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Abstract

Steklov eigenvalue problem of Helmholtz equation is considered in the present
paper. Steklov eigenvalue problem is reduced to a new variational formula on
the boundary of a given domain, in which the self-adjoint property of the original
differential operator is kept and the calculating of hyper-singular integral is avoided.
A numerical example showing the efficiency of this method and an optimal error
estimate are given.
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1. Introduction

We consider the following Steklov eigenvalue problem:
Find nonzero u and number A, such that

—Au+u=0, in €,
ou

e Au, on T, (1.1)

where Q C R? is a bounded domain with sufficient smooth boundary T, 82 is the
n

outward normal derivative on I'.
Courant and Hilbert!!l studied the following eigenvalue problem:
ou

Au=0, in Q, o Au, on I, (1.2)

which was reduced to the eigenvalue problem of an integral equation by using the
Green’s function of Au = 0 with Nuemann boundary condition. From Fredholm the-
orem, we know that (1) the problem (1.2) has infinite number of eigenvalues, which
are all real numbers, (2) suppose that u,(x), u,,(x) are two eigenvalues of the problem
(1.2) corresponding two different eigenvalues \,, and \,,, then
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/ Un, (T) U, (z)dsy = 0, (1.3)
r

i.e. the trace of u,(x) and u,,(z) on I' are orthogonal on the space of L?(T).

Moreover, Courant and Hilbert!!] pointed out that analogous considerations held
for the general self-adjoint second order elliptic differential equation, so for the problem
(1.1).

But it is difficult to obtain the numerical solution of the problem (1.1), or (1.2) by
the integral formula given by Courant and Hilbert. The reason is that for only a few
of special domains, the Green’s function is known. Bramble and Osborn[? developed a
finite element method for the Steklov eigenvalue problem and the optimal error estimate
was given. Han, Guan and He discussed the boundary element approximation of the
problem (1.2) [9] and the error estimate was given in [10] by Han and Guan. In this
paper, a equivalent variational formula on the boundary I' for the problem (1.1) is
proposed, using the fundamental solution of —Au + u = 0. Then the boundary finite
element approximation of the problem (1.1) was obtain. A numerical example shows
that the new method is very efficient.

2. A New Variational Formula on the Boundary I' of Problem (1.1)
and Its Boundary Element Approximation

The fundamental solution of equation —Au + v = 0 in Q is the modified Bessel
function of zero order Ky(|z — y|), which is given by

Ko(r) = —Ho Z apr" log + Z bur?", ag =1, (2.1)

with ay,, b, (n =1,2,---) unique determined nearby r = 0 and, we have

Ko(r) = \/ge—" T (2.2)

at infinity. So hI_El Ko(r) = 0. Koy(r) satisfies the following differential equation
T—1T00

deO(T) 1 dK()(T)

02 i Ko(r)=0, r#0. (2.3)
By using Green’s formula it is obtained:
1 OKo(|lz — y!
u(z) = —%/Fu(y) on, 2 / YEo(|lz —yl)dsy, Ve, (24)
. . . _ _ Ou(y)
where u(x) is any solution of equation —Au +u = 0, p(y) = e and n, denotes
y

the outward unit normal to I' at point y. The formula (2.4) shows that every function u
satisfying —Au-+u = 0 in © and continuously differentiable on Q+1I" can be represented
as the potential of a distribution on the boundary I" consisting of a single-layer of density
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0
p(y) = géy) and a double-layer of density —u(x). From the continuity of the single-
y

layer potential and the discontinuity of the double-layer potential on I" [3],[4], the first
relationship between u|r and p is obtained:

1 _i/u(y)aKo(’l’—yD

1
— = — K — r. (2
Su@) = —5- [ sy 5 [ PW)Eo(lz —yl)dsy, Ve el (2

Furthermore, by using the properties of the derivatives of the single and the double
layer potentials [5], it is obtained that

1 1 O Ko(lr —yl) , aKo OKo(|z —y])
where
O*Ko(|z —yl) d_ [ du(y)
————ds, =— | —=K —y|)d
/Fu(y) On;0on, %y ds; Jr dsy ollz = yl)dsy
~ [ Eo(le =y cos(nm)ds,. (27)
Hence on the boundary I' we have
ou(z)| 1 1 d du(y)
o =) = 50w) g [ SRRl — yl)ds,
1 5K0 ]az—y\)
—I-%/ u(y)Ko(|z — y|) cos(ng, ny)dsy, + / on. Sy.

Then the boundary condition in the problem (1.1) is rewritten as follows

1 1 d du(y )
370) ~ e [ Kol — yl)dsy + 5 [ uw)Ko(le o)
5K0 !l’ —yb,
- €08(Ng, Ny )dsy + / o, Sy
=\u(z), zel. (2.8)

In fact the equalities (2.5) and (2.8) hold for any solution u, u € H'(f), satisfying the
Helmholtz equation in weak sense. In this paper, H%(€2) denotes the Sobolev space on
the domain © with norm || - ||o.q and H?(T'") denotes the Sobolev space on the boundary
I' with norm || - ||r as usual [6]

Let V = H3(T) x H3 (D), e @lly = (e + a2

l\’)l»—t

1 1
By multiplying (2.8) by a function v € H2 (" ) and (2.5) by a function ¢ € H 2(T"),
and by integrating over I', the following equivalent variational form of (1.1) is derived:
Find nonzero (u,p) € V and number A, such that

1
ao(w,v) + a1 (u,v) —b(p,v) = /\/ uvds, Yve H2(D),
r

ao(p;q) +b(q,u) =0, Vge H_%(F), (2.9)
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where
o(p,q 277// 2)Ko(|z — y|)dsedsy,
a1 (u,v) 27T// z)Ko(|z — y|) cos(ng, ny)dszds,,
o [ [ ) aKOQfLm Wodsyis, ~ 3 [ o(@p(@ds.
u(y) = d;iy .
i) = G,

Let A(u, p;v, q) = ao(u,0) + ar(u,v) = b(p,v) + blg, u) + ao(p, ).
Then the problem (2.9) can be rewritten as follows:

Find nonzero (u,p) € V and number A, such that

A(u,p;v,q) = )\/ wvds, V(v,q) € V. (2.10)
r

For the bilinear ag(p, q), a1(p, q) and b(g,v), the following lemma }llolds[5’7’8] 1
Lemma 2.1. (1) ap(p,q) is a bounded bilinear form on H 2(I') x H™ 2(I") and

1
H™2(T") —elliptic, i.e. there are two constants My > 0, ag > 0, such that |ag(p, q)| <
1 _1
Mollpll_y . llall_1 . ¥p.a € H2(T), ao(,0) = allal® s 1 Vg € H2.
29

1 1
(2) Suppose p € H_ﬁ(l“) NH 2T(T), (0 <t < 1), then a constant M, > 0 must

1
exist such that |ao(p, q)| < My||pl| 1 lall 1 e Vge H 2(T).

$4+4T
1 1
(3) b(q,v) is a bounded bilinear form on H™2(I")x H2(T"), and a1(p, q) is a bounded
1 1
bilinear form on H2(I') x H2(T), i.e. there are two constants My, My, such that

1 _1
an(a. ) < Mrloll_y llall_s o Va € HO2D), v e H2(D), Jar(p.a) < Malply

1
||(JH% o P € Hz(T)-
From lemma 2.1, another lemma can be obtained.
Lemma 2.2. A(u,p;v,q) is a bounded bilinear form on V' x V', namely there is a
constant M > 0, such that |A(u, p;v,q)| < M||(u,p)||v](v,q)|v.
1
To prove the coerciveness of A(u, p;v,q), define the linear operator K; from H™ 2 (T")

1 1 1
to H2(I'), and K3 from H2(I") to H2(I") by

1 1
Kiqg= Py Fq(y)Ko(\x —y|)dsy, Yqe H 2(I). (2.11)
1 OKo(|z — yl) 1 1
= — AN - 5
Kyv 5 /FU(?J) on, dsy + 2U(y), Vv e H2(T). (2.12)
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From [7], [5] we know that there are two constants dy,ds > 0, such that

1
HKqu%F > dylq]| Vge H 2(I). (2.13)

1.
_571"
1
|Kxolly = dallolly . Vo€ HE(D). (2.14)
2 2
Lemma 2.3. There exists a constant p > 0, such that

A(v,¢;v,9) = pl(v, @)}, Y(v,q) € V. (2.15)
Proof. Let

m(w)zi — [ aw)Ko(ls — y)ds,, we

ug(x =5 / YKoz —y|)dsy, =€ QF,

0K, -
ws(@) = o [ o) I, e
)

L[ ol =)

ds,, x € Q°,
27 Jr ony Y

where Q¢ = R?\Q.
From the boundary behaviour of the double layar potential, the following equations
hold

i ()| = ua(2)]r,

du L q(y)wds +50(a),
w@le = 5 ”@wd% e
ug(z)|r = _%‘/I‘U(y)%ny_ybdsy - %U(x)’
811,3(%)‘ _ 8U4($) ’F
ong 1T ong ’

which is followed by

8u1(x)‘ _8u2(x)‘
ong IT Ong IT

=q(z), us(x)lr — ua(z)[r = v(z),

on the other hand when |z| — +00, we have

ui(x) = o(#), (i=2,4), ag;(:) = o(#), (i =2,4).

An application of the Green’s formula yields

/Q (Vs 7 w1 + w?)dz + /Q (Tus 7 w3 + us?)dz
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+ /QC(VUQ U + qu)dx + /Qc(vwl VAT U42)da:
:/F (ggi — SZi)ul(x)dsx + /F gZi (us(x) — ug(x))ds, = A(v,q;v,q).

Hence the follows hold

Av,g50,9) 2 [lur]|? o + l|us]ff o- (2.16)

From the trace theorem and inequalities (2.16), (2.13), and (2.14) there are two
constants ¢; > 0, co > 0, such that

lurllie = erllully . = eillKiglly . > adillgl_s . (2,17)
27 2’ 2’

Jusllie > eallually . = eall Kavlly . > cadaffol] s . (2.18)
27 27 27

so the inequality (2.15) immediately follows with x4 = max(c?d?, c3d3), A(v,q;v,q) >
pll(v, @)%, (v,q) € V. From lemma 2.2 and 2.3, the eigenvalue problem (2.9) on the
boundary I is equivalent to the Steklov eigenvalue problem (1.1).

Now suppose that the boundary I' of the domain € is represented as z; = z1(s),
xo = x2(s), 0 < s < L, and z;(0) = z;(L), j = 1,2. Furthermore, I' is divided into
segments {1’} by the points z° = (z1(s;),z2(s;)), i = 0,1,2,---, N, with 0 = s9 < 51 <
«+- < sy = L. Define h = max |s; — s;—1], and this partition of I" is denoted as J.

Let

Sy = {vp| v, € CO(T),vp|7 is a linear function, VT € Jy}.
My, = {qn| qn|r is a constant, VT € J,}.

1
It is obviously that S}, is a subspace of H2(I") with dimension N and M}, is a subspace

1
of H2(T") with dimension N. S, and M}, are two regular finite element space in sense
of Babuska and Aziz® | which satisfy the following approximation properties:

1
: t 5+t
Jnf = onlly < chlfuly, o Vo€ H2HD) (219)
1
: _ t —§+t
inf = anl_y < o]y, Vo€ H M) (2.20)

where 0 <t < 1.
Now we consider the discrete problem of (2.9)

Find nonzero (up,ppn) € Sp x My, and number Ay, such that
ao(tn, Un) + a1 (un, vy) — b(pp, vn) = /\h/FuhUhdSa Yy, € Sh,
ao(phy qn) + b(qn, un) =0, Vaqn € M. (2.21)

Assuming that the base functions of space S; and the space M) are given, the
problem (2.21) can be reduced to a matrix eigenvalue problem. By solving it, the
approximation solution of original problem (1.1) can be obtained.
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3. The Error Estimate of the Boundary Element Approximation

In this section, the error estimate of the boundary element approximation will be
discussed by the general approximation theory of eigenvalues for a certain class of the
compact operators [2]. Hence we identify the boundary eigenvalue problem (2.9) with
the eigenvalues of a compact operator. Let = A + 1, then the problem (2.9) can be
rewritten as follows:

Find nonzero (u,p) € V and number A, such that
1
ap(t, V) + (u,v) + a1 (u,v) — b(p,v) = plu,v), Yv e H2(T),
1
ao(p,q) +b(q,u) =0, Vge H 2(T), (3.1)

where (u,v) = / uvds.
r

1 1
For any given u € H2(T"), b(q,u) is a bounded linear functional on H~2(I"). From
the lemma 2.1, the following variational problem

1
Find p € H™2(I"), such that
1
ao(p,q) +b(q,u) =0, Vg€ H 2(D), (3:2)

has a unique solution p. Let Pu = p, then we obtain the bounded operator P :
1 1
H?2(T') —» H™2(I'), and there is a constant C, such that

1
IPull_y < Cluly . Vu € HZ(D). (33)
27

1
2

1
In fact, for any given uw € H2(I'), it can be extended to the total domain @ and

u € H'(Q) is the weak solution of Helmholtz equation —Awu+wu = 0. Then Pu = g—z

)

r
1
and the operator P can be extented!”l to P: H**1(I") — H¥(I), s > —3 and

[ Pullsr < Cllullss,r. (3.4)

By using p = Pu, the unknown function p can be eliminated in the problem (3.1). We

1
note that ag(Pu, Pv) = —b(Pu,v), Vv € H2(T"). Then the problem (3.1) is reduced to

1
Find nonzero u € H2(I') and number p, such that

E(u,v) = plu,v), Vv e H%(F) (3.5)

where E(u,v) = ag(u,0) + a1 (u,v) + ag(Pu, Pv) + (u,v). From the lemma 2.1, 2.2 and
2.3, the following lemma is obtained.

1 1 1
Lemma 3.1. E(u,v) is a bounded bilinear form on H2(I') x H2(T") and H2(T')-
elliptic, i.e. there exist two constants M3 > 0, az > 0, such that

1
B, v)| < Mallully ol o Va0 € H2(T)
2’ 27
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1
E(v,v) > oz3||v||2l . Vv e H2(T).
27

1
For any given g € H™ 2(T'), consider the following variational problem

Find nonzero v € H 2 (I'), such that
E(u,v) = (g,v), Yve H%(F) (3.6)
From the lemma 3.1, and Lax-Milgram theorem, the problem (3.7) has a unique solution
u € H%(I‘) Let T'g = u, we obtain a bounded operator T H_%(F) — H%(F) In fact,
for any given g € H _% ("), Tg = w is the restriction on I" of the solution of the following

0
boundary problem: —Awu + u = 0, in €, 8_u +u = g, on G. Hence we know that!"l T
n

1
H*(T) — HTYT), s > —3 and

[Tgllerr < Cllul 3 o < Clallr (3.7)

Suppose 1 is a nonzero eigenvalue of T on H_% (I"), i.e. there is a nonzero g € H_% (),
such that Tg = lg. Then E(Tg,v) = (g,v) = pu(Tg,v), Vv € H%(I‘), and Tyg is
nonzero. Thus uuis an eigenvalue of the problem (3.5) with T'g, the corresponding
eigenfunction. Conversely, suppose p is a nonzero eigenvalue of the problem (3.5) with
the corresponding eigenfunction u, namely E(u,v) = p(u,v), Yv € H%(F) Then
Tu = —u, — is an eigenvalue of T' with the corresponding eigenfunction u. Therefore

the eigenvalues of the problem (3.1) are the reciprocals of the eigenvalues of the compact
operator T
Similarly, in the approximation problem (2.21), let up = A\, + 1, then

Find nonzero (up,pp) € Vi, and number pup,, such that
ao(tin, Un) + (un; va) + a1(un, vn) = b(Ph, va) = paun, vn), Yon € S
ao (P, qn) + 0(qn, un) =0, Vg € M. (3.8)
For any given v € H % (T"), consider the following variational problem

Find nonzero py, € My, such that
ao(pn: q) +b(q,u) =0, Vg€ M. (3.9)
By the lemma 2.1, the problem (3.9) has a unique solution pp,. Let P,u = p, then we

1
get an operator P,: H*"1(T) — M, s > ~5 and

1Pad_y . < Clluly . (3.10)
Obviously, Pyu is the boundary element approximation of Pu in space Mj, and the
following error estimate holds!”)

|Pu— Pull_y < OR*[IPul 1. (3.11)

1>
—5.T
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1
It is noted that ag(Ppu, P,v) = —b(Ppu,v), Yo € H2(I'). Then the eigenvalue problem
(3.8) is reduced to
Find nonzero uy € S, and number uy, such that
En(up,v) = pp{up,v), Yv € Sp, (3.12)
where Ej(u,v) = ao(t,v) + (u,v) + a1(u,v) + ag(Pru, Pyv). It is straight forward to
check the following lemma.

Lemma 3.2. There exist two positive constants My, oy, independent of h, such
that

1
1Bu(.0)| < Mallully ol o Yoo € H2(D) (3.13)

1
Enp(v,v) > cu”v”zl . Vv e H2(T). (3.14)
27

1
Hence for any given g € H™ 2(T"), the variational problem

Find up, € Sh, such that
Eh(Uh,’U) = <g,v>, Vv € Sh7 (315)

1
has a unique solution uy,. Let T},g = uy, a bounded operator is obtained Ty,: H™ 2 (T") —
1
Sy, € H2(T'), and ||Thyll1 r < gl 1 - Similarly, the eigenvalues of the problem
27 T2

(3.12) are the reciprocals of the eigenvalues of the operator Tj. Thus the eigenvalues
of the problem (3.1) can be compared with the boundary element approximations by
comparing the eigenvalues of the compact operator 1" with the approximate operator
T},. In order to obtain the eigenvalue estimates of 7" and T}, we need to estimate the
error T' — Ty,

1
Lemma 3.3. For any g € H 2(I'), it holds that
En(T —Ty)g,v) = —aog((P — Py,)Tg, Pv), Yv € S. (3.16)

Proof. From the definition of T" and T}, we derive E(Tg,v) = (g,v), Yv € S}.
En(Thg,v) = (g,v), Yv € Sp,. Hence for any v € S}, it is obtained that

0= E(Tg,v) — Ep(Thg,v) = En(Tg — Thg,v) + ao(PTg, Pv) — ag(PyTg, Pyv)
= E,((T —Th)g,v) + ao((P — Py)Tg, Pv) + ao(PrTg, (P — Pp)v).

On the other hand, by the definitions of the operator P and P}, we obtain ag(Puv,q) +

b(qg,v) = 0, Vv € Sp, ¢ € My. ag(Ppv,q) + b(q,v) = 0, Yo € Sy, ¢ € Mp. Thus

ao((P — Pp)v,q) = 0, Vv € Sp,q € My. From the symmetry of the bilinear form

ap(p,q) and P,Tg € My the following equality is derived ao(P,Tg, (P — Pp)v) = 0,
1

Vg€ H 2(I'),v € S. Then the lemma 3.3 is proved.

1
Lemma 3.4. For any g € H 21Y(T), (0 <t < 1), there exists a constant C' such
that

79~ Thgly . < CH'lgl_y , (3.17)
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Proof. From the lemma 3.2, it holds that

|Tg — ThQHl <—Eh((T Th)g, (T —Th)g)

= a_4{Eh((T ~T3)9,Tg — x) + Ex((T — Th)g, x — Thg)}
= O%{Eh((T —T)g, Tg—x) — ao((P — P)Tg, P(x — Thg))}, Vx € Sh.

The last equality is from the lemma 3.3. Furthermore from the lemma 3.2 and lemma
2.1, it is obtained that

[En((T = Ti)g: Tg = x)| < Mall(T = Thgll1 1T = xll1 1
d (P~ POTg, Plx — Thg))| < lao(P — P)Tg, P(Tg — X))
+ lao((P — Py)Tg, P(T — T})g)|
< CIP = PTgll_y {IP(Tg =0l 1+ IPT = Tgll 1}

On the other hand, the inequalities (3.11), (3.4) and (3.7) lead to

t t
I(P = Pa)Tgll_y . < CH|IPTg| <CMlgl 1,

~Lyer
I1P(Tg =l 1. <ClITg—xl1
20 2’
I1P(T = Th)gll 1 . < CI(T =Th)gll1 .
27 27

Hence the following inequality is got

2 t
I = Tgl | <CHIT = Tuglly (1Tg ~xly o+ 1]y, ]

Iy, o179 =Xy o} Y € S

+t r
Finally by the estimate

i — < Ch < Ch
Jnf | T ><H%7F <Ch IITg\I%H,F <CPlgll_1_, ¢

The inequality (3.17) is proved.

1 1
Lemma 3.5. For any g € H 27(T"), v € H 21Y(T"), (0 < s,t < 1), the following
inequality holds

(T = Th)g, ¥) < Ch™*g]| 1 (3.18)

e

Proof. From the definition of the operator T it is known that (T'g, ¥) = E(Tg,T).
(Thg, ) = E(Thg, T1). Hence it is derived that

—3+s, T

(T =Th)g,¥) = E(T — Th)g, T%)
= Ey((T' = Ty)g, TY) + ao(P(T — Th)g, PTY) — ao(Pn(T — Th)g, P, T)
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= E,(T = Th)g, TY) + ao(P(T — Th)g, (P — Pn)T)

= Ep((T' = Tn)g, (T — Th)¥) + ao(P(T = Th)g, (P — Pn)T)
—ag((P — Pn)Tg, PTya)

= Ep((T' = Tn)g, (T — Th)¥) + ao(P(T = Th)g, (P — Pn)T4)
+ao((P — Pp)Tg, P(T = T)) — ao((P — Py)Tg, PT)

= Ep((T' = Tn)g, (T — Th)¥) + ao(P(T = Th)g, (P — Pn)T)
+ao((P — Pp)Tg, P(T = Th)Y) — ao((P — Pp)Tg, (P — Pp)T).

By the lemma 3.2 and 3.4, it holds that

BT = T)g. (T = T < Mall(T = Tuglly T =Tl

t+s
< Ch HQH_%H,FWH_%HI-

Furthermore from the inequalities (3.4), (3.17), (3.11) and (3.7) lead to

s+t
ao(P(T —Ti)g, (P~ POTW)| < Ch* gy, o 1,

_ _ s+t
ao(P — P)Tg, PT ~Tiw)| < Ch*lgll_y oy

— _ s+t
ao(P — P)Tg, (P = P)Tw)| < O gl y ol 1

Hence the inequality (3.18) follows immediately.

T —1T,
Let |T'— Th||l-ts = sup  sup (T = Thg, ¥)
wers )y geri(ry lgllerllllsr

1 1
(3.18), taking ¢t = 35=3 it is obtained that

, Vs,t > 0. In the inequality

|7 = Thlloo < Ch. (3.19)

From the well known eigenvalue convergence result [3], if v!,22 --. are the nonzero
eigenvalues of T ordered by decreasing magnitude, taking account of algebraic multi-
plicities, then for each h there is an ordering (again counting according to algebraic
multiplicities) of the eigenvalues of Ty, v'(h),v2(h), - -, such that }lll_)mo v/ (h) =17 for
each j. Hence for the Steklov eigenvalue problem (1.1), the following theorem holds
that

Theorem 3.1. If AL, \2,---, are the eigenvalues of the Steklov eigenvalue problem
(1.1) ordered by increasing magnitude, taking account of algebraic multiplicities, then
for each h there is an ordering (again counting according to algebraic multiplicities) of
the eigenvalues of the eigenvalue problem (2.21), AY(h), A2(h), - - -, such that }llin%) N (h) =

N for each j.
Let A be an eigenvalue of the Steklov eigenvalue problem (1.1) with algebraic mul-
tiplicity m. From the theorem 3.1 there are m eigenvalues A'(h), A2(h),---, A™(h) of
1

the problem (2.21) such that flzli% M (h) = A. Furthermore v 1

of the compact operators T with algebraic multiplicity m, and there are m eigenvalues

is an eigenvalue
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1 1 1
vi(h) 7)\1<h>+1,y( ) DRSS ,U"(h) )\m(h)+10 e operator Ty, suc
» 1 1
that}lLiH%)I/J(h):I/,j:LQ, , M. Takmgt-i s=1;t= l,s:iandtzl,s:l
in the inequality (3.18) respectively, it follows that
3 3
IT = Thll, 2 <Ch2; | T—=Tll_1,<Ch2; [T —Thl|_11 <ChH.
2 -2 22

An application of the theorem 3.2 in [2] yields the following error estimate
1 &
N J 2
’1/ mg:ly (h)‘ < Ch”.

Thus, for the Steklov eigenvalue problem the optimal error of the approximation can
be estimated by:
Theorem 3.2. The following error estimate holds

IA = X(h)| < CR?, (3.20)

where )\ [%i:: }_1 -1

4 Numerical example

Assume that the boundary I' of domain 2 is the unit circle, then the solution of
equation —Awu + u = 0 can be represented by polar coordinates (r,8):

u(r,0) = aply(r) + Z I,(r)(ay cos(nd) + by, sin(nd)),

where I,,(r) is the modified Bessel function of n order. The solution of (1.1) can be

found exactly. The eigenvalues of (1.1), A\g, A1, -, A, -, are derived as
i 1 (1)2k+1 i 2k +n (1)%
El(k+1)!1\2 kl(k +n)!\2
k=0 k=0
Ao = = D , (n=1,2,--4).
> G > mrriG)
(= —(5
= Kk = klN(E+n)th2
Table 1 Table 2
N | No. ) NOERREROI N[ No ) NOBREROI
41 1 ]0.4463900 | 0.4463853 1.0E-5 8 0.4463900 | 0.4463892 1.8E-6
2 | 1.2401937 | 1.1663211 6.0E-2 1.2401937 | 1.2361035 3.3E-3
3 |1.2401937 | 1.1663211 6.0E-2 1.2401937 | 1.2361035 3.3E-3
4 |2.1633061 | 1.1798572 4.6E-1 2.1633061 | 2.0663995 4.5E-2

2.1633061 | 2.0663995 4.5E-2
3.1234693 | 2.4059694 3.2E-1
3.1234693 | 2.4059694 3.2E-1
4.0991784 | 4.4638917 4.1E-1

0| [ O Oy x| W D] —
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Table 3 Table 4

N | No. A A(h) A= A(R)|/A N | No. A A(h) A = A(h)|/A

16| 1 |0.4463900 | 0.4463897 5.6E-7 16 | 10 | 5.0828424 | 4.1776521 1.8E-1
2 | 1.2401937 | 1.2398677 2.6E-4 11 | 5.0828424 | 4.4066215 1.3E-1
3 | 1.2401937 | 1.2398677 2.6E-4 12 | 6.0711122 | 4.4066215 2.7E-1
4 12.1633061 | 2.1576004 2.6E-3 13 [ 6.0711122 | 4.5227156 2.6E-1
5 |2.1633061 | 2.1576004 2.6E-3 14 | 7.0622843 | 4.5227156 3.6E-1
6 | 3.1234693 | 3.0831201 1.3E-2 15 | 7.0622843 | 4.6836211 3.4E-1
7 |3.1234693 | 3.0831201 1.3E-2 16 | 8.0554020 | 4.6836211 4.2E-1
8 |4.0991784 | 3.9235421 4.3E-2
9 |4.0991784 | 3.9235421 4.3E-2

Table 5 Table 6

N | No. A A(h) A= A(R)|/A N | No. A A(h) A= A(h)|/A

32| 1 |0.4463900 | 0.4463898 3.6E-7 64| 1 |0.4463900 | 0.4463898 3.8E-7
2 | 1.2401937 | 1.2401639 2.4E-5 2 | 1.2401937 | 1.2401959 1.8E-6
3 |1.2401937 | 1.2401639 2.4E-5 3 |1.2401937 | 1.2401959 1.8E-6
4 |2.1633061 | 2.1629144 1.8E-4 4 |2.1633061 | 2.1632757 1.4E-5
5 [2.1633061 | 2.1629144 1.8E-4 5 |2.1633061 | 2.1632757 1.4E-5
6 | 3.1234693 | 3.1210453 7.8E-4 6 | 3.1234693 | 3.1233061 5.2E-5
7 | 3.1234693 | 3.1210453 7.8E-4 7 | 3.1234693 | 3.1233061 5.2E-5
8 |4.0991784 | 4.0894507 2.4E-3 8 |4.0991784 | 4.0985680 1.5E-4
9 |4.0991784 | 4.0894507 2.4E-3 9 |4.0991784 | 4.0985680 1.5E-4
10 | 5.0828424 | 5.0531427 5.8E-3 10 | 5.0828424 | 5.0810625 3.5E-4
11 | 5.0828424 | 5.0531427 5.8E-3 11 | 5.0828424 | 5.0810625 3.5E-4
12 [ 6.0711122 | 5.9956369 1.2E-2 12 [ 6.0711122 | 6.0667543 7.2E-4
13 | 6.0711122 | 5.9956369 1.2E-2 13 | 6.0711122 | 6.0667543 7.2E-4
14 | 7.0622843 | 6.8940502 2.4E-2 14 | 7.0622843 | 7.0528876 1.3E-3
15 | 7.0622843 | 6.8940502 2.4E-2 15 | 7.0622843 | 7.0528876 1.3E-3
16 | 8.0554020 | 7.7159208 4.2E-2 16 | 8.0554020 | 8.0369855 2.3E-3
17 | 8.0554020 | 7.7159208 4.2E-2 17 | 8.0554020 | 8.0369855 2.3E-3
18 | 9.0498868 | 8.3082573 8.2E-2 18 | 9.0498868 | 9.0163677 3.7E-3
19 | 9.0498868 | 8.4176671 7.0E-2 19 | 9.0498868 | 9.0163677 3.7E-3
20 | 10.045369 | 8.4176671 1.6E-1 20 | 10.045369 | 9.9878516 5.7E-3
21 | 10.045369 | 8.4394114 1.6E-1 21 | 10.045369 | 9.9878516 5.7E-3
22 | 11.041600 | 8.4394114 2.4E-1 22 | 11.041600 | 10.947525 8.5E-3
23 | 11.041600 | 8.7598205 2.1E-1 23 | 11.041600 | 10.947525 8.5E-3
24 | 12.038409 | 8.7598205 2.7E-1 24 | 12.038409 | 11.890545 1.2E-2
25 | 12.038409 | 8.9466070 2.6E-1 25 | 12.038409 | 11.890545 1.2E-2
26 | 13.035672 | 8.9466070 3.1E-1 26 | 13.035672 | 12.810962 1.7E-2
27 | 13.035672 | 9.1003002 3.0E-1 27 | 13.035672 | 12.810962 1.7E-2
28 | 14.033299 | 9.1003002 3.5E-1 28 | 14.033299 | 13.701548 2.4E-2
29 | 14.033299 | 9.2500676 3.4E-1 29 | 14.033299 | 13.701548 2.4E-2
30 | 15.031211 | 9.2500676 3.8E-1 30 | 15.031211 | 14.553675 3.2E-2
31 | 15.031211 | 9.2953988 3.8E-1 31 | 15.031211 | 14.553675 3.2E-2
32 | 16.029388 | 9.2953988 4.2E-1 32 | 16.029388 | 15.357241 4.2E-2

In this example, I' is divided into N segments with equal arc length by the nodes
2t = (21(8;),22(s)), i = 0,1,---, N. The matrix eigenvalue problem which is derived
from the discrete problem (2.21) is solved approximately by numerical method. The
numerical results are arranged in the following table 1 to table 6. As can be seen
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from the table entries, the convergence of A\(h) to A is quadratic. It shows that the
approximate method in this paper is very efficient, especially for the first few eigenval-
ues. In the following tables, A\; and \;(h) denote the exact eigenvalue of (1.1) and its
approximation for ¢ =0,1,2,---.

1]
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