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ON THE CONVERGENCE OF ASYNCHRONOUS NESTEDMATRIX MULTISPLITTING METHODS FOR LINEARSYSTEMS�1)Zhong-zhi Bai(State Key Laboratory of S
ienti�
/Engineering Computing, Institute of ComputationalMathemati
s and S
ienti�
/Engineering Computing, Chinese A
ademy of S
ien
esP.O. Box 2719, Beijing 100080, China)De-ren Wang(Department of Mathemati
s, Shanghai University, Shanghai 201800, China)D.J. Evans(Parallel Algorithms Resear
h Centre, Loughborough University of Te
hnology Loughborough,U.K.)Abstra
tA 
lass of asyn
hronous nested matrix multisplitting methods for solving large-s
ale systems of linear equations are proposed, and their 
onvergen
e 
hara
teriza-tions are studied in detail when the 
oeÆ
ient matri
es of the linear systems aremonotone matri
es and H-matri
es, respe
tively.Key words: Solution of linear systems, Asyn
hronous parallel iteration, Matrixmultisplitting, Relaxation method, Convergen
e.1. Introdu
tionThere has been a lot of literature (see [1℄{[6℄ and [12℄) on the parallel iterativemethods for the large-s
ale system of linear equationsAx = b; A 2 L(Rn) nonsingular; x; b 2 Rn (1.1)in the sense of matrix multisplitting sin
e the pioneering work of O'Leary and White(see [1℄) was published in 1985. One of the most re
ent result may be the studieson a 
lass of asyn
hronous parallel matrix multisplitting relaxation methods proposedin [6℄. These methods, just as was pointed out in [6℄, are suitable to the high speedmultipro
essor systems (MIMD-systems). However, the method given in the paperrequires ea
h pro
essor of the MIMD-system to solve a sub-system of linear equationsat every iterative step. The 
omputations of the solutions of these � sub-systemsof linear equations then turn to the main tasks in 
on
rete implementations of this� Re
eived May 26, 1997.1)Proje
t 19601036 supported by the National Natural S
ien
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hronous parallel matrix multisplitting relaxation method. Therefore, it deservesfurther investigation on both the method model and the 
onvergen
e theory.In this paper, through 
ombining ea
h iteration distributed on the 
orrespondingpro
essor with an inner iteration, whi
h is used to solve its sub-system of linear equa-tions, we 
onstru
t a 
lass of new asyn
hronous matrix multisplitting methods, whi
hare 
alled, following the 
ustomary, asyn
hronous nested matrix multisplitting meth-ods. The 
onvergen
e properties of these new methods are dis
ussed in detail when the
oeÆ
ient matrix A 2 L(Rn) is a monotone matrix as well as an H-matrix. This work
an be thought of a further development of [6℄, and also a generalization of [9℄{[10℄ toasyn
hronous matrix multisplitting methods.For the 
onvenien
e of the subsequent dis
ussions, in the remainder of this se
tion,we will restate the �rst asyn
hronous parallel matrix multisplitting method in [6℄.We re
all that a 
olle
tion of triples (Mi; Ni; Ei) (i = 1; 2; � � � ; �) (� � n, a givenpositive integer) is 
alled a multisplitting of a matrix A 2 L(Rn) if Mi; Ni; Ei 2 L(Rn)(i = 1; 2; � � � ; �) with ea
h Ei being nonnegatively diagonal, and satisfy: (1) A =Mi�Ni(i = 1; 2; � � � ; �); (2) det(Mi) 6= 0(i = 1; 2; � � � ; �); and (3)Xi Ei = I(I 2 L(Rn)is the identity matrix).Here, we have assumed that the MIMD-system 
onsidered is made up of � CPU's.Correspondingly, the following notations are also indespensable: (i) for 8p 2 N0 =f0; 1; 2; � � �g, J = fJ(p)gp2N0 is used to denote a sequen
e of nonempty subset of the setf1; 2; � � � ; �g; (ii) S = fs1(p); s2(p); � � � ; s�(p)gp2N0 are � in�nite sequen
es. The sets Jand S have the following properties: (a) for 8i 2 f1; 2; � � � ; �g, the set fp 2 N0ji 2 J(p)gis in�nite; (b) for 8i 2 f1; 2; � � � ; �g;8p 2 N0, it holds that si(p) � p; and (
) for8i 2 f1; 2; � � � ; �g, it holds that limp!1 si(p) =1.With these preparations, the asyn
hronous parallel matrix multisplitting methodin [6℄ 
an be des
ribed as follows:ALGORITHM (see [6℄): Suppose that we have got approximations x0; x1; � � � ; xpto the solution x� of (1.1). Then the (p + 1)-th approximation xp+1 of x� 
an be
al
ulated by xp+1 =Xi Eixi;p (1.2)with xi;p being either xp for i =2 J(p) or the solution of the sub-system of linear equationsMixi;p = Nixsi(p) + b (1.3)for i 2 J(p).2. Asyn
hronous Nested Matrix Multisplitting MethodsFor the purpose of establishing our new methods, we �rst introdu
e the following
on
ept: A 
olle
tion (Mi : Fi; Gi;Ni;Ei) (i = 1; 2; � � � ; �) is 
alled a two-level multi-splitting of a matrix A 2 L(Rn) if (Mi; Ni; Ei) (i = 1; 2; � � � ; �) is a multisplitting ofit and Mi = Fi � Gi;det(Fi) 6= 0(i = 1; 2; � � � ; �). Based on this 
on
ept, by solving
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h of the sub-system of linear equations (1.3) with an inner iteration method again,we 
an set up the following asyn
hronous nested matrix multisplitting method for thesystem of linear equations (1.1):METHOD I: Suppose that we have got approximations x0; x1; � � � ; xp to the so-lution x� of (1.1). Then the (p+ 1)-th approximation xp+1 of x� 
an be 
al
ulated by(1.2) and xi;p = ( xi;p;mi;p ; for i 2 J(p),xp; for i =2 J(p); (2.1)where ea
h xi;p;mi;p is determined by the following formulae with the starting pointxi;p;0 = xsi(p):xi;p;m+1 = F�1i Gixi;p;m + F�1i (Nixsi(p) + b); m = 0; 1; � � � ;mi;p � 1; (2.2)while fmi;pgp2N0(i = 1; 2; � � � ; �) are in�nite positive integer sequen
es, whi
h may bedetermined either expli
itly in advan
e or impli
itly in the implementing pro
ess of themethod.Obviously, this method 
overs the ALGORITHM in the previous se
tion 
ited from[6℄ as well as the methods proposed in [8℄{[10℄.By substituting (2.1){(2.2) into (1.2), we 
an equivalently express Method I asxp+1 = Xi2J(p)Ei��F�1i Gi�mi;p + mi;p�1Xj=0 �F�1i Gi�jF�1i Ni�xsi(p) + Xi=2J(p)Eixp+ Xi2J(p)Ei mi;p�1Xj=0 �F�1i Gi�jF�1i b: (2.3)As a matter of fa
t, there are various kinds of two-level multisplittings. For example,if in the two-level multisplitting (Mi : Fi; Gi;Ni;Ei) (i = 1; 2; � � � ; �) of the matrixA 2 L(Rn), for ea
h i 2 f1; 2; � � � ; �g, we parti
ularly take Fi = Di�Li, Di = diag(Mi)with det(Di) 6= 0 and Gi = Ui, where Li 2 L(Rn) is stri
tly lower triangular andUi 2 L(Rn) is zero-diagonal, satisfying Mi = Di � Li � Ui(i = 1; 2; � � � ; �), then anew two-level multisplitting (Mi : Di � Li; Ui;Ni;Ei) (i = 1; 2; � � � ; �) of the matrixA is obtained. Based on this spe
ial two-level matrix multisplitting, Method I 
an beimmediately formulated as the following form:METHOD II: Suppose that we have got approximations x0; x1; � � � ; xp to thesolution x� of (1.1). Then the (p + 1)-th approximation xp+1 of x� 
an be 
al
ulatedby (1.2) and (2.1), where ea
h xi;p;mi;p is determined by the following formulae8>>>><>>>>: xi;p;0 = xsi(p);xi;p;m+1 = (Di � rLi)�1[(1� !)Di + (! � r)Li+!Ui℄xi;p;m + (Di � rLi)�1!(Nixsi(p) + b);m = 0; 1; � � � ;mi;p � 1 (2.4)
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h i 2 J(p). The meanings of the sequen
es fmi;pgp2N0 (i = 1; 2; � � � ; �) are thesame as in Method I, while r 2 [0;1) is 
alled a relaxation fa
tor and ! 2 (0;1) ana

eleration fa
tor.Sin
e the sub-system of linear equations (1.3) is solved for ea
h i 2 f1; 2; � � � ; �g byan a

elerated overrelaxation (AOR) method, we 
all Method II as asyn
hronous nestedmatrix multisplitting AOR method (ANMM-AOR method). When the relaxation pa-rameter pair (r; !) is spe
ially 
hosen to be (!; !), (1,1) and (0,1), et
., the 
orrespond-ing methods resulted from (1.2), (2.1) and (2.4) are 
alled as asyn
hronous nestedmatrix multisplitting SOR method (ANMM-SOR method), asyn
hronous nested ma-trix multisplitting Gauss-Seidel method (ANMM-GS method) and asyn
hronous nestedmatrix multisplitting Ja
obi method (ANMM-J method) and so on, respe
tively.Analogously, by substituting (2.4) and (2.1) into (1.2), and making use of the ex-pressionsLi(r; !) = (Di � rLi)�1[(1� !)Di + (! � r)Li + !Ui℄; i = 1; 2; � � � ; �; (2.5)Method II 
an be simply written asxp+1 = Xi2J(p)Ei��Li(r; !)�mi;p + mi;p�1Xj=0 �Li(r; !)�j!(Di � rLi)�1Ni�xsi(p)+ Xi=2J(p)Eixp + Xi2J(p)Ei mi;p�1Xj=0 �Li(r; !)�j(Di � rLi)�1!b: (2.6)In order to set up the 
onvergen
e theories of the above two asyn
hronous nestedmatrix multisplitting methods, we need to de�ne the in�nite number sequen
e fmlgl2N0in a

ordan
e with the following rule: m0 is the least positive integer su
h that[0�s(p)�p<m0 J(p) = f1; 2; � � � ; �g;in general, ml+1 is the least positive integer su
h that[ml�s(p)�p<ml+1 J(p) = f1; 2; � � � ; �g; l = 0; 1; 2; � � � ;where s(p) = mini si(p). Evidently, s(p) � p. Sin
e limp!1 si(p) = 1, we obviously havelimp!1 s(p) =1. For the meaning of the sequen
e fmlgl2N0 , one 
an see [6℄ for detail.3. Con
epts and LemmasWe adopt the notations and 
on
epts used in [2℄{[3℄, [6℄ and [10℄{[12℄. The followinglemma, having been 
on�rmed in [10℄, summarizes relations between di�erent splittingsand results on 
onvergen
e properties of these splittings.Lemma 1. Let A = B �C be a splitting.
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hronous Nested Matrix Multisplitting Methods for Linear Systems 579a) If the splitting is regular or weak regular, then �(B�1C) < 1 i� A�1 � 0.b) If the splitting is an M -splitting, then �(B�1C) < 1 i� A is an M -matrix.
) If the splitting is an H-splitting, then A and B are H-matri
es and it holds that�(B�1C) � �(hBi�1jCj) < 1.d) If the splitting is an M -splitting, then it is a regular splitting.e) If the splitting is an M -splitting and A is an M -matrix, then it is an H-splittingand also an H-
ompatible splitting.f) If the splitting is an H-
ompatible splitting and A is an H-matrix, then it is anH-splitting and thus 
onvergent.De�ne nonnegative diagonal matrix sequen
es fI(1)p gp2N0 and fI(2)p gp2N0 2 L(Rn)by I(1)p = Xi2J(p)Ei and I(2)p = Xi=2J(p)Ei (p = 0; 1; 2; � � �), with Ei (i = 1; 2; � � � ; �) beingthe weighting matri
es, i.e., Ei � 0 (i = 1; 2; � � � ; �) are diagonal and satisfyXi Ei = I.Then in light of [6℄{[7℄ we know that the following lemmas hold.Lemma 2. Let x 2 Rn be a positive ve
tor(x > 0). If the sequen
e f"pgp2N0satis�es j"p+1j � I(1)p x+ I(2)p j"pj; p = 0; 1; 2; � � � :Then for any nonnegative integer q � p� 1,j"p+1j � �I � pYj=p�q�1 I(2)j �x+ pYj=p�q�1 I(2)j j"p�q�1j:Lemma 3. Let m�1 = 0 and I(l) = ml�1Qp=ml�1 I(2)p (l = 0; 1; 2; � � �). Then for anypositive ve
tor x 2 Rn, there exists f
(l)gl2N0 2 [0; 
℄ � [0; 1) su
h that I(l)x � 
(l)x(l =0; 1; 2; � � �). 4. Convergen
e Analysis of Method IBe
ause the 
oeÆ
ient matrix in (1.1) is nonsingular, there exists a unique x� 2 Rnsu
h that Ax� = b. Noti
ing the de�nition of Method I in se
tion 2, a

ording to (2.3)we easily know that the following relation holds:x� = Xi2J(p)Ei��F�1i Gi�mi;p + mi;p�1Xj=0 �F�1i Gi�jF�1i Ni�x� + Xi=2J(p)Eix�+ Xi2J(p)Ei mi;p�1Xj=0 �F�1i Gi�jF�1i b: (4.1)Let "p denote the error ve
tor "p = xp � x�, by subtra
ting (4.1) from (2.3) we seethat f"pgp2N0 should satisfy"p+1 = Xi2J(p)EiTi;p"si(p) + Xi=2J(p)Ei"p; (4.2)



580 Z.Z. BAI, D.R. WANG AND D.J. EVANSwhereTi;p = �F�1i Gi�mi;p + mi;p�1Xj=0 �F�1i Gi�jF�1i Ni; i = 1; 2; � � � ; �; p 2 N0: (4.3)Evidently, if j"pj ! 0 as p!1, then we 
an 
on
lude the 
onvergen
e of Method I. Inthe remainder of this se
tion, we will verify this fa
t by 
onsidering two 
ases of (1.1):A 2 L(Rn) is a monotone matrix and an H-matrix, respe
tively.4.1 Monotone matrix 
aseTheorem 4.1. Let A 2 L(Rn) be a monotone matrix, and (Mi : Fi; Gi;Ni;Ei)(i =1; 2; � � � ; �) be a two-level multisplitting of it with A = Mi � Ni (i = 1; 2; � � � ; �) beingregular and Mi = Fi �Gi (i = 1; 2; � � � ; �) weak regular. Then, for any starting ve
torx0 2 Rn, the iterative sequen
e fxpgp2N0 generated by Method I 
onverges independentlyof the sequen
es fmi;pgp2N0 to the unique solution x� of the system of linear equations(1:1).Proof. Sin
e A 2 L(Rn) is a monotone matrix, we see that for any positive ve
toru 2 Rn, there exists a positive ve
tor v 2 Rn su
h that Av = u. Sin
e A =Mi�Ni(i =1; 2; � � � ; �) are regular splittings, v�M�1i Niv =M�1i Av =M�1i u > 0 (i = 1; 2; � � � ; �).Moreover, as Mi = Fi �Gi (i = 1; 2; � � � ; �) are weak regular splittings, we haveM�1i = (I � F�1i Gi)�1F�1i ; i = 1; 2; � � � ; �: (4.4)Now, from (4.3) we know that Ti;p(i = 1; 2; � � � ; �;8p 2 N0) are nonnegative andTi;p = �F�1i Gi�mi;p + mi;p�1Xj=0 �F�1i Gi�j(I � F�1i Gi)M�1i Ni= I � �I � �F�1i Gi�mi;p�M�1i A: (4.5)Through substituting (4.4) into (4.5) and making use of the identity�I � �F�1i Gi�mi;p�(I � F�1i Gi)�1 = mi;p�1Xj=0 (F�1i Gi)j ;we obtain Ti;p = I � mi;p�1Xj=0 (F�1i Gi)jF�1i A:Therefore, we haveTi;pv = v � mi;p�1Xj=0 (F�1i Gi)jF�1i u = v � F�1i u� mi;p�1Xj=1 (F�1i Gi)jF�1i u� v � F�1i u; i = 1; 2; � � � ; �:
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ause of F�1i u > 0 (i = 1; 2; � � � ; �), we see that v � F�1i u < v (i =1; 2; � � � ; �). Hen
e, there exists a � 2 [0; 1) su
h that v � F�1i u � �v (i = 1; 2; � � � ; �),whi
h further implies thatTi;pv � �v; i = 1; 2; � � � ; �; 8p 2 N0: (4.6)Based on (4.2){(4.3) and (4.6), we see that on
e we generally supposej"tj � �v; t = 0; 1; � � � ; p (4.7)for some � 2 [0;1), it holds thatj"p+1j � Xi2J(p)EiTi;pj"si(p)j+ Xi=2J(p)Eij"pj � Xi2J(p)EiTi;p�v + Xi=2J(p)Eij"pj� �� Xi2J(p)Eiv + Xi=2J(p)Eij"pj;or j"p+1j � ��I(1)p v + I(2)p j"pj; (4.8)where we have used the fa
ts si(p) � p and j"si(p)j � �v for i = 1; 2; � � � ; �.As a matter of fa
t, we 
an always admit that the initial error ve
tor "0 satis�esj"0j � Æv (4.9)for some suitably 
hosen Æ 2 (0;1). Up to now, the proof of the theorem 
an beful�lled in three parts by making use of (4.7){(4.9).Part I. j"pj � Æv, 8p 2 N0. Evidently, by indu
tion this fa
t 
an be immediatelyveri�ed beginning from (4.9) and making use of the observation (4.8).Part II. j"pj � �lv, 8p � ml, where ��1 = Æ, �l = (� + (1 � �)
(l))�l�1 (l =0; 1; 2; � � �), and the sequen
e f
(l)gl2N0 is de�ned in Lemma 3. In fa
t, for l = 0, byLemma 2 and (4.7){(4.8) with � = Æ, we obtainj"pj � �I(1)p Æv + I(2)p j"p�1j � �I � p�1Yj=0 I(2)j ��Æv + p�1Yj=0 I(2)j j"0j:A

ording to (4.9) and Lemma 3, we havej"pj � �I � p�1Yj=0 I(2)j ��Æv + p�1Yj=0 I(2)j Æv = ��I + (1� �) p�1Yj=0 I(2)j �Æv� (�I + (1� �)I(0))Æv � (� + (1� �)
(0))Æv = �0v:This shows that j"pj � �lv(8p � ml) is valid for l = 0. Now, suppose that j"pj ��lv(8p � ml) is true for l � 1. Then by using Lemmas 2 and 3 and starting from(4.7){(4.8) with � = �l, we get for p � ml+1 thatj"pj � �I(1)p �lv + I(2)p j"p�1j � �I � p�1Yj=ml I(2)j ���lv + p�1Yj=ml I(2)j j"ml j



582 Z.Z. BAI, D.R. WANG AND D.J. EVANS� �I � p�1Yj=ml I(2)j ���lv + p�1Yj=ml I(2)j �lv:Similar to the above derivation for l = 0, we 
an also 
on
lude that j"pj � �l+1v(8p �ml+1). By indu
tion, we have proved the 
on
lusion.Part III. j"pj �! 0 (p �! 1). To test this fa
t, we let �(l) = � + (1 � �)
(l) (l =0; 1; 2; � � �). Clearly, for l = 0; 1; 2; � � �, it holds that �(l) 2 [0; �℄ with � = �+(1��)
 < 1and �l+1 = �(l+1)�l with �0 = �(0)Æ. Sin
e�l+1 = �(l+1)�l = � � � = l+1Yj=0�(j)Æ � �l+2Æ �! 0 (l �!1);by taking limits on both sides of the inequality in Part II, we immediately obtainj"pj �! 0 (p �!1).An important 
ase of Theorem 4.1 is the following 
onvergen
e theory about theALGORITHM proposed in [6℄ for monotone matrix.Theorem 4.2. Let A 2 L(Rn) be a monotone matrix, and (Mi; Ni; Ei) (i =1; 2; � � � ; �) be a multisplitting of it with A =Mi�Ni(i = 1; 2; � � � ; �) being weak regular.Then, for any starting ve
tor x0 2 Rn, the iterative sequen
e fxpgp2N0 generated bythe ALGORITHM 
onverges to the unique solution x� of the system of linear equations(1:1).4.2 H-matrix 
aseTheorem 4.3. Let A 2 L(Rn) be an H-matrix, and (Mi : Fi; Gi;Ni;Ei) (i =1; 2; � � � ; �) be a two-level multisplitting of it with both A = Mi � Ni (i = 1; 2; � � � ; �)and Mi = Fi �Gi (i = 1; 2; � � � ; �) being H-
ompatible splittings. Then, for any start-ing ve
tor x0 2 Rn, the iterative sequen
e fxpgp2N0 generated by Method I 
onvergesindependently of the sequen
es fmi;pgp2N0 to the unique solution x� of the system oflinear equations (1:1).Proof. By Lemma 1 f), A =Mi�Ni(i = 1; 2; � � � ; �) are H-splittings. From Lemma1 
), we see that Mi(i = 1; 2; � � � ; �) are H-matri
es. Therefore,hAi = hMii � jNij; i = 1; 2; � � � ; � (4.10)are M -splittings. Similarly, we know that Fi(i = 1; 2; � � � ; �) are H-matri
es andhMii = hFii � jGij; i = 1; 2; � � � ; � (4.11)are also M -splittings.Now, from (4.3), for i = 1; 2; � � � ; � and p 2 N0, we 
an obtain the following esti-mates: jTi;pj � �hFii�1jGij�mi;p + mi;p�1Xj=0 �hFii�1jGij�jhFii�1jNij: (4.12)De�ne T̂i;p = �hFii�1jGij�mi;p + mi;p�1Xj=0 �hFii�1jGij�jhFii�1jNij: (4.13)
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onsider the sequen
e f"̂pgp2N0 generated by"̂0 = j"0j � jx0 � x�j; "̂p+1 = Xi2J(p)EiT̂i;p"̂si(p) + Xi=2J(p)Ei"̂p; p = 0; 1; 2; � � � : (4.14)By 
omparing (4.13) and (4.14) with (4.3) and (4.2), and 
onsidering (4.10){(4.11),following the proof pro
ess of Theorem 4.1 we 
an immediately 
on
lude that underthe 
onditions of this theorem, "̂p �! 0 as p �!1.On the other hand, by indu
tion we 
an provej"pj � "̂p; p = 0; 1; 2; � � � : (4.15)In fa
t, when p = 0 (4.15) is obviously true. Suppose that (4.15) is true for p =0; 1; 2; � � � ; t. Then si(t) � t (i = 1; 2; � � � ; �) dire
tly give the estimatesj"si(t)j � "̂si(t); i = 1; 2; � � � ; �: (4.16)Now, for p = t+1, from (4.2) and (4.12){(4.14) as well as (4.16), by dire
t 
al
ulationswe getj"t+1j � Xi2J(t)EijTi;tjj"si(t)j+ Xi=2J(t)Eij"tj � Xi2J(t)EiT̂i;t"̂si(t) + Xi=2J(t)Ei"̂t = "̂t+1;whi
h shows (4.15) is also true for p = t+ 1.5. Convergen
e Analysis of Method IIAnalogous to se
tion 4, we know that the error ve
tor sequen
e f"pgp2N0 
orre-sponding to Method II satis�es"p+1 = Xi2J(p)EiTi;p(r; !)"si(p) + Xi=2J(p)Ei"p; (5.1)where 8><>: Ti;p(r; !) = �Li(r; !)�mi;p + mi;p�1Pj=0 �Li(r; !)�j!(Di � rLi)�1Ni;i = 1; 2; � � � ; �; p 2 N0: (5.2)Clearly, to prove the 
onvergen
e of Method II, we only need to verify j"pj ! 0 asp !1. Be
ause the test of this fa
t is similar to the 
orresponding one of Method I,here, we only use the 
onvergen
e theory for the H-matrix 
ase as an example to showits proving skeleton, while for the 
ompletion of the 
onvergen
e theory of Method II,we also list its 
onvergen
e theorem for the monotone matrix 
ase but omit its proof.Theorem 5.1. Let A 2 L(Rn) be a monotone matrix, and (Mi : Di�Li; Ui;Ni;Ei)(i = 1; 2; � � � ; �) be a two-level multisplitting of it with A =Mi�Ni (i = 1; 2; � � � ; �) beingregular and Di � 0, Li � 0, Ui � 0 (i = 1; 2; � � � ; �). Then, for any starting ve
tor x0 2Rn, the iterative sequen
e fxpgp2N0 generated by Method II 
onverges independently of
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es fmi;pgp2N0 to the unique solution x� of the system of linear equations(1:1) provided the relaxation parameters r and ! satisfy 0 � r � !; 0 < ! � 1.Theorem 5.2. Let A 2 L(Rn) be an H-matrix with D = diag(A) and B = D�A.Assume that (Mi : Di � Li; Ui;Ni;Ei) (i = 1; 2; � � � ; �) is a two-level multisplitting ofthe matrix A with A =Mi �Ni (i = 1; 2; � � � ; �) being H-
ompatible splittings,hMii = jDij � jLij � jUij; i = 1; 2; � � � ; � (5.3)and diag (Mi) = Di = D; i = 1; 2; � � � ; �: (5.4)Then, for any starting ve
tor x0 2 Rn, the iterative sequen
e fxpgp2N0 generated byMethod II 
onverges independently of the sequen
es fmi;pgp2N0 to the unique solutionx� of the system of linear equations (1:1) provided the relaxation parameters r and !satisfy 0 � r � !; 0 < ! < 2=(1 + �(jDj�1jBj)): (5.5)Proof. In light of Lemma 1 f) we know that Mi (i = 1; 2; � � � ; �) are H-matri
es.Let Ci = Di �Mi; i = 1; 2; � � � ; �; (5.6)by (5.3){(5.4) we easily see thatjCij = jLij+ jUij; i = 1; 2; � � � ; �: (5.7)Be
ause (Di � rLi) (i = 1; 2; � � � ; �) are H-matri
es, we havej(Di � rLi)�1j � hDi � rLii�1 = (jDij � rjLij)�1; i = 1; 2; � � � ; �: (5.8)Moreover, for the matri
es Li(r; !) (i = 1; 2; � � � ; �) de�ned by (2.5), we have thefollowing estimates:jLi(r; !)j � j(Di � rLi)�1j[j1� !jjDij+ (! � r)jLij+ !jUij℄� (jDij � rjLij)�1[j1� !jjDij+ (! � r)jLij+ !jUij℄ := L̂i(r; !): (5.9)Presently, by (5.8){(5.9) we 
an obtain from (5.2) thatjTi;p(r; !)j � jLi(r; !)jmi;p + mi;p�1Xj=0 jLi(r; !)jj!(jDij � rjLij)�1jNij� �L̂i(r; !)�mi;p + mi;p�1Xj=0 �L̂i(r; !)�j!(jDij � rjLij)�1jNij (5.10)holds for ea
h i 2 f1; 2; � � � ; �g.De�neT̂i;p(r; !) = �L̂i(r; !)�mi;p + mi;p�1Xj=0 �L̂i(r; !)�j!(jDij � rjLij)�1jNij; (5.11)
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onsider the sequen
e f"̂pgp2N0 yielded by"̂0 = j"0j � jx0 � x�j; "̂p+1 = Xi2J(p)EiT̂i;p(r; !)"̂si(p) + Xi=2J(p)Ei"̂p: (5.12)For i = 1; 2; � � � ; �, let8>>>>>>><>>>>>>>:
A(!) = 1�j1�!j! jDj � jBj;Mi(!) = 1�j1�!j! jDj � jCij;Ni(!) = jNij;Fi(r; !) = 1! (jDj � rjLij);Gi(r; !) = 1! [j1� !jjDj+ (! � r)jLij+ !jUij℄: (5.13)Then it obviously holds that8>>>>>><>>>>>>: A(!) =Mi(!)�Ni(!);Mi(!) = Fi(r; !) � Gi(r; !);L̂i(r; !) = Fi(r; !)�1Gi(r; !);T̂i;p(r; !) = �L̂i(r; !)�mi;p + mi;p�1Pj=0 �L̂i(r; !)�jFi(r; !)�1Ni(!): (5.14)Sin
e A 2 L(Rn) is an H-matrix, we have �(jDj�1jBj) < 1. Noti
ing the varyingregion (5.5) of the relaxation parameter pair (r; !), we see that A(!) 2 L(Rn) is anM -matrix. Furthermore, asjCij = jDj � hMii = jDj � (hAi + jNij) = jBj � jNij � jBj; i = 1; 2; � � � ; �;in a

ordan
e with [13, 2.4.10℄ we know that Mi(!) 2 L(Rn) (i = 1; 2; � � � ; �) are M -matri
es, too. Therefore, both A(!) =Mi(!)�Ni(!) andMi(!) = Fi(r; !)�Gi(r; !)are M -splittings for i = 1; 2; � � � ; � under the 
onditions of this theorem. By makinguse of Theorem 4.1, we know that "̂p �! 0 as p �!1.Similar to the proof of Theorem 4.3, we 
an also 
on�rm that f"̂pgp2N0 is a majoriz-ing sequen
e of f"pgp2N0 de�ned by (5.1){(5.2), i.e., j"pj � "̂p (p = 0; 1; 2; � � �). Hen
e,we �nally obtain "p �! 0(p �!1).6. Numeri
al ResultsFor a given positive integer en, let n = en2 and 
onsider the system of linear equations(1.1) with 8><>: A = Blo
kTridiag(�I; eB;�I) 2 L(Rn);eB = tridiag(�1; 4;�1) 2 L(R~n);b = (10; 10; � � � ; 10)T 2 Rn:This example naturally 
omes from the �nite di�eren
e dis
retization of a Diri
hletproblem on the unit square [0; 1℄ � [0; 1℄; see [11℄ and [13℄ for details. This system oflinear equations is solved by the ANMM-AOR method and ANMM-SOR method.
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omputations, with (2� � 1) positive integers n1; n2; � � � ; n2��1 satisfyingnk = ken2��1 (k = 1; 2; � � � ; 2�� 1) we let pro
essor i solve the variables xj(j = enn2i�3 +1; enn2i�3 + 2; � � � ; enn2i). Here, we stipulate that n�1 = 0 and n2� = en. The inneriteration numbers are taken to bemi;p � mip (i = 1; 2; � � � ; �; p 2 N0), and the splittingand the weighting matri
es are taken to be Ni =Mi �A andMi = diag( ~nn2i�3z }| {4I; � � � ; 4I; ~n(n2i�n2i�3)z }| {eB; � � � ; eB ; 4I; � � � ; 4I);Ei = diag( ~nn2i�3z }| {0; � � � ; 0; ~n(n2i�n2i�3)z }| {�~nn2i�3+1I; � � � ; �~nn2iI; 0; � � � ; 0);Li = the stri
tly lower triangular matrix of (�Mi);Ui = the stri
tly upper triangular matrix of (�Mi);respe
tively, where �j = 8><>: 0:5; if enn2i�3 + 1 � j � enn2i�2;1:0; if enn2i�2 + 1 � j � enn2i�1;0:5; if enn2i�1 + 1 � j � enn2i:We remark that this system of linear equations and this two-level multisplitting of thematrix A 2 L(Rn) satisfy all the theoreti
al hypotheses made in the previous se
tions.The parallel 
omputer used is the SGI Power Challenge multipro
essor lo
ated inOxford University Computing Laboratory. Computations are done 
orresponding ton = 6400, and various pro
essor numbers � and relaxation parameter pairs (r; !). Allour 
omputations are started from an initial ve
tor having all 
omponents equal to�100, and terminated on
e the 
urrent iterations xp obey kAxp � bk1kAx0 � bk1 � 10�7 or thestopping 
riterion is not satis�ed after 8000 iteration steps. For � = 4, the 
orrespond-ing sequential CPU time (CPU) in se
onds and parallel speed-up (SP) are listed in thefollowing numeri
al tables. Here, the SP is de�ned to be the ratio of the sequential CPUto the 
orresponding parallel runnings. We remark that the parallel CPU time is notlisted in the numeri
al tables sin
e it 
an be easily obtained by dividing the sequentialCPU by the 
orresponding parallel SP. From our 
omputations we see that suitable
hoi
es of the relaxation parameters r and ! 
an greatly a

elerate the 
onvergen
erates of the relaxation methods, and the asyn
hronous nested matrix multisplittingrelaxation methods have better numeri
al behaviour than the ordinary asyn
hronousmultisplitting relaxation methods. Moreover, the asyn
hronous nested matrix multi-splitting AOR method has larger 
onvergen
e domain than the asyn
hronous nestedmatrix multisplitting SOR method, and the 
onvergen
e rate of the former is, in gen-eral, moderately faster than that of the later. Evidently, the numeri
al results further
on�rm the theories established in the previous se
tions, and also show that our newmethods are feasible and eÆ
ient for solving the system of linear equations (1.1) on thehigh-speed multipro
essor systems.



On the Convergen
e of Asyn
hronous Nested Matrix Multisplitting Methods for Linear Systems 587Table I: ANMM-SOR method! 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6CPU 235.1 184.8 178.7 165.3 168.8 118.1 1 1 1mip=1 SP 3.1 3.1 3.1 3.1 3.2 3.1 { { {CPU 203.3 159.9 160.5 153.9 146.7 128.3 189.7 1 1mip=2 SP 3.0 3.1 3.1 3.2 3.1 3.1 3.2 { {CPU 176.6 161.7 162.2 156.5 157.6 148.7 167.2 1 1mip=3 SP 3.3 3.1 3.1 3.1 3.2 3.1 3.1 { {CPU 178.7 171.3 175.1 159.8 166.1 161.3 171.3 163.0 171.6mip=4 SP 3.1 3.1 3.0 3.1 3.2 3.1 3.2 3.2 3.1CPU 200.9 183.1 188.9 177.9 173.3 179.6 194.7 196.1 1mip=5 SP 3.1 3.1 3.1 3.1 3.2 3.1 3.2 3.2 {Table II: ANMM-AOR methodr 1.0 1.1 1.2 1.3 1.4 1.1 1.2 1.2 1.1! 0.8 0.9 1.0 1.1 1.2 1.3 1.4 1.5 1.6CPU 220.2 176.4 149.8 119.4 111.3 119.3 1 1 1mip=1 SP 3.0 3.1 3.3 3.1 3.1 3.1 { { {CPU 164.7 139.2 121.4 116.4 102.5 117.4 115.7 151.2 146.1mip=2 SP 3.1 3.1 3.1 3.1 2.9 3.1 3.2 3.2 3.1CPU 155.4 154.1 132.7 150.3 147.7 126.7 134.8 105.3 1mip=3 SP 3.0 3.1 3.1 3.1 3.1 3.1 3.2 3.2 {CPU 173.4 163.4 151.7 152.8 154.7 164.2 157.4 134.7 159.3mip=4 SP 3.1 3.1 3.2 3.1 3.2 3.1 3.2 3.2 3.1CPU 189.1 182.5 177.2 178.3 175.4 181.1 183.7 172.3 193.2mip=5 SP 3.1 3.1 3.1 3.1 3.2 3.1 3.2 3.2 3.1A
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