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Abstract

In this paper, spectral and pseudospectral methods are applied to both time
and space variables for parabolic equations. Spectral and pseudospectral schemes
are given, and error estimates are obtained for approximate solutions.
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1. Introduction

In recent years, it has been shown that spectral methods are very useful to solve
partical differential equations. Spectral methods, in which the approximate solution
is a polynomial of high degree, are known to be very accurate when the solution to
be approximated is very smooth (see [2] for details). Using spectral methods to time-
dependent partical differential equations, a standard scheme is done in space only,
while finite difference is done in time (the same to finite element method, too). Hence,
no matter how smooth the exact solution is, in general, the error order in time can
not be raised. The error in time decide the global error of the approximate solution.
Many efforts have been made on the discretization in time, for instance, in [6] and [7]
discontinuous Galerkin method in time is studied for parabolic equations. Recently, I.
Babuska and T. Janikl® discussed the p-version of finite element method in time for
parabolic equations. In [4] and [5] H.T. Ezer has proposed spectral methods in time
using polynomial approximation of the evolution operator in Chebyshev least-squares
sense for parabolic equations and hyperbolic equations. In this paper, for convenience
we use the spectral methods in both space and time variables. If we use the finite
element method in space, some parallel conclusions can also been obtained.

2. Variational Principle

Let I = (—1,1), D =[0,27], @ = D x I. For convenience we consider the following
model problem

Ut — Uy +u = f(z,t), inQ (2.1)
u(z,t) = u(z + 2m,t), (2.2)
u(z,—1) =g(z). inD (2.3)
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k
Remark 1. If f € H*2(Q), g € H5+2(D), from regularity of solutions of parabolic

k
equations, the solution u(z,t) of (2.1)-(2.3) is in H*™2211(Q).
Let (-,-) and | - || denote respectively the inner product and the norm in L?(I),
H]"(D) denote the m order periodic Sobolev space with the norm ||ul|,,, X = L*(I; Hy (D))

1
with the norm ||ulx = (/ lulldt)*, € = {v € C=(Q)|v(w,t) € C(D), ¥t € I,
1

v(z,1) = 0}, and Y denote the complete space of C’g with respect to the norm
1

folly = ( f (el + ol)de) ®, where
| [puezdz|
o = sup HBUE

ceri(p)  llzlh

Let us define on X x Y the bilinear form
B(u,v) = // (—ul; + ugUy + uv)dedt, Yue X, wveY.
1D

Let F € Y'. We consider the following variational problem P: find ug in X such that
B(up,v) = F(v), YveY. (2.4)

It is similar to problem P in [3] in proof, we obtain theorem 1 for the problem P.
Theorem 1. Problem P has a unique solution ug in X and there exists a constant
C independent of ug and F such that

l[uollx < ClFlly.
1 .
Proof. Let /\§ =241, u; = Ee”x, j=0,£1,42 --- then /\§, u; respectively
2

d

denote eigenvalue and eigenvector of an operator A = —W—FI , and span{u;} C H; (D)
x

is dense in H; (D). Let u € X, v €Y, then u and v can be written in the form

o0
U= Z oz] u], Z ﬁ] u],

j=—00 j=—00
with
1
||uHX—(/ S Ay (1) (1)),
]__OO
1
ol = ([ 35 052 18500 P +331 5,0) Pyar).
j=—o00

and B(u,v) can also be written as follows

o

B(u,v):/I( > (0B + MayB;) ) dt = /( Z Aoy (<3518 + A B) ) dt

j=—o0 j=—o0
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By Schwarz inequality we have

L = oo 1
| B(u,v) y</( S 2|y V2SS 107 N 2 ) Pt
j=—00 j=—00
1 [ee] 1
/ Z X[ ay 2 dt)? ( /1 S° 1AL+ A P dr)?
_ =00
S\fHuHX [lfly - (2.5)
Let T denote a mapping from X into Y such that for any u = Z aj(thu; € X,
j=—00

v=Tu= i Bj(t)u; € Y, B;(t) satisfy

j=—o0_ _
—XUB() 4+ A B(t) = Nja(t),  Bi(1) = 0,5 =0,£1, 42,
Then

Tl = [ 3 O 18 P 1 P < [ 30 1A A Pt <l

j=—o00 Jj=—00
Hence T is a continuous linear operator, and

inf Sup | B(u,v) |> inf | B(u,Tu) |=1.
ueX ueX
llullx= 1||U||y<1 flullx=1

Similarly,

1nf sup | B(u,v) |>

2%
IIUIIY 1||u||X<l

ol

Using now theorem 5.2.1 in [1], theorem 1 is proved.
Remark 2. If F(v) = / g(z)v(z, —1)dx + // f(z,t)v(x,t)dzdt, then the solu-
D 1Jp

tion ug of the variational problem P is a weak solution of (2.1)-(2.3).

3. Spectral Approximation of Variational Problem P.

1
V2m
o) ~
| k< M} VN={p € V; p(1) = 0}. We denote by Py;: L*(D) — Sy the orthogonal
project operator on Sys in L?(D) and Py: L%*(I) — Vy the orthogonal project operator
°)
on Viy in L2(I). Set W = Viy_1 x Sy, U =V y xSy. Obviously, W € X, U C Y.

We construct the following spectral scheme for the variational problem P: find w,
in W such that

ezkm7

Let Vi denote the set of polynomials of degree N, Sy = span{uk =

B(up,v) = F(v), Yvel. (3.1)
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Let w € W and v € U, then

where o(t) € Vy_1, B;(t) €V, and

M
Bluw) = [ 30 Ny 0) + 5 ().
Iy

We define a linear operator 7, from W into U which satisfies that for any u =
M M

°)
Z ajtyuj e W, v="Thu = Z Bi(t)u; € U, B;(t) €V n satisfy
j=-M j=-M

/I(—A;lﬁ;- M B))zdt = )\j/lozjzdt, Vze Vo, |j < M. (3.2)

Obviously, the solution of the variational problem is existent. Taking z = Py_1 (—)\]-_1
B(t) + A\;B;(t)) in (3.2), we have

/I(—Aj—lﬂ; + N8 Pr—1(=A; B + N Bj)dt = A, /1 a;Pn—1(=A; "B} + \;B,)dt
:Aj/laj(—A;%; + A;B,)dt. (3.3)
Taking z = A\;@; in (3.2) again, we have
)\j/I(—)\j_lﬁ;- N B))adt = /IA§ oy 2 dt. (3.4)
Therefore, combining (3.3) and (3.4), we obtain
/1 | Pya(—A7285 4+ M) [P dt = /IA§ oy 2 dt. (3.5)

N °)
Let Bj(t) = > c¢jiLi(t), where L;(t) is the ith Legendre polynomial. By 3;(t) €V, we
i=0

have

N

D cji=0

i=0
Hence

N-1
CjN = — Z Cji-

But =0

2| cji |?
2 216Gl

Bi(t) |2 dt = E

/' 5] 2i+1"7

=0
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[P a-y 2ok
g N - 2% +1°

=0

Thus from (3.5), we get

_ 207 | w2
EA|—AJH%+mMﬁjth::£A§|adet+—jivﬁ}r—
Because
N-1 N-1 2 N—1 4. 2
2 2 ¢ji | 2i+1 N 9
e P=| E e < X 5950 S 2= =5 [ 1w, Pt
- ‘ i=0 oo 2+l i 2 2 Jr
ence
/!—16+%@Pﬁ</ﬁ\%Fﬁ+MH&/L%1@\ﬁ

2 2 —1 1 2
< [ Vo P g [P0 64 ) P
N2
= (1 2 12 dt.
(+2N+1)A&|%|dt
Summing up for j from —M to M for above inequality, we have
M 2 M
- N (N +1)2
1 2 2 2
2\ 145 ey t < (1 2 ) = 7
f; 2 1=t P ( +2N+1)/1j;MAJ|ay| dt = 5=l
Thus

M M
Tl = ) 3 (=378 P 1 i< [ 30 135785+ 0,0
. jz—M

(N+1)
< - 7
= 2N +1 lullk-

Hence, we obtain

. . Tyu V2N +1
> >
il sw | Bz b [Blugpis)|z Fo o 69)
llullx=1jv||y <1 flullx=1
By (2.5) and (3.6),we have
YoeU, v#0, sup |B(u,v)|>0. (3.7)
uceW

Using theorem 6.2.1 in [1], we know that the spectral approximation of the problem P
has a unique solution u, and

2(N +1)y .
( i) lélf |luo — vl x-

_ < S
o — wpllx < (14 Z==) int
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Finally, taking v = Pny_1 ng ug in (3.8), using the estimates of Py_; and ]SM in [2],
we obtain

k
Theorem 2. If f(z,t) € H*2(Q), g(z) € HEY2(D). Then there exists a unique
solution w, for spectral scheme and

k
2

L (k+1)
[uo — upllx < C(NZM + N )(HfHk% + llgllk+2),

where C' is a constant independent of N, M, f and g.
4. Pseudospectral Approximation of Variational Problem P.

In this section, first we consider problem (2.1)-(2.3) with homogeneous initial value

o (o
u(z,—1) = 0. Let Vy= {v € VN, v(=1) =v(1) =0}, VN_1= {v € Vn_1, v(—1) = 0},

(o (O o o 2
W= Sux Vn-1,U=Sux Vyand xj = jh, j=0,1,---,2M, h = 2M7:— T Then the
following Gauss integration formula? holds
2M
/ u(z)dr = hZu(a:j), Yu € S (4.1)
D ‘
7=0

Let FM be an interpolation operator from C(D) to Sy such that

Tor uw(z;) = u(z;), 0<j<2M.

Let t; and w;(i = 0,1,---, N — 1) denote notes and weights of the Gauss-Radau inte-
gration formulal® respectively, then

N-1
/Ip(t)dt = Z wip(t;), Vp € Von_a, (4.2)
i=0

1-1¢
m, ti(i =0,1,2,--- N — 1) are zeroes of the polynomial Ly +

Ly_1. Let Inx_1 be an interpolation operator from C(I) to Viy_1, such that

where w; =

IN_lu(ti) = u(t,-), 0 < 1 < N —1.
Combining (4.1) and (4.2), we have the following Gauss integration formula on @

2M N-1

// p(z,t)dzdt = hz Z p(xj, ti)wi, Vp € Van_g x Sy (4.3)
1Jp

§=0 i=0
We construct the following pseudospectral scheme for the variational problem P: find

(o
u. in W such that

uct(xjyti) - ucxx(xjati) + uc(xjati) = f(xj7ti)7 (44)
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j=0,1,---,2M, i=1,---,N—1.
We define now a discrete inner product and a norm as follows

2M N-1

uvMN—hZZ u(xj, ti)v(xj, ti)wi,

7=0 =0
1 _
ull sy =(u,w)iy vy Vu,0 € C(Q).

o
Let v €U, then u. and v can be written as
M
U = Z a;(t uJ, Z Bj(t uJ,
j=—M

(0 o
where a(t) €V n—1, Bj(t) €V, | j |< M. Using (4.1), we can write (4.4) equivalently
(o
as follows find u,. €W such that

By(ue,v) = Fy(v), Yo el .

where
N-1

M
Baue,v) = Y 3 wilhjay(ta) (=) B (k) + AiB(t:)),

j=—M i=0

and Fy(v) = (f,v)m,n. We define a discrete norm on C(I) by

1
HﬁnN—(zw 2w;)?.
0)
Lemma 1. If 5(t) €V, then
4N
< <2
L2250 < Il < 2080,
0)
Proof. Let 3(t) €V n, then
N
24 1
Z 1 + Li(t),
=0
with
N 2.
> =0, (4.5)
=0
Hence
N-1

N-1
2N+ 1
1BIIZ = >_ ai [+

1=0

|aN|2 ZL2
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2N -1 [2N+1 _ N
+\/ 2 V 5 (@v-1ax +ay-yay) - Ly (ti) Ly (t)wi
i=0

Due to t; (i =0,1,---,N — 1) are zeroes of Ly(t) + Ly_1(t), it implies

N-2
2N +1
1813 = - las P+ 1 4/ 53— on —an-1 [ (46)
=0

Therefore, from (4.5) we get

N -1 2N +1

2 2
Z’az’ P [y sy —q o +an-1]
N —1)?
Set € = W, we obtain
18I > Z | a; |* + )2 | V2N + lay + V2N —lay_ |?
2N 7 | V2N + lay — V2N — lay—1 |2
N-2 %
>(1-¢) Y i +—z(@N+1) |ay P +2N = 1) | ay-1 [*)
= (N -1)
N-2
2(2N — 1) ) 4N — )
>(1— e — )
2(1-0) 3 lasP + S5 Pt )2 Sl
Therefore, we have
VAN —
N1 Hﬁll < IBlI~-
Finally, (4.6) implies
N-1 1
2N +1 5
12 2 4 2\) 2
||ﬁuN<(; ai P 45— (an-1 P+ ay P))
IN + 1\ /& 2\ 3
<(1+ 2N_1)(§ [ai [*)? < 2|8,

Remark 3. The power of N can not be improved in the estimate of Lemma 1. In
fact, consider the function

N-2 4. N — 2
s = 3 2 - T a0+ vy,
i=0
for which one has AN? 1
— 18117 = 15117

(N34+2N2+4+ N —1)
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By Lemma 1 and (4.3), we obtain immediately.

o
Lemma 2. For any u €U, we have

VAN =2 / ) 3 ) 3
VA2 ([ jufPdedt)? < Jfullary < 2 / ul?dwdt)?.
N+1 ( Q ) ( Q )

Lemma 3. If 3 EX(/)’N, d>0,\A>0, then

VAN — )”

min(d, N1

AT B < | — AN+ AB -

2i+1
Proof. Let B(t) Z ! + a;L;(t), by the definition of the discrete inner product

and Lemma 1, we have

N-—1 N-—1
= dA™ 8 + MBI = AT B)* — 2dRe Y B'(t)B(t)ws + A2 D | Blt:) [P w
=0 =0

2\ —21 ar112 & 2k+1 / 20 2112

ATEBT — 2dRe Z Z ar Ly (t:) 8 (ti)wi + X°|| By
i=0 k=0

202|812 —2dRe/6’PN | Gat

— 2dRe Z

2N + 1
an L (t:)8 (t)wi + \2[16]3

since t; (i =0,1,---, N —1) are the zeroes of the polynomial Ly (t)+ Lx_1(t), it follows
that

| = A5+ MBI = A28~ 2dRe [ 3Bt
I

+2dRe Z
— 22| 3|2 — 2dRe / 3Fdt
I

N-1
+d2N +1) [an 2 Y] Ly—1(t)Liy(t)w; + X2|8]1%
i=0
=2\ B2 + 2d(2N + 1) | an |2 +22]|8]1%,

2N+ 1
anLy_1(t:)0 (t:)wi + 22| 8)%

by Lemma 1, we have

4N — 1
—d)\_l / A > d2A_2 / 2 AQ 3
=071+ My = (@A + s A1)
: AN —1 !
> min(d, )| - A7+ M
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this completes the proof of Lemma 3.
(0 o M
For any w €W, v €U, u(z,t) = Z a;(t)uj, v(z,t) Z B;(t)uj, then by
j=—M j=—M
Schwarz inequality, we have
N-1 M _ B
| Ba(uv) | = | 3 wi D2 Moy (t)[-A7 "B (k) + At
i=0  j=—M
N-1 M % M %
< (X R agt) Pwi) (DD 12788 + A58 2 wi)
=0 j=—M j=—M
N-1 M 1 N-1 M 1
<(X > A§|aj<ti>|2wz)2(z | A7) + X8 (1) 2 i)
1=0 j=—M i=0 j=—M
< 2v2u x|y (4.7)

o (0
We define a linear operator G: Vy—V y_1 by

[ (O
VB VN, (GB,z)=(3,2),Yz€VN_1.

Then taking z = G, we have

(GB,GB) = (B,GB) = (B — B'(—1),GB) + B'(~1)(1,GN)
= (B = B(-1),8)+4(-1)(1,GB) = (B,5) + B(-1)(1,GB)
> [|B']1>= V2|18 || L ()| GBI

N
> 181* —= =18 IIIGBl  (by inverse inequality!?))
V2
1 N2
> 817 = 5181 — —-IGBl?,

hence, we obtain

2 S 2
4.
GO 2 T 181 (18)
(o o M
We define again a linear operator T, which maps W into U, by for any u = > o (t)u;
j=— M

(o M o
ew,v=Twu= 3 Bijt)u;, Bj(t) eV satisfy
=M

N— 1
ti) + A8 (t:)(ti)ws
z:O
N-1 (o0
=\ aj(t)(t)ws, VY €VN—1, j=0,%£1,--- £M. (4.9)

=0
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Taking 1 = A\;@; in (4.9), we have
A () (=A; B (k) + X (1) Jwi = AF ey (4.10)

Taking ¢ = —)\]-_IGB; + \jP.f; in (4.9) again, by (4.10), we obtain

(_)‘j_lﬁ; + )\jpcﬁjy 1Gﬁ] + A Pgﬁ]) (Oé], ; 1Gﬁj + Ajpcﬁj)
:)\j(aj,— jlﬂj—f‘)\jpcﬂj) —)\3“&]“2 (411)

N
Let 3;(t) = > a;jL;(t). Because
i=0
Re(P.pj, 8;) = —Re(Pn_153;j + anjP.Ln(t), B;) = —Re(f;, §;) — Rean;(Ln, 3}) N
= Reanj(Ln-1,0))n =] anj [* (Ln-1, Ly) = 2| an; [*> 0,

hence

(=A7 18} + NPy, =N GBj + A\ P.B;)
=X\ %(8},GBj) — (P.Bj, GBj) + (= ' B + AjPef3j, \j Pef3;)
=\72(GB;. GB)) — (PuBy, B) + (= A7 1B+ N PoB, A Py

2 / / / _ /
Zm(ﬂjaﬂj) — (Pef3j, B) + (=A7' B} + N PefBj, A Pe3))
>(- y \/Lﬁ + A a3y, \/Lﬁ + AP
V2 V2 5
|- s ] = |- s+l
Zﬁ” — A8+ A8 (by Lemma 3) (4.12)

Combining (4.10), (4.11) and (4.12), we obtain

2

m” - )\j_lﬁ;' + 285017 < Adllay %,

Summing up for j form —M to M in above inequality, we obtain

2 M M
— R -2dt</ E Ao |2 dt
4+N2/1j:Z—:M| J f; i3 | > I J ||

This inequality implies

4+ N2
ITally <4/ 2F

[l x-
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Finally, we get

T.u 2
inf  su B(u,v) |[> inf | Bglu,——— ) |> {/—. 4.13
f s | Bz if | (o o) 2 e (4.13)

ueWw veU
flull x =1 llvlly <1 [lullx=1
From (4.7) and (4.13),we have
Vv 6((}, v # 0, sup | Bg(u,v) [> 0.
uEISI?

By theorem 5.2.1 in [1], we know that the solution of pseudospectral scheme is existent
and unique. From now on, we estimate the error of the pseudospectral scheme. For

~ (0 o
any u€W, v €U, by (2.4), we have

|Bag(u — ue,v)| = |Bq(u,v) — B(ug,v) + F(v) — Fy(v)|

By(u,z) — B F(z) - F,
§(sup ’ d(uvz) (U’O?Z) ‘ + sup ’ (Z) d(z) ‘)HUHY (414)
% T

Taking v = T,.(u —u.) in (4.14), by definition of T, and (4.13), we have

| —uel% = Ba(u —ue, To(u —u,))

By(u, 2) — Bl(ug, 2 F(z) — Fy(z ~
< (SU];) ‘ d( ‘)‘Z” ( 0 ) ’ +SU13 ‘ ( )Hz” d( ) ’)”Tc(u _UC)HY
2eU Y zeU Y
4+ N2 By(u, z) — B(uy, F(z) - F, ~
o JEER (g LB Blaod)| L&) =Ry 5y
2\ B A P

Then by the triangular inequality

/4 + N2 By(u,z)— B F(z) - F
HUO - uc”X S + ( lnf sup ’ d(u72) (UO7Z) ’ + sup ‘ (Z) d(Z) ’)
2 (o o lz|ly o 2]ly

UEW 2€U z€U
+ inf |lup— u ||x (4.15)
Zeiﬁf}

Taking %= In_2 Pur o in (4.15), thanks to (4.1), we have

Ba(In—2 Pu ug, z) = B(In_2 Pu ug,2), Vz €U,

hence, from (2.5), we obtain

By(u,z) — B
inf Sup| a(u, 2) (uo,2) |

ew zel) Izl

< V2|lug — In—2 Par uol|x-
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Finally, we estimate the last term in (4.15). By definition of F' and Fy, thanks to (4.2)
and Lemma 2, we have

M N-1

|F(2) — Fy(z |<\/ fzdedt — hz S Flag, ), t)wi

—M =0

<1 [ (= P Pas pyzdade] + |(Ps Pas £ = Ior T £

<|f = Pn-2 Pm fllzz@)ll?llL2 )
+|Pya Py f—Ino1Ium Fllarw |2l ar, v
<(If = Pn—2 Pm flizzQ) +2I1Pv—2 Prm f — In—1 I fllz2g))llzlly

hence
F(z) — Fy(z ~ ~ ~
sup Eil )IIZHyd( )| <|f = Pn-2 Pum fllz2q) + 2I1Pn—2 P f — In-1 Im fllzz
zeU

<3|f — Px_2 Pu ez + 201 f — In—1 T fllzzo

By the error estimates of the project operator and the interpolation operator in [2], we
obtain

Theorem 3. If conditions of theorem 2 are satisfted, and k > %, ug and U,
are solutions of problem P and pseudospectral scheme respectively. Then we have the
following error estimate

k=1
luo — uellx < C(NM~F+D 4 N=72) || £ &

where constant C' is independent of N, M and f.
Remark 4. When we consider problem (2.1)-(2.3)with inhomogenous initial value

g(x), and g(x) € HYT?(D), we construct the following pseudospectral scheme: find
ue. € W, such that

uct(x],tz)—ucm(x],tz)—i—uc(x],tz):f(x],t,), j:0717"'72M7 i:1727"'7N_17
uc($j7_1) :g(l‘j), j=0,1,---,2M.

It is similar to proof in Theorem 3, we have
(k1) | RS2
luo — uellx < C(NM + N2, Kt 191l-+2)-

Remark 5. It can be seen from theorem 2 and theorem 3, the orders of convergence
k

1 _k
are equal in bath time and space when M = N2 and M = N 2(k+1) respectively. If
the considered problem is in the domain [Ty, T| x D, the collocation points in time are
(T -To)(t;i—1)/2+T,i=0,1,---, N — 1, then the results of Theorem 3 also are valid.
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5. Numerical Results

In this section, we consider the pseodospectral scheme (4.4), the text function is
the exact solution of problem p, i.e. ug = e!™t — e720t+1) cog 1.

LetN:9,M:4;N:16,M:4andN=18,M:4v$(j):1?275\4’

7=0,1,--- ,2M. The computed results are listed in table 1, 2 and 3 on ¢t = 1.

Tablel N=9 M =4

—ug)108
Ue uo (uc—uo)

) uq

) | 0.9816843076884547 | 0.9816843611112658 | -5.441953970145995
) | 0.9859693667184228 | 0.9859694066071113 | -4.045631456319635
) | 0.9968195241458999 | 0.9968195226841657 | 0.1466398023793764
) | 1.0091578722055620 | 1.0091578194443670 | 5.2282401949339110
)
)
)
)
)

1.0172111586409040 | 1.0172110707087230 | 8.6444380524420870
1.0172111637552210 | 1.0172110707087230 | 9.1472163958157720
1.0091578824173790 | 1.0091578194443670 | 6.2401550450218620
0.9968195369963077 | 0.9968195226841656 | 1.4357806705605410
0.9859693743660365 | 0.9859694066071112 | -3.269987332553165

The Table 1-3 show that the error between the approximate solution u. and the
exact solution ug will monotone decrease with increasing of NV when M do not changed.
From above tables we also can see that the error are very small when the exact solution
of the model problem is very smooth. I believe that this algorithm can be used to more
complicated problems.

Table 2 N =12, M =4

1’(]) Ue U %

z(0) | 0.9816843611112644 | 0.9816843611112658 | -0.000001357124227
l’(l) 0.9859694030150431 | 0.9859694066071113 | -3.643184235101693
l’(Q) 0.9968195172242356 | 0.9968195226841657 | -5.477350764502334
$(3) 1.0091578146863220 | 1.0091578194443670 | -4.714866946805532
$(4) 1.0172110688408600 | 1.0172110707087230 | -1.836258555475101
z(5) | 1.0172110725765890 | 1.0172110707087230 | 1.8362616115020740
z(6) | 1.0091578242024130 | 1.0091578194443670 | 4.7148684870128270
z(7) | 0.9968195281440949 | 0.9968195226841656 | 5.4773698734900710
z(8) | 0.9859693743660365 | 0.9859694066071112 | 3.6431814200472470

Table 3 N =18, M =4

—ug)107
Ue uo (uc—ug)

) T

) 0.9816843611112627 | 0.9816843611112658 | -0.000003166623196
) 0.9859694035333920 | 0.9859694066071113 | -3.117459079869445
) 0.9968195179881529 | 0.9968195226841657 | -4.710996016808643
) 1.0091578153279600 | 1.0091578194443670 | -4.079052213462996
) | 1.0172110690864240 | 1.0172110707087230 | -1.594849451072798
)

)

)

)

1.0172110723310150 | 1.0172110707087230 | 1.5948431207312120
1.0091578235607690 | 1.0091578194443670 | 4.0790471527818880
0.9968195273801735 | 0.9968195226841656 | 4.7109911162411910
0.9859694096808249 | 0.9859694066071112 | 3.1174534497605540
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