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Abstract

A class of asynchronous nested matrix multisplitting methods for solving large-
scale systems of linear equations are proposed, and their convergence characteriza-
tions are studied in detail when the coefficient matrices of the linear systems are
monotone matrices and H-matrices, respectively.
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1. Introduction

There has been a lot of literature (see [1]-[6] and [12]) on the parallel iterative
methods for the large-scale system of linear equations

Az =b, A€ L(R") nonsingular, z,b€ R" (1.1)

in the sense of matrix multisplitting since the pioneering work of O’Leary and White
(see [1]) was published in 1985. One of the most recent result may be the studies
on a class of asynchronous parallel matrix multisplitting relaxation methods proposed
in [6]. These methods, just as was pointed out in [6], are suitable to the high speed
multiprocessor systems (MIMD-systems). However, the method given in the paper
requires each processor of the MIMD-system to solve a sub-system of linear equations
at every iterative step. The computations of the solutions of these a sub-systems
of linear equations then turn to the main tasks in concrete implementations of this
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asynchronous parallel matrix multisplitting relaxation method. Therefore, it deserves
further investigation on both the method model and the convergence theory.

In this paper, through combining each iteration distributed on the corresponding
processor with an inner iteration, which is used to solve its sub-system of linear equa-
tions, we construct a class of new asynchronous matrix multisplitting methods, which
are called, following the customary, asynchronous nested matrix multisplitting meth-
ods. The convergence properties of these new methods are discussed in detail when the
coefficient matrix A € L(R™) is a monotone matrix as well as an H-matrix. This work
can be thought of a further development of [6], and also a generalization of [9] [10] to
asynchronous matrix multisplitting methods.

For the convenience of the subsequent discussions, in the remainder of this section,
we will restate the first asynchronous parallel matrix multisplitting method in [6].

We recall that a collection of triples (M;, N;, E;) (i = 1,2,--+,a) (o < n, a given
positive integer) is called a multisplitting of a matrix A € L(R") if M;, N;, E; € L(R")
(i = 1,2,---,a) with each FE; being nonnegatively diagonal, and satisfy: (1) A
M;— Ni(i =1,2,--+,a); (2) det(M;) # 0(i = 1,2,---,a); and (3) Y E; = I(I € L(R")

2

is the identity matrix).

Here, we have assumed that the MIMD-system considered is made up of &« CPU’s.
Correspondingly, the following notations are also indespensable: (i) for Vp € Ny =
{0,1,2,---}, J = {J(p) }pen, is used to denote a sequence of nonempty subset of the set
{1,2,---,a}; (ii) S = {s1(p), s2(p), - -, sa(p) }pen, are « infinite sequences. The sets J
and S have the following properties: (a) for Vi € {1,2,---, «a}, the set {p € Ny|i € J(p)}
is infinite; (b) for Vi € {1,2,---,a},Vp € Ny, it holds that s;(p) < p; and (c) for
Vi€ {1,2,---,a}, it holds that pll)rgo si(p) = oo.

With these preparations, the asynchronous parallel matrix multisplitting method
in [6] can be described as follows:

ALGORITHM (see [6]): Suppose that we have got approximations z°, z!, ... zP
to the solution z* of (1.1). Then the (p + 1)-th approximation zP™! of z* can be
calculated by

P = Z E;z"P (1.2)
13

with 2P being either z? for i ¢ J(p) or the solution of the sub-system of linear equations
MZ'.’I?i’p = Nixsi(p) +b (1.3)

for i € J(p).

2. Asynchronous Nested Matrix Multisplitting Methods

For the purpose of establishing our new methods, we first introduce the following
concept: A collection (M; : F;,G;; Ni; E;) (1 = 1,2, , ) is called a two-level multi-
splitting of a matrix A € L(R") if (M;, N;, E;) (i = 1,2,---, @) is a multisplitting of
it and M; = F; — G;,det(F;) # 0(i = 1,2,---,«). Based on this concept, by solving
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each of the sub-system of linear equations (1.3) with an inner iteration method again,
we can set up the following asynchronous nested matrix multisplitting method for the
system of linear equations (1.1):

METHOD I: Suppose that we have got approximations z°, z!,---, 2P to the so-
lution z* of (1.1). Then the (p + 1)-th approximation zP*! of z* can be calculated by
(1.2) and

£ — { ZbPMip, for i € J(p), 2.1)

zP, for i ¢ J(p),

where each z'P™i» is determined by the following formulae with the starting point
2000 — psi(p).

gl = Pl BV (Nt ®) 4 b), omo=0,1,-0,my, 1, (2.2)

while {m; p}pen, (¢ = 1,2,---,a) are infinite positive integer sequences, which may be
determined either explicitly in advance or implicitly in the implementing process of the
method.

Obviously, this method covers the ALGORITHM in the previous section cited from
[6] as well as the methods proposed in [8] [10].

By substituting (2.1)—(2.2) into (1.2), we can equivalently express Method I as

mi p—

$p+1='€;()Ei|:<FilGi> " + Z < ) } +l¢;)E:vp
ZE; E; Z ( ) F'b. (2.3)

As a matter of fact, there are various kinds of two-level multisplittings. For example,
if in the two-level multisplitting (M; : F;,G;; Ni; E;) (1 = 1,2,---,«) of the matrix
A€ L(R"), for each i € {1,2,---, a}, we particularly take F; = D; — L;, D; = diag(M;)
with det(D;) # 0 and G; = U;, where L; € L(R") is strictly lower triangular and
U; € L(R") is zero-diagonal, satisfying M; = D; — L; — U;(i = 1,2,---,«), then a
new two-level multisplitting (M; : D; — L;,U;; Ni3 E;) (i = 1,2,--- ) of the matrix
A is obtained. Based on this special two-level matrix multisplitting, Method T can be
immediately formulated as the following form:

METHOD II: Suppose that we have got approximations z° 2! -, 2P to the
solution z* of (1.1). Then the (p + 1)-th approximation zP*! of z* can be calculated
by (1.2) and (2.1), where each "P"™i» is determined by the following formulae

ZHP0 — ;I;Sz‘(p)7

P = (D; — L) 7 H( = w)D; + (w—1)L;
U]z P™ 4+ (D; — rL;) 'w(N;z*®) 4+ b),

m=0,1,---,m;, —1

(2.4)
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for each i € J(p). The meanings of the sequences {m;,}pen, (1 = 1,2, -, @) are the
same as in Method I, while r € [0, 00) is called a relaxation factor and w € (0,00) an
acceleration factor.

Since the sub-system of linear equations (1.3) is solved for each i € {1,2,---,a} by
an accelerated overrelaxation (AOR) method, we call Method II as asynchronous nested
matrix multisplitting AOR method (ANMM-AOR method). When the relaxation pa-
rameter pair (r,w) is specially chosen to be (w,w), (1,1) and (0,1), etc., the correspond-
ing methods resulted from (1.2), (2.1) and (2.4) are called as asynchronous nested
matrix multisplitting SOR method (ANMM-SOR method), asynchronous nested ma-
trix multisplitting Gauss-Seidel method (ANMM-GS method) and asynchronous nested
matrix multisplitting Jacobi method (ANMM-J method) and so on, respectively.

Analogously, by substituting (2.4) and (2.1) into (1.2), and making use of the ex-
pressions

Li(r,w) = (Di —=rL) (1 = w)Di + (w =)L + U], i=12--,a  (25)

Method II can be simply written as

mip mi’pil :]
2Pt = Z Ei[<£i(r, w)) + Z <[,Z~(r, w)) w(D; —rL) 'N; %)
Jj=0

i€J(p)

m;,—1 ;
+ Y Bah+ Y B Y (Ei(r,w)>](D¢rLi)1wb. (2.6)
j=0

i¢J(p) ieJ(p)

In order to set up the convergence theories of the above two asynchronous nested
matrix multisplitting methods, we need to define the infinite number sequence {m,;};cn,
in accordance with the following rule: my is the least positive integer such that

U J(p):{172a"'aa}a

0<s(p)<p<mo

in general, m;, is the least positive integer such that

U J(p):{1,2,'-',04},l:0,1,2,"',
my<s(p)<p<myi,
where s(p) = mins;(p). Evidently, s(p) < p. Since le si(p) = oo, we obviously have
) p—00
lim s(p) = oo. For the meaning of the sequence {m;};cn,, one can see [6] for detail.

p—0oQ

3. Concepts and Lemmas

We adopt the notations and concepts used in [2]-[3], [6] and [10]-[12]. The following
lemma, having been confirmed in [10], summarizes relations between different splittings
and results on convergence properties of these splittings.

Lemma 1. Let A = B — C be a splitting.
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a) If the splitting is reqular or weak regular, then p(B~'C) < 1 iff A= > 0.

b) If the splitting is an M -splitting, then p(B~'C) < 1 iff A is an M-matriz.

c) If the splitting is an H-splitting, then A and B are H-matrices and it holds that
p(B-1C) < p({B)[C]) < 1.

d) If the splitting is an M -splitting, then it is a regular splitting.

e) If the splitting is an M -splitting and A is an M -matriz, then it is an H-splitting
and also an H-compatible splitting.

f) If the splitting is an H-compatible splitting and A is an H-matriz, then it is an
H-splitting and thus convergent.

Deﬁne nonnegative diagonal matrix sequences {I,(Jl)}peNO and {I;Q)}peNO € L(R")
by I8V = > E and I}? = Y Ei(p=0,1,2,--), with B; (i = 1,2,---, ) being

i€J(p) i¢J(p)

the weighting matrices, i.e., F; > 0 (i = 1,2,---, ) are diagonal and satisfy Z E,=1.
Then in light of [6]-[7] we know that the following lemmas hold. l

Lemma 2. Let z € R" be a positive vector(z > 0). If the sequence {eP}pen,
satisfies

Pt < 1Mz + IPeP), p=0,1,2,

Then for any nonnegative integer g < p — 1,

p p
N (D T R | G

Jj=p—q—1

my—1
Lemma 3. Let m_; = 0 and I = ]l_[ I,(,2) (I =0,1,2,---). Then for any

p=mj—1
positive vector € R", there exists {7y }1cn, € [0,7] C [0,1) such that Wz < yDg(l =
0,1,2,---).

4. Convergence Analysis of Method I

Because the coefficient matrix in (1.1) is nonsingular, there exists a unique z* € R"
such that Az* = b. Noticing the definition of Method I in section 2, according to (2.3)
we easily know that the following relation holds:

mi,p—

:v*:'eg(:)EiKFilGi) T4 Z ( ) 1N}x —|—Z¢J()E:v
mip— j
+ Z Z ( )Filb. (4.1)

ieJ(p

Let P denote the error vector e? = zP — z*, by subtracting (4.1) from (2.3) we see
that {e”},cn, should satisfy

SR > EiT; %™ + > B, (4.2)
ieJ(p) i¢.J(p)
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where

o= (576)"™ 5 (6 mn oran pem 03

Evidently, if [eP| — 0 as p — oo, then we can conclude the convergence of Method I. In
the remainder of this section, we will verify this fact by considering two cases of (1.1):
A € L(R") is a monotone matrix and an H-matrix, respectively.

4.1 Monotone matrix case

Theorem 4.1. Let A € L(R") be a monotone matriz, and (M; : F;, G;; N;; E;) (i =
1,2,-+, ) be a two-level multisplitting of it with A = M; — N; (i = 1,2,---,a) being
reqular and M; = F; — G; (i = 1,2, -, «) weak regular. Then, for any starting vector
2" € R™, the iterative sequence {2P}pen, generated by Method I converges independently
of the sequences {m; ,}pen, to the unique solution =* of the system of linear equations
(1.1).

Proof. Since A € L(R") is a monotone matrix, we see that for any positive vector
u € R", there exists a positive vector v € R" such that Av = u. Since A = M; — N;(i =
1,2, -+, «) are regular splittings, ’U—M[lNi’U = M[lAv = M[lu >006=1,2,---,a).
Moreover, as M; = F; — G; (i = 1,2, -+, a) are weak regular splittings, we have

M '=(1-F'G) 'F", i=12, 0 4.4
7

Now, from (4.3) we know that T; ,(i = 1,2,---,a,Vp € Ny) are nonnegative and
m; D
Ti,p:< ) Z( )IFlG) N

—1- {I - <Fi1Gi> }MilA. (4.5)

Through substituting (4.4) into (4.5) and making use of the identity

m;p—1

mip .
- (rra) M u-rre) = X ey
§=0
we obtain
m;p—1
Tip=1- > (F'G)F 'A
=0
Therefore, we have
m;,—1 m;p—1
Tipv=v — Z (FflGi)JFflu =9 — F[lu — Z (FflGi)JFflu
Jj=0 j=1

§U—Fflu, 1=1,2,--- .
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Additionally, because of Fflu >0 (¢ =12--,a), we see that v— F; "w <o ( =
1,2,---, ). Hence, there exists a § € [0,1) such that v — FZ u<Ov(i=12-,a),
which further implies that

Tipv <bv, i=12--- a, Vp€ Ny. (4.6)
Based on (4.2)—(4.3) and (4.6), we see that once we generally suppose
|€t‘ SAU? tzoala"'ap (47)

for some A € [0, 00), it holds that

P < > BT e ®)| 4 Y Bl < > ET,Av+ Y Eile?

i€ (p) it (p) i€ (p) i (p)
<OA Y EBw+ Y B,
icJ(p) i¢J(p)
or
P+ < ATy + I[P, (4.8)

where we have used the facts s;(p) < p and \8 i | <Avfori=1,2, -, «
As a matter of fact, we can always admit that the initial error vector € satisfies

%] < dv (4.9)

for some suitably chosen § € (0,00). Up to now, the proof of the theorem can be
fulfilled in three parts by making use of (4.7)—(4.9).

Part 1. |eP| < dv, Vp € Ny. Evidently, by induction this fact can be immediately
verified beginning from (4.9) and making use of the observation (4.8).

Part I1. [e?| < Aw, ¥p > my, where A_; = &6, Ay = (0 + (1 — 0)y)A_, (I =
0,1,2,---), and the sequence {fy(l)}leNO is defined in Lemma 3. In fact, for [ = 0, by
Lemma 2 and (4.7) (4.8) with A =4, we obtain

p—1 p—1
_ 2 2
|| < 0150 + 1{P|eP~1| < (1 114 )>06v + [T £,
§=0 §=0

According to (4.9) and Lemma 3, we have

p—1 p—1
e?| < ( H 1 )951} + [ P60 = (9[+ 1-01I If))av
§=0

j=0
< (61 + (1 —0)I)v < (6 + (1 — )y D)dv = Ago.

This shows that || < Aw(Vp > my) is valid for [ = 0. Now, suppose that |eP| <
Apw(Vp > my) is true for [ > 1. Then by using Lemmas 2 and 3 and starting from
(4.7) (4.8) with A = Ay, we get for p > my; that

p—1 p—1
<o+ 111 < (1 T112)oam+ IT 176m

Jj=my Jj=my
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p—1 p—1
< <I— II I§2)>9Alv+ 1 27 aw.
J=my J=my
Similar to the above derivation for I = 0, we can also conclude that |eP| < Ajpqv(Vp >
my41). By induction, we have proved the conclusion.

Part TIL. |e?| — 0 (p — o0). To test this fact, we let ) =0 + (1 — )y (I =
0,1,2,---). Clearly, for I = 0,1,2, -, it holds that ) € [0, 3] with 8 =6+ (1—6)y < 1
and Ay = BHVA; with Ay = B(06. Since

I+1
Ay =pU0A = =T[BYVs <726 — 0 (I — ),
7=0
by taking limits on both sides of the inequality in Part II, we immediately obtain
|eP| — 0 (p — o0).

An important case of Theorem 4.1 is the following convergence theory about the
ALGORITHM proposed in [6] for monotone matrix.

Theorem 4.2. Let A € L(R™) be a monotone matriz, and (M;, N;,E;) (i =
1,2, -, «) be a multisplitting of it with A = M; — N;(i = 1,2, -, «) being weak regular.
Then, for any starting vector z € R", the iterative sequence {zP}pen, generated by
the ALGORITHM converges to the unique solution =* of the system of linear equations
(1.1).

4.2 H-matrix case

Theorem 4.3. Let A € L(R"™) be an H-matriz, and (M; : F;,G;; Ni; E;) (i =
1,2,-+, ) be a two-level multisplitting of it with both A = M; — N; (1 = 1,2,--+, @)
and M; = F; — G; (i =1,2,---,«) being H-compatible splittings. Then, for any start-
ing vector z° € R", the iterative sequence {2P}pen, generated by Method I converges
independently of the sequences {m;,}pen, to the unique solution x* of the system of
linear equations (1.1).

Proof. By Lemma 1), A = M;—N;(i =1,2,---,«) are H-splittings. From Lemma
1 ¢), we see that M;(i =1,2,---,«) are H-matrices. Therefore,

(A) = (M;) — |Ny|, i=1,2,---,« (4.10)

are M-splittings. Similarly, we know that F;(i = 1,2,---, ) are H-matrices and

(M;) = (Fy) — |G|, i=1,2,---,« (4.11)
are also M-splittings.
Now, from (4.3), for i = 1,2,---,a and p € Ny, we can obtain the following esti-
mates:
m; p mip—1 i
T < (FNGH) T X (B G ) E N @
§=0
Define

A Nme MWl
T, = <(F¢) 1Gi|> + ;} ((Fi> 1|G¢> (F)"1N;]. (4.13)
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and consider the sequence {€”},cn, generated by
0 =0 =20 —a*|, &= Y B+ Z Eié?, p=0,1,2,---. (4.14)
i€J(p) i¢J(p

By comparing (4.13) and (4.14) with (4.3) and (4.2), and considering (4.10)—(4.11),
following the proof process of Theorem 4.1 we can immediately conclude that under
the conditions of this theorem, éP — 0 as p — oo.

On the other hand, by induction we can prove

|€p‘ Sépa p:0a1721"" (415)

In fact, when p = 0 (4.15) is obviously true. Suppose that (4.15) is true for p =
0,1,2,---,¢t. Then s;(t) <t (i =1,2, -, «) directly give the estimates

e < e =12 (4.16)

Now, for p =t +1, from (4.2) and (4.12)—(4.14) as well as (4.16), by direct calculations
we get

|€t+1|§ Z E’L‘T, "I‘ Z E|€t‘< Z ETlt€ + Z Eé‘ _ At+1’
ieJ(t) i¢J(t) ieJ(t i¢J(t)

which shows (4.15) is also true for p = ¢ + 1.

5. Convergence Analysis of Method II

Analogous to section 4, we know that the error vector sequence {€”},cn, corre-
sponding to Method II satisfies

Pt = Z EiT;p(r,w) Z E;e?, (5.1)
i€J(p) i¢J(p)
where
mi p mi’pfl ]
Tip(r,w) = (Ei(r,w)> + X <E¢(T, w)) w(D; — rL;) ' N;,
7=0 (5.2)

i:1,2,"',05, peNO

Clearly, to prove the convergence of Method II, we only need to verify |e?| — 0 as
p — oo. Because the test of this fact is similar to the corresponding one of Method I,
here, we only use the convergence theory for the H-matrix case as an example to show
its proving skeleton, while for the completion of the convergence theory of Method 11,
we also list its convergence theorem for the monotone matrix case but omit its proof.
Theorem 5.1. Let A € L(R"™) be a monotone matriz, and (M; : D; — L;, U;; N;; E;)
(i=1,2,--, ) be a two-level multisplitting of it with A = M;—N; (i = 1,2,---, ) being
regular and D; > 0, L; >0, U; >0 (i = 1,2,--+,a). Then, for any starting vector x° €
R™, the iterative sequence {zP }pen, generated by Method II converges independently of
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the sequences {mjp}pen, to the unique solution x* of the system of linear equations
(1.1) provided the relaxation parameters r and w satisfy 0 <r < w,0 < w < 1.
Theorem 5.2. Let A € L(R"™) be an H-matriz with D = diag(A) and B = D — A.
Assume that (M; : D; — L;,U;; Ni; E;) (i = 1,2, <o @) 18 a two-level multisplitting of
1

the matriz A with A= M; — N; (1 =1,2,---,«) being H-compatible splittings,
(M) = Dy = Ll = U, i= 1,20 (5.3
and
diag (M;) = D; =D, i=12-,a. (5.4)

Then, for any starting vector z € R", the iterative sequence {zP}pen, generated by
Method II converges independently of the sequences {m; p}tpen, to the unique solution
x* of the system of linear equations (1.1) provided the relaxzation parameters r and w

satisfy
0<r<w, 0<w<?2/(1+4p(|D|7"B])). (5.5)

Proof. In light of Lemma 1 f) we know that M; (i = 1,2,---,«) are H-matrices.
Let
CiZDi—Mi, ’i=1,2,--',04, (56)

by (5.3) (5.4) we easily see that
\Ci| = |Li| +|Ui|, i=1,2,---,c. (5.7)
Because (D; —rL;) (i =1,2,---,«) are H-matrices, we have
(D; —rL) "' <(D; —rL)) ' = (|D;| —r|Ly))"", i=1,2,---,a. (5.8)

Moreover, for the matrices L;(r,w) (i = 1,2,---,«) defined by (2.5), we have the
following estimates:

Li(r,w)| < [(Dj = rLi) M1 = ][ Di] + (w = 7)|Li| + w|Uj]

< (1Di] = r|Ll) 1 = wl|Dil + (@ = 1) Li] +wlUi] = Li(r,w).

(5.9)

Presently, by (5.8) (5.9) we can obtain from (5.2) that

m; p—1
I Tip(r,w)| < |Li(r,w) ™7+ Y |Li(r,w)Pw(|Di| = r|Li) " Ny
7=0
A mZP j
< (Lirw) 2 ( o)) w(Dil - i)
j=0 (5.10)
holds for each i € {1,2,---, a}.
Define
mip mi’pil .7

Tip(nw) = (L) + X (Litnw)) WD oL VL )

i=0
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and consider the sequence {€”},cy, yielded by
Q=1 =22, &= Y ETi,(rw)ei®+ Y Eer (5.12)
i€J(p) i¢.J (p)
Fori=1,2,---,«, let
1—[1—
(Alw) = =52ID| - B,
Mi(w) = =74D| - |Cil,
Ni(w) = | N, (5.13)
Fi(r.w) = 5(ID| - r|Li]),
Gi(r,w) = S[I1 — w||D| + (w — 1) |Li] + wl|Ui]].

Then it obviously holds that

A(w) = Mi(w) — Ni(w),
Mz(w) = fi(Ta "-") - gi('rvw)a
[’,i(r, w) = Fi(r,w) 'Gi(r,w), (5.14)

~ mip—1/

fiyiro) = (L) "7+ "8 (L)) Fr w0

Since A € L(R") is an H-matrix, we have p(|D| '|B|) < 1. Noticing the varying
region (5.5) of the relaxation parameter pair (r,w), we see that A(w) € L(R") is an
M-matrix. Furthermore, as

Cil = |D| = (Mj) = |D| = ((A) + [Nil) = |B] — [Ni| <[B], i=1,2---,a,

in accordance with [13, 2.4.10] we know that M;(w) € L(R") (i = 1,2,---,«) are M-
matrices, too. Therefore, both A(w) = M;(w) — N;(w) and M;(w) = F(r,w) — Gi(r, w)
are M-splittings for 4 = 1,2,---, @ under the conditions of this theorem. By making
use of Theorem 4.1, we know that é&» — 0 as p — oc.

Similar to the proof of Theorem 4.3, we can also confirm that {€”},cn, is a majoriz-
ing sequence of {e?},cn, defined by (5.1) (5.2), i.e., |[eP| <P (p=10,1,2,---). Hence,
we finally obtain e? — 0(p — o0).

6. Numerical Results

For a given positive integer 71, let n = 72 and consider the system of linear equations
(1.1) with B
A = BlockTridiag(—1,B,—1) € L(R"),
B = tridiag(—1,4, 1) € L(R"),
b= (10,10,---,10)" € R".
This example naturally comes from the finite difference discretization of a Dirichlet

problem on the unit square [0,1] x [0,1]; see [11] and [13] for details. This system of
linear equations is solved by the ANMM-AOR method and ANMM-SOR. method.
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In our computations, with (2« — 1) positive integers ni,ng, -+, noq—1 satisfying
o

2(121

1,nn9;_3 + 2,---,nny;). Here, we stipulate that n_; = 0 and ng, = n. The inner

ny = (k=1,2,---,2a — 1) we let processor i solve the variables x;(j = nng;_3 +

iteration numbers are taken to be m;, = mip (¢ = 1,2,---,a,p € Np), and the splitting
and the weighting matrices are taken to be N; = M; — A and

fingi_g  MMN2i—n2i-3)
—_—
M; = diag(41,---,4I, B,---,B ,4I,---,41),
fngi_3 fi(n2; —nai—3)

i —— r -~
Ei = dzag(O, e 707 Mfln2i73+1la T 7Mfln2ilu 07 e 70)7
L; = the strictly lower triangular matrix of (—M;)
M,

b)
i)

U; = the strictly upper triangular matrix of (—

respectively, where

0.5, if nng; 3 +1 <7 < nng; o,
My = 1.0, if nng;_9+1< 35 <nng;_1,
0.5, if nng; 1 +1 <5 < nngy;.

We remark that this system of linear equations and this two-level multisplitting of the
matrix A € L(R"™) satisfy all the theoretical hypotheses made in the previous sections.

The parallel computer used is the SGI Power Challenge multiprocessor located in
Oxford University Computing Laboratory. Computations are done corresponding to
n = 6400, and various processor numbers « and relaxation parameter pairs (r,w). All
our computations are started from an initial vector having all components equal to

|AzP — by _7
- < 10" or the
|Az® —bll1 —

stopping criterion is not satisfied after 8000 iteration steps. For @ = 4, the correspond-
ing sequential CPU time (CPU) in seconds and parallel speed-up (SP) are listed in the
following numerical tables. Here, the SP is defined to be the ratio of the sequential CPU
to the corresponding parallel runnings. We remark that the parallel CPU time is not

—100, and terminated once the current iterations xP obey

listed in the numerical tables since it can be easily obtained by dividing the sequential
CPU by the corresponding parallel SP. From our computations we see that suitable
choices of the relaxation parameters r and w can greatly accelerate the convergence
rates of the relaxation methods, and the asynchronous nested matrix multisplitting
relaxation methods have better numerical behaviour than the ordinary asynchronous
multisplitting relaxation methods. Moreover, the asynchronous nested matrix multi-
splitting AOR method has larger convergence domain than the asynchronous nested
matrix multisplitting SOR method, and the convergence rate of the former is, in gen-
eral, moderately faster than that of the later. Evidently, the numerical results further
confirm the theories established in the previous sections, and also show that our new
methods are feasible and efficient for solving the system of linear equations (1.1) on the
high-speed multiprocessor systems.
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Table I: ANMM-SOR method
w 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6
CPU | 235.1 | 184.8 | 178.7 | 165.3 | 168.8 | 118.1 oo oo [%9)
mip=1 SP 3.1 3.1 3.1 3.1 3.2 3.1
CPU | 203.3 | 159.9 | 160.5 | 153.9 | 146.7 | 128.3 | 189.7 oo [%9)
mip=2 SP 3.0 3.1 3.1 3.2 3.1 3.1 3.2 - -
CPU | 176.6 | 161.7 | 162.2 | 156.5 | 157.6 | 148.7 | 167.2 00 0
mip=3 SP 3.3 3.1 3.1 3.1 3.2 3.1 3.1
CPU | 178.7 | 171.3 | 175.1 | 159.8 | 166.1 | 161.3 | 171.3 | 163.0 | 171.6
mip=4 SP 3.1 3.1 3.0 3.1 3.2 3.1 3.2 3.2 3.1
CPU | 200.9 | 183.1 | 188.9 | 177.9 | 173.3 | 179.6 | 194.7 | 196.1 [%9)
mip=5 SP 3.1 3.1 3.1 3.1 3.2 3.1 3.2 3.2 -

Table II: ANMM-AOR method

r 1.0 1.1 1.2 1.3 1.4 1.1 1.2 1.2 1.1
w 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6
CPU | 220.2 | 176.4 | 149.8 | 1194 | 111.3 | 119.3 o0 o0 00

mip=1 SP 3.0 3.1 3.3 3.1 3.1 3.1
CPU | 164.7 | 139.2 | 1214 | 116.4 | 102.5 | 1174 | 115.7 | 151.2 | 146.1
mip=2 SP 3.1 3.1 3.1 3.1 2.9 3.1 3.2 3.2 3.1
CPU | 155.4 | 154.1 | 132.7 | 150.3 | 147.7 | 126.7 | 134.8 | 105.3 00
mip=3 SP 3.0 3.1 3.1 3.1 3.1 3.1 3.2 3.2 -
CPU | 1734 | 163.4 | 151.7 | 152.8 | 154.7 | 164.2 | 157.4 | 134.7 | 159.3
mip=4 SP 3.1 3.1 3.2 3.1 3.2 3.1 3.2 3.2 3.1
CPU | 189.1 | 1825 | 177.2 | 178.3 | 175.4 | 181.1 | 183.7 | 172.3 | 193.2
mip=>5 SP 3.1 3.1 3.1 3.1 3.2 3.1 3.2 3.2 3.1
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