemma 2.1

[untill < max(f[unll; 1ure, o)41 1l 1rt, o)) G r(Enge) <n). (2.1)

and
linsa| < lunll, i€ (tnio) = n (2.2)

which implies by induction that

n 1]} < max [luo (£)]]

(2) Assume that there exists a £ > to (if 6 = 0) or &€ > 5 (if # # 0) such that
My (&) > 1, we shall prove that the one-leg #-method is not stable.

let tg =&, 7 > &,
§ —to
h = o 670
arbitrarily choosen, 6 =0
@

,—/hb‘
\
&
~
O]
Q

R
ey
S~—
S
=

[ e MEOO), p(e) #
(th_{l’ B

such that ug(t) is continuous with max |ug| = 1.
—7<t<0

Applying the one-leg f-method (1.4a) with above h to the equation

u'(t) = A(t)u(t) + B(t)u(t — 1), t>0;
u(t) = wug(t), —7<t<0.

we obtain

up = a(§)ug + B(E)ulty — ) = |a(€)] +1B(E)] = Mp(§) > 1 = max |ug(t)].

—7<t<0
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This prove that the one-leg 8-method is not stable, hence the assumption doesn’t hold.
O

Remark 2.1. For d > 1, we don’t know whether there are two vector z,y € C¢
such that

le(©)z + B(E)yll > max{|lz]| + [lyl[}- (2.3)

If (2.3) holds, the sufficiency of Theorem 2.1 can be proved.

It is easy to obtain the following stetement from Theorm 2.1.

Corollary 2.1. Sy =Sy = {(z,y): My(&) <1, for all £ >ty (if 0 = 0) and for all
>ty (if 04 0)}, So = {(m.y): My (€.m) < 1, for all n> € > o}, if d = 1.

3. The Stability of Test Equation (1.3)

Consider the following nonlinear equations:

y'(t) = flty(t),y(1(1), t>to
y(t) = @(t), t<to (3.1)

and

2'(t) = f(t,2(t), 2(7(t))), t>tg
z(t) =p(t), t<to (3.2)

where f : [tg, +00) x C4x C* = C? y,z: R — C% t — 7(t) > 19 > 0, 79 is constant.
Before giving our stability criterion on test equation (1.3), we introduce the following
Lemmas.
Lemma 3.1. Assume that the delay function 7(t) is continuous and that there
exists (-,-), an inner product on C%, such that

v(t) < —o(t) for every t > tg

where
R t — f(t -
O'(t) = sup €(<f( 7y17Z) f( 7y227 Z)uyl y2>)7 (33)
2,y1,92€CYL, y1 #ys ”yl - yQH
f l,y,21) — f ,y, 22
() = sup 1/ ) — f( )l (3.4)
Y,21,22€CL, 21429 ||Zl - ZQH
and ||z||? = (z,x) for every z € CL Then |ly(t) — 2(t)|| < max 1@ (t) — p(t)|| for every
>to
t>to.

Proof. See [3]. O
Lemma 3.2. Let A € C™? then

e R (SO
W n) = swp Fe ()

1[<A§,§)+<A§,§)]
gced g0 2 €112 ’

1
(2) max{pu(A), —pu(A)} < AT’ if A is nonsingular, where u(-) is logarithmic

norm under a given inner product (-,-).
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Proof. To refer [8]. O
Combining Lemma 3.1 and Lemma 3.2 we have
Theorem 3.1. Consider the delay differential equation:

{ u'(t) = A(t)u(t) + B(t)u(r(t), t = to,

ult) = o) L<to (3:5)

where A(t), B(t) are complex matriz function and t — 7(t) > 19 > 0, 7(t) is continuous
function. If

IB(#)] < —n(A(E), t=> to, (3.6)
then
lu(®)l] < max fluo]
where || - || is a norm induced by an inner product (-,-) and u(-) is corresponding loga-

rithmic norm.
Proof. Observe that

o(t) = p(A(1), () = [IB@)]

in Lemma 3.1,then the theorem is proved. O
Remark 3.1. Theorem 3.3 holds when applied it to the pantograph equation:

U'(t) = A@#)U(t) + B(t)U(qt), t >0, (3.7)
U(0) = Uy '

here g € (0,1). Observe that there is not a constant 7y such that t —qt > 79 > 0 (¢ > 0),

but (3.7) can be transformed to the case (3.5) by introducing a transformation in the

following way. Let z(t) = U(e!), for t > lggq, then z(t) satisfies the following initial
value problem:

{ 2'(t) = A(t)elz(t) + B(t)elz(t +1gq), t>0 (3.8)

z(t) = U(el), t € [lgg,0].

Hence, all results in our paper hold readily for the equation (3.7).

4. Comparision of the Three /-Methods

In view of Theorem 3.3 it is natural to consider the following definition:
Definition 4.1. A numerical method is called PN-stable if H is contained in the
numerical method stability region, where

H = {(z,y) z(t) € C%y(t) € C% |ly(®)]| < —p(x(1))}. (4.1)

It is easy to obtain the following conclusion from Corollary 2.2.
Lemma 4.1. Sy C Sy = Sy for all 0 € [0,1] and d = 1.
Proof. The proof can be obtained by noting that

My(&,m) = Mjy(€) holds if & = 7.
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Lemma 3.2. None of the three -methods is PN-stable if 6 € [0,1) and d > 1.
Proof. We only give the proof for one-leg 8-method. Without generality,we only
consider the special case (d = 1) of (1.3).

Let z,y be real continuous functions with z(t) = y(t) < — and h = 1. Obvi-

1—-6

ously we have (z,y) € H. But for any £ > 0,
-0 2©) | _ 2@
Ma(§)—‘ 1— 62(¢) ‘_I—‘l_gx(g)‘_ 1—0x(¢) 1>1

which implies (z,y) & Sp.

It can be seen that the three #-methods are identical with § =0 and § = 1. O

Theorem 4.1. All three 0-methods are PN-stable if and only if 6 = 1.

Proof. The “only if” part can be justified by Lemma 4.2. We only give the proof
for the “if” part for the one-leg -method. The proofs for the other two -methods are
analogous.

Let 6 =1, then

My (&) = 11 = (&)l + 1 — (&) y(©)]-

It is easy to obtain

Iy < = u(z(€)) = 1+ [yl < pll —x(¢))

1
=1+ [y < m = My(¢) <1

In the above proof, we have used Lemma 3.2. Then the “if” part is proved. O
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