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Abstract

In this paper, the unitarily invariant norm |[|-|| on C™*" is used. We first discuss
the problem under what case, a rectangular matrix A has minimum condition
number K(A) = || 4] ||[AT|, where A" designates the Moore-Penrose inverse of
A; and under what condition, a square matrix A has minimum condition number
for its eigenproblem? Then we consider the second problem, i.e., optimum of
K(A) = ||A|| |A~Y|2 in error estimation.
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1. Introduction

Since 1984, several chinese mathematicians have obtained many results bout matrix
operator norm condition number11:12:18],

Two kinds matrix condition numbers [9] are :

(1) If A € C™" is nonsingular, the number K,(A) = ||A||a||A™"||o is called the
a-norm condition number of A for its inverse, where || - ||, is some matrix norm, such
as the 2-norm, Hélder-norm, F-norm, etc..

Furthermore, we can generalize the inverse condition number to rectangular matrix
case [1], [8], K(A) = [|Ala||AT| g, and allows o # 3.

(2) For a square matrix A € C"*", set
Va={X| X ecC¥™, X 'AX = Ju,a Jordan form of A}. (1.1)

Then the number
_ -1
Jo = )(lg‘f/A{\\Xlla\\X lla} (1.2)

is called the a-norm condition number of A for its eigenproblem.

Wilkinson!”! pointed out that a) If matrix A is normal, then J5(A) = 1. b) If A is
unitary, then Ky(A4) = 1.

Zheng!'12 obtained the necessary and sufficient conditions for minimizing two
kinds of p-norm condition numbers (1 < p < c0).

Zheng and Zhaol®! obtained the structures of p-norm isometric matrix 4 € C™*"
and the bounds of K,(A4) = ||4][p]|[AT], (1 < p < o0); Wang and Chen obtained
the structures of a rectangular matrix A with minimum p-norm condition number
(1<p<oo,p#2).

* Received March 11, 1994.
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All the above results are concerned with matrix operator norms.

Other results associated with matrix operator norm condition number are given
by Yang!'%, i.e., the optimum of K(A) = ||A|| |A~!|| in the error estimation of linear
equation Az = b and the process of computing A~!.

In this paper, another important kind matrix norm, the unitarily invariant norm on
C™*™ (UIN) is discussed, and some results associated condition number are obtained.

The rest of the paper is arranged as follows. Section 2 is preliminary. In Section
3, the structures of the rectangular matrices with minimum UIN condition number
K(A) = || 4] |]AT] are discussed. In Section 4, the condition for a square matrix A
possesses minimum UIN condition number for its eigenproblem is obtained. Finally,
Section 5 is used to describe some results about the optimum of K(A4) = ||A]| |47z
in error estimation, where || - || designates a UIN.

2. Preliminaries

Definition 2.107. A norm || - |: C**™ — R is called unitarily invariant (UIN) if
it satisfies :

(1) [ UAV|| = ||Al|, VA, U,V € C™", and UHU = VIV = 1,,.

(2) Al = [ All2 if rank(A) = 1.

Definition 2.267. 4 norm ® :R" — R is called a symmetric guage function (SG)
if it satisfies :

(1) For any permutation matriz P, ®(Pz) = ®(z), Yo € R™.

(2) (ID("TD = (Ib(x)} where x = (617 T 7§n)T} and "T‘ = (‘61’7 T ‘gn‘)T

(3) ®(e1) = 1, where e is the first column of I,.

The conception of unitarily invariant norm can be generalized to the rectangular
matrix case [6], [7, p. 79], and many properties of the UIN can be found in [6] [7] etc..

Lemma 2.1. Let ®, :R™ — R be a function defined by

= 1/p
y(x) = [l2ll, = (D 1&FF) 7 (1 <p< o). (2.1)
i=1
Then ®, is a SG on R™.
Proof. Tt is obvious that ® is the Hdélder norm on R™ [5], and satisfies (1) (2) (3)
of Definition 2.2. O

If Ac CF*! ®isaSG onR", m =min{k.l} <n, oy, --,0, are the singular values
of A. Then a UIN on C**! may be defined by [6, p. 79]

||AH‘I) :¢(O-1770-m7070) (22)

It is easy to see thatl® ||A||e, = ||All2, and ||Alle, = ||A|lF.

Definition 2.3. If ®, is defined by (2.1), || - ||¢ is defined by (2.2). Then || -|le, is
called a pUIN on CF*!,

Lemma 2.2. Suppose 0 # A € C™*", || - || is a UIN family. Then

K(A) =||A]|l |AT|l2 > 1, and K(cA) = K(A) when ¢ # 0. (2.3)
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Proof. From [7] [6, p. 80] we know that ||A|| > ||Al|2 and ||[AT]| > ||[AT|2. Lemma
1
2.6 of [8] tells us that K(A) > Ky(A) > 1. From [1] we obtain (cA)™ = EAJF, when
¢ # 0. Thus K(cA) = K(A), when ¢ # 0. O
Definition 2.4. A matriz A € C"™*" is called 2-norm isometric if it satisfies
|Az||2 = ||z||2, Yz € C". (2.4)

5.1, A matriz A € C™X" s 2-norm isometric if and only if

Lemma 2.3
AP A =1, (2.5)

Lemma 2.4. For a UIN family, set

L(m,n,r)= inf {K(A)=[A[ A"} (2.6)
AeC;
If r > 0, then
1 < L(m,n,r) < r2, (2.7)

where A € C"*™ means m-by-n matriz A has rank(A) =r.
Proof. From Lemma 2.2, L(m,n,r) > 1 when r > 0. Take a particular matrix Ay =

({)T 8) € C™¥". Then AJ = <I(; 8) € C*™. Assume @ is a SG satisfies P(A) =

|All. Then K(Ag) = [|4ol| HAS_H = (®(1,---,1,0,--+,0))®(1,---,1,0,---,0)) < %, So
we have L(m,n,r) < r2.0

Lemma 2.577P321=322 " Gupnose A+ E = B € C™*", || - || is a UIN on C™*™,
|A7Y2||E|l2 < 1. Then B is nonsingular and

(1B=" = AT D/UATH) < KB/ (1A, (2.8)

where
K = [|A[[[[A7 ]2, v =1— K||E|]2/| A =1 —[[A7}|l2||E]]2 > 0. (2.9)

Lemma 2.6. Suppose A, B € C"*™. Then there exists a unitary matriz H such
that
|AH B|2 = [|All2]| B2 (2.10)

Proof. Assume the SVD of A, B are
A=UX4V and B=WXgR (2.11)

respectively with ¥4 =diag (o1,---,0,) and Xp =diag (71, -+, 7,), here o1 > 09 >

o >0y, and 7 > oo+ > 7, Then |AHB|g = |[SAVHWSg|l2. Set H = VAWH | we

obtain HAHBH2 = HEAEBHQ = || diag (0'17'1, s ,O'nTn)HQ = 0171 = HA||2||BH2D
Lemma 2.7. Suppose || - || is a UIN family, A € C"*", r > 0. Then

14
1< < r. 2.12
<Al =7 (2.12)

Proof. Using the corresponding SG of || - || we obtain ||A|| = ®(o1,--+,0,,0---,0) <
r®(01,0,---,0) = r||A||2.0
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Lemma 2.8 [7, p. 323]. Suppose || -|| is a UIN on C"*", A € C*", = is a soluttion
of equation Az =b, B=A+E, |A7Y2||E|2 < 1. Then B € C?*" and the solution y
of equation By = b satisfies

(ly = zll2)/llzll2 < K| El2/ (V[ All)- (2.13)

Lemma 2.9 [7, pp. 342-343]. Suppose B = A+E € C™" A = [|[A7Y|2]|El|2 < 1.
Then B is nonsingular and

(1B~ = A7/ 1A 2 < NEIK/ (1A = A)), (2.14)
where
K = [|[A7Y 2] Al (2.15)

3. Rectangular Matrix with Minimum pUIN condition number

Theirem 3.1. Suppose || - || is a pUIN family. Then (i) L(m,n,r) = r*/? when
r>0,1<p<oo. (it) When rank (A) =r >0,
K(A) = ||A| [|[AT] =r*? © 01(A) = -+ = 0,(A) > 0. (3.1)
Proof. Take
A= (g o) eer (3.2)
0 0 0 r . .
Then A = ({; 8) € C*™ and

K(Ao) = | Aolla, | Af e, = 7P when > 0. (3.3)

p 0

For any A € C"*™ with its SVD A=U ( 0 0

) VH . Two possible cases need to

be considered.
Case (a) 1 < p < oo. In this case we have

p p

2 0
0 0,

= (V2 4 4 (@07 ") + -+ (0, 712)).

oo
KP(4) = A, 14715, = | |

0 0

p

From the Cauchy-Schwartz inequality we see that KP(A) > r2, and equality holds if
and only if 09 = --+ = o,

Case (b) p = co. In this case we have K(A) = || Allo [|AT |6, = Poo(01,- 50,0+,
0)@00(01_1,"-,0,?1,0,---, 0) = o1/0, > 1, and equaliy holds if and only if o1 = o.
Thus Theorem 3.1 is proved.O

From Theorem 3.1, we obtain the following corollaries.

Corollary 3.1. Suppose || - | is a pUIN family, A € C™*". Then K(A) =

Al [|AT] = n2/? if and only if

AT A = I with a costant ¢ = || A||3 > 0. (3.4)
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or equivalently
Ks(A) = [|All2 AT ]l = 1. (3.5)

Proof. Theorem 3.1 means (3.4) holds if and only if K(A) = ||A| |AT| = n?/?.
1 1 1
(3.4) means —CA is a unitary matrix, and (—A)+ = — A", Thus (3.4) means (3.5)

Ve ) T
holds.

Conversly, from Theorem 2.2 of [8], A/||Al|2 is 2-norm isometric when (3.5) holds.
Lemma 2.3 tells us (3.4) holds.O
Corollary 3.2. Suppose ||-|| is a pUIN family, A € CI"*™ and 0 < r < min{m,n}.
Then
K(A) = ||A] |AT|| =r?? (3.6)

if and only if there are two matrices F and G such that

A=FG (3.7)

with
FecC™" and G € C*", (3.8)

and
K(F) = ||F|| |[F*|| =r¥?, K(G) = |G| |GT| =r*". (3.9)

Proof. Necessity. Assume the SVD of A is

X 0

A:U<0 0

> VH =%, VE.

From Theorem 3.1 we have ¥, = cI, ¢ > 0. Set F' = cUy, and G = Vi, then (3.7)(3.9)
hold.
Sufficiency. Assume the SVD of F' and G are
Few (%) S1.G=Q(S,,0)2". (3.10)

From Theorem 3.1 and (3.9), we have

A=FG =W (Cfo*”“) SHQ(e,1,0)2"
I I H
—WSHQ <Cfcg[r 0) zH SHQO — <S @ 0) € cmxm, (3.12)
0 0 0 I
(3.12) means o1 = - - = 0, = cyc, > 0, and K(A) = r?/P.0
4. Square Matrix with Minimum pUIN Condition Number for Its
Eigenproblem

Theorem 4.1. Suppose A € C™*", || - || is a consistent matriz norm on crxnlal,

Then there exists a matriz X € V4 such that

Ka(X) = HX”aHX_l”a = Joc(A)' (4'1)
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Notice that if || - || is a pUIN, using Theorem 3.1, we can easily prove Theorem 4.1.
And a pUIN is a consistent matrix norm.

Proof. For any e > 0, there exists a matrix X € V4 such that J,(A) < K, (X) <
Jo(A)+e€. Without loss of generality, assume || X ||, = 1. Otherwise take X’ = X/|| X]||q,
then we have || X'||, =1, X’ € V4. Set e > €3 > -+ > ¢ > ---, and lim ¢ = 0.

k—o0
Correspondingly, we obtain a matrix sequence { X} such that

Jo(A) < Ko(Xi) = |1 X o < Ja(A) + . (4.2)

Notice that each eigenvalue A of X}, satisfies!®

1 1 __ 1
X e = JalAd) +e ~ Jate

IAD] > i =45 >0, (4.3)

and both {X; '} and {X;} are bounded. So there exist subsequences of {X, '} and
{X}} such that

lim X, !'=X"'and lim X; = X. (4.4)
k;—o00 g k;—o0
From (4.2) and (4.4) we obtain J,(A4) = Ko(X) = | X o] X 4.0
Theorem 4.2. Suppoe A € C"*", || - ||, is a pUIN on C"*". Then

Jo(A) = n?/P (4.5)
if and only if there exists a unitary matrix U such that
UH AU = J4, a Jordan form of A. (4.6)

Proof. Necessity. Since each UIN is a consistent matrix norm!®” Theorem 4.1
means there exists a matrix X € Vy such that Ko (X) = | X||lo|X o = Jo(4) = n?/P.
From Theorem 3.1, X has singular values 01 = -+ = g, > 0. Set U = X/||X]|2, we
obtain U € V4 and UYU = I,, and UPAU = X 1AX = J,. Sufficiency. From
Theorem 3.1 we obtain Ko (U) = |Ul|a]|U™ |l = n*P.0

5. Optimum of K(A) = ||Al|||[A7"[]; in Error Estimation With Respect
to UIN

Theorem 5.1. Suppose || - || is a UIN on C™*", A € C"*". If there exists a €y > 0
such that when ||A7Y|2||E|l2 < 1 and ||E|| < €, then E satisfies

AT = A+ E) 7 [E] £l
= Sp—=/(L=p77r ) (5.1)
[ A ( 1Al )

where p > 0 is independent of E. Then we have

_ AL
K(A) = A 147l < g < o )
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At —(A+E)!
Proof. From Lemma 2.5 or [5], A+F is nonsingular, and we have H (A+E)" |

A=
KlEl2 . _ 1 1At ,
< S TAlL K =||A|| |[A~ 2, v =1—[|JA7"|2]| E|l2- Using Lemma 2.6, we can find a

matrix H with |[H||2 = 1 such that ||AT'HA™ ||y = ||[A~13.
Set E = e¢H, we obtain [|[AT'HA |y = €[|[A7Y|3. When ||[A7|2]|E|2 < 1, we
havel®!

(A+E)y'=T+A'E)A™! = i(—A‘lE)kA‘l. (5.3)
k=0

A7 (as B = | Z(_A—lEm—lu > AT BAY |y — A7V BIE

ZH )Fllz = ellATHE — €)1 A7 ||2Z|| )* -

LA IATHE (1Al HA 1EA 2

K(A) = || A]l |A7 |2 = (5-4)
1A= 2 El A7
AT = (A+E) 7+ AT BIEIE Y A BNy
1A k=0 A=
~ 1El2 A=Y A=z
4-1

Let € = ||E||2 — 0, we obtain K(A) < ||||A 1”” From Lemma 2.7, |[A7|[|[A7Y|2 <
n.0O 2

Theorem 5.2. Suppose || - || is a UIN on C"*", A € C*", B = A+ E and

A7 2||E|l2 < 1. If there is a € > O such that when ||E||2 < €y, the solutions x,y of
equations Ax = b, Bx = b satisfy

le—ylo P

< (5.5)
=1 _ SlE]2’
el =14
where § is independent of E. Then
K(A) = Al A7 2 < 6. (5.6)
Proof. From Lemma 2.8, we obtain
o —ls _ Bl ) LBl K |E)
lzllz HAH 1Al (1A

So (5.6) means that K(A) = ||A]| ||A™}|2 = K is optimum in error estimate equation
(5.5).
From (5.3) we obtain

r—y=[A"1—(A+E) " p=2— i(—A_lE)k:E
k=0
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=— i(—A‘lE)kx = A'Ex — (AT'E)? i(—A_lE)ka;. (5.7)
k=1 k=0

Let B = (,0,---,0) € C"™ ™. For any C € C™*" we have |[A"1CB| = |A71CB|2.
From Lemma 2.6, there exists a matrix H such that |[H|s = 1 and |[A™'Hz|s =
IAT HBll; = |ATHB| = A7 [2lBllz = A7 lzllz]l2. Take E = eH, B2 = e.

From (5.7) we obtain |« —yll2 > || A~ Exllz — A7 ||| El3]|z]l2 ) | A~ B|l3. Hence
k=0

[ e 223 P

BNz [l

o
- — k
le = yll2 + A~ BN BBl ]2 Y A Bl

K(A) = |A7 2] Al =

1Al k=0

= B2 [[#]]2
112 12 NS A1k
< — : :
<o/(1=sp) + el B Y 1A B ()
Th btain K (A) < 0 Fe(lATB Y AT EL) ) = oo
us we obtain K (A) < lim ((— STETR /Al € 2 2 .
k=0

Notice that Lemma 2.9 enables us to prove another theorem analogue to Theorem
5.1.
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