
Journal of Computational Mathematics, Vol.16, No.2, 1998, 179–192.

HIGH RESOLUTION SCB SCHEME FOR HYPERBOLIC

SYSTEMS OF 2-D CONSERVATION LAWS∗1)

Ning Zhao
(Department of Aerodynamics, Nanjing University of Aeronautics and Astronautics, Nanjing

210016, China)

Abstract

In this paper, a new class of high resolution schemes satisfying the “condition
A” (SCA) and the “condition B” (SCB) for hyperbolic systems of conservation laws
in one and two dimensions are constructed. Moreover, the results of the numerical
experiments by using these schemes are given for the system of Euler equations in
one and two dimensions.
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1. Introduction

Consider numerical solutions of the initial value problem for hyperbolic conservation

laws in one dimension

∂u

∂t
+
∂f(u)

∂x
= 0 (1.1a)

u(x, 0) = u0(x) (1.1b)

where u = (u1, u2, · · · , um)T and f(u) = (f1(u), f2(u), · · · , fm(u))T .

And conservation laws in two dimensions

∂u

∂t
+
∂f(u)

∂x
+
∂g(u)

∂y
= 0 (1.2a)

u(x, y, 0) = u0(x, y) (1.2b)

where u = (u1, u2, · · · , um)T , f(u) = (f1(u), f2(u), · · ·, fm(u))T , and g(u) = (g1(u),

g2(u), · · ·, gm(u))T .

For the scalar conservation laws in one dimension, the TVD concept by A. Harten[3]

is widely accepted to design the numerical schemes for theoretical purposes and prac-

tical applications. The total variation of a grid function {uj} denoted by TV (u) is

defined as

TV (u) =
∑

j

| uj+1 − uj | . (1.3)
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Let BV (R) be the space of functions with bounded variation. A difference scheme

L(un+1) = R(un),

is called as TVD scheme, if for any un ∈ BV (R)

TV (un+1) ≤ TV (u). (1.4)

Encouraged by the success of the TVD schemes in 1−D, one wants to extend the TVD

schemes for two dimensions. The total variation of a grid function {uj,k} denoted by

TV (u) is defined as

TV (u) =
∑

j,k

[∆y | uj+1,k − uj,k | +∆x | uj,k+1 − uj,k |]. (1.5)

Same as the case in 1 − D, a difference scheme is called as TVD scheme, if for any

un ∈ BV (R2)

TV (un+1) ≤ TV (un). (1.6)

Unfortunately, any conservative TVD scheme for solving scalar conservation laws in

two dimensions is at most first order accurate[2]. Hence, it may be worthy of creating

new conception beyond TVD in two dimensions. In [7], we have developed a new kind

of total variation stability criteria, so-called the “condition A” and the “condition B”,

and discussed the relationship between them and the TVD conditions. In this paper,

we construct a class of high resolution schemes satisfying the “condition A” (SCA) and

the “condition B” (SCB) for hyperbolic systems of conservation laws in one dimension

and two dimensions. Lastly, some numerical results for the system of Euler equations

are given in one and two dimensions.

The organization of this paper is as follows. In section 2, we briefly review the

theoretical results in [7]. In section 3 and 4, we construct second order accurate SCA

and SCB schemes in one and two dimensions to hyperbolic systems of conservation

laws respectively. In section 5, we give the numerical results for the system of Euler

equations in one and two dimensions.

2. The “Condition A” and the “Condition B”

In this section, we review the theory developed in [7] for scalar conservation laws

(m = 1 in (1.1) and (1.2)).

First, let us discuss the conservative schemes in one dimension. Partition the space

[0, T ]× [−∞,∞]. Let ∆t and ∆x be the temporal and spatial step lengths, respectively.

Denote the numerical solution at the point (xj , t
n) by un

j . xj = j∆x, tn = n∆t

(j = 0,±1,±2, · · ·, n = 0, 1, 2, · · ·), λ = ∆t/∆x.

A conservative scheme can be written as following:

un+1
j = un

j − λ(f
j+

1
2
− f

j−
1
2
) (2.1)
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f
j+

1
2

= h(un
j−k+1, · · · , un

j+k) and h(u, · · · , u) = f(u).

We say that a scheme satisfies the “condition A” (SCA), if the following inequality

holds for every integer n

∑

j

(∣

∣

∣un+1
j − 1

2
(un

j+1 + un
j

)∣

∣

∣ +
∣

∣

∣un+1
j − 1

2
(un

j + un
j−1

)∣

∣

∣) ≤
∑

j

| un
j+1 − un

j | (2.2)

For the relationship between the “condition A” and TVD conditions, we have

Theorem 2.1. A scheme is TVD if it satisfies the “condition A”.

For the schemes of incremental form

un+1
j = un

j + C
j+

1
2
(un

j+1 − un
j ) −D

j−
1
2
(un

j − un
j−1), (2.3)

similar to the TVD property[3], we have

Theorem 2.2. If the schemes (2.3) satisfy that

0 ≤ C
j+

1
2
, D

j+
1
2
≤ 1

2
(2.4)

then, the schemes satisfy the “condition A” (SCA).

Obviously, the condition A is stricter than the TVD condition. The purpose that we

introduce the concept of the condition A is to obtain a condition which the second order

schemes in two dimensions should be satisfied based on the condition A. The condition

B, defined as follows, does be the condition we want to obtain in two dimensions.

Now, let us discuss the conservative schemes in two dimensions.

Partition the space R+ × R2. Let ∆t be the temporal step length, and ∆x, ∆y

the spatial step lengths in x, y-direction, respectively. Denote the numerical solution

at the point (xj , yk, t
n) as un

j,k. xj = j∆x, yk = k∆y, tn = n∆t (j, k = 0,±1,±2, · · ·,
n = 0, 1, 2, · · ·) λ = ∆t/∆x, µ = ∆t/∆y. So, conservative schemes in two dimension

can be written as

un+1
j,k = un

j,k − λ(f
j+

1
2 ,k

− f
j−

1
2 ,k

) − µ(g
j,k+

1
2
− g

j,k−
1
2
) (2.5)

where f
j+

1
2 ,k

= hf (un
j−l+1,k−s, · · · , un

j+l,k+s), g
j,k+

1
2

= hg(un
j−l,k−s+1, · · · , un

j+l,k+s)

and hf (u, · · · , u) = f(u), hg(u, · · · , u) = g(u).

Similar to the case in one dimension, we say that a numerical scheme satisfies the

“condition A” in two dimensions if

1

2
(∆x+ ∆y)

∑

j,k

[∣

∣

∣un+1
j,k − 1

4
(un

j,k + un
j+1,k + un

j,k+1 + un
j+1,k+1)

∣

∣

∣

+
∣

∣

∣un+1
j,k − 1

4
(un

j,k + un
j−1,k + un

j,k+1 + un
j−1,k+1)

∣

∣

∣

+
∣

∣

∣un+1
j,k − 1

4
(un

j,k + un
j+1,k + un

j,k−1 + un
j+1,k−1)

∣

∣

∣
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+
∣

∣

∣un+1
j,k − 1

4
(un

j,k + un
j−1,k + un

j,k−1 + un
j−1,k−1)

∣

∣

∣

]

≤
∑

j,k

(∆y | un
j,k − un

j−1,k | +∆x | un
j,k − un

j,k−1 |) (2.6)

But, what can be obtained is that

∑

j

[∣

∣

∣un+1
j − 1

2
(un

j+1 − un
j )

∣

∣

∣ +
∣

∣

∣un+1
j − 1

2
(un

j + un
j−1)

∣

∣

∣

]

≤ 1

2

∑

j

| un
j+1 − un

j | . (2.7)

when the “condition A” in two dimensions degenerates into one dimension and ∆x =

∆y. Obviously, the condition (2.7) is too constrict to construct high resolution schemes,

and conflicts with the “condition A” in one dimension. So, we define another stability

criteria, the “condition B”, in two dimensions as follows.

We say that a scheme satisfies the “condition B” (SCB), if it satisfies the following

inequality:

∑

j,k

[∣

∣

∣un+1
j,k − 1

4
(un

j,k + un
j+1,k + un

j,k+1 + un
j+1,k+1)

∣

∣

∣

+
∣

∣

∣un+1
j,k − 1

4
un

j,k + un
j−1,k + un

j,k+1 + un
j−1,k+1)

∣

∣

∣

+
∣

∣

∣un+1
j,k − 1

4
(un

j,k + un
j,k−1 + un

j+1,k + un
j+1,k−1)

∣

∣

∣

+
∣

∣

∣un+1
j,k − 1

4
(un

j,k + un
j−1,k + un

j,k−1 + un
j−1,k−1)

∣

∣

∣

]

≤2
∑

j,k

[| un
j+1,k − un

j,k | + | un
j,k+1 − un

j,k |] (2.8)

It is easy to see that a scheme satisfies the “condition B” in two dimensions, then it

also satisfies the “condition A” in one dimension, of course is TVD, when it degenerates

into one dimension. It is well known that TVD schemes in two dimensions must be the

first order accuracy[2]. However, SCB schemes present can be second order accurate.

The second order accurate SCB schemes will be obtained in the section 4.

For the schemes of incremental form in two dimensions:

un+1
j,k =un

j,k + C
j+

1
2 ,k

(un
j+1,k − un

j,k) −D
j−

1
2 ,k

(un
j,k − un

j−1,k)

+ C
j,k+

1
2
(un

j,k+1 − un
j,k) −D

j,k−
1
2
(un

j,k − un
j,k−1) (2.9)

similar to the Theorem 2.2, we have

Theorem 2.3. If the coefficients of the schemes (2.9) satisfy that

0 ≤ C
j+

1
2 ,k
,D

j+
1
2 ,k
, C

j,k+
1
2
,D

j,k+
1
2
≤ 1

4
(2.10)

then the schemes satisfy the “condition B” (SCB).
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3. Nonlinear Conservation Laws in One Dimension

Firstly, let us consider scalar hyperbolic conservation laws in one dimension:

∂u

∂t
+
∂f(u)

∂x
= 0, u(x, 0) = u0(x) (3.1)

Approximating (3.1), we use the second order accurate conservative scheme

un+1
j = un

j − λ(f
j+

1
2
− f

j−
1
2
) (3.2)

f
j+

1
2

= f̃
j+

1
2

+ Φ
j+

1
2

(3.3)

where f̃
j+

1
2

is the numerical flux of the first order accurate scheme. Φ
j+

1
2

is the

antidiffussion term. In general, (the notations are conventional, fj = f(un
j ))

f̃
j+

1
2

=
1

2
(fj + fj+1 −Q(a

j+
1
2
)∆

j+
1
2
u) (3.4)

where

Q(x) =







| x |, | x |> ε

1

2ε
(| x |2 +ε2), | x |≤ ε.

and

a
j+

1
2

=







fj+1 − fj

uj+1 − uj
, uj+1 6= uj

f ′(uj), uj+1 = uj

In the smooth region of the solution of (3.1), Φ
j+

1
2

should satisfies

Φ
j+

1
2

=
1

2
[Q(a

j+
1
2
) − λa2

j+
1
2

]∆
j+

1
2
u+O(∆x2) (3.5)

such that the scheme (3.2) is second order accurate.

As usual, we take

Φ
j+

1
2

=
1

2
[Q(a

j+
1
2
) − λa2

j+
1
2

]d
j+

1
2

(3.6)

where d
j+

1
2

is

d
j+

1
2

= d(∆
j−

1
2
u,∆

j+
1
2
u,∆

j+
3
2
u) (3.7)

For the scheme defined above, we have

Theorem 3.1. If the function d satisfies

d(α1, α2, α3) = rkαk, (k = 1, 2, 3), 0 ≤ rk ≤ θ ≤ 2

then, the scheme (3.2) satisfies the “condition A” (SCA) if the inequality

λmax
j
Q(a

j+
1
2
) ≤ 1

2 + θ
(3.8)
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holds.

Proof. We rewrite the scheme (3.2) into incremental form

un+1
j = uj + C

j+
1
2
∆

j+
1
2
u−D

j−
1
2
∆

j−
1
2
u

where

C
j+

1
2

=
λ

2

[

(Q(a
j+

1
2
) − a

j+
1
2
) + (Q(a

j−
1
2
) − λa2

j−
1
2

)
d

j−
1
2

∆
j+

1
2
u

]

D
j+

1
2

=
λ

2

[

(Q(a
j+

1
2
) + a

j+
1
2
) + (Q(a

j+
3
2
) − λa2

j+
3
2

)
d

j+
3
2

∆
j+

1
2
u

]

According to the definition of the function Q(x), we have

C
j+

1
2
≥ 0, D

j+
1
2
≥ 0.

Moreover,

C
j+

1
2
≤ λ

2
[2Q(a

j+
1
2
) + θQ(a

j−
1
2
)],

therefore, C
j+

1
2
≤ 1

2
if

[2 + θ]
λ

2
max

j
Q(a

j+
1
2
) ≤ 1

2

i.e.

λmax
j
Q(a

j+
1
2
) ≤ 1

2 + θ
.

So, 0 ≤ C
j+

1
2
≤ 1

2
if the inequality (5.8) holds.

Similarily, we have 0 ≤ D
j+

1
2
≤ 1

2
if (3.8) holds. The proof is completed.

Now, we generalize the high resolution SCA schemes to hyperbolic systems of con-

servation laws.

For the system of equations (1.1), the Jacobian matrix of the functions f

A =
∂f

∂u
. (3.9)

λ1, λ2, · · · , λm denote the eigenvalues of A. r1, r2, · · · , rm and l1, l2, · · · , lm denote right

and left eigenvectors of the matrix A, respectively. So,

A = RΛL (3.10)

where

R = (r1, · · · , rm), Λ = diag (λ1, · · · , λm) and L = (l1, · · · , lm)T . (3.11)
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In the scheme (3.3), the difference of the function u is replaced to the system (1.1) by

(αk)j+1
2

= (lk)
T

j+
1
2

∆
j+

1
2
u and α

j+
1
2

= ((α1)j+1
2
, · · · , (αm)

j+
1
2
)T

So, the numerical flux can be generalized into

f
j+

1
2

=
1

2
(fj + fj+1) −

1

2
R

j+
1
2

{

Q(Λ)
j+

1
2
α

j+
1
2
−

[

Q(Λ)
j+

1
2
− λΛ2

j+
1
2

]

(

d

(

(α1)j−1
2
, (α1)j+1

2
, (α1)j+3

2

)

, · · · , d
(

(αm)
j−

1
2
, (αm)

j+
1
2
, (αm)

j+
3
2

))T
}

(3.12)

where the index
j+

1
2

represents some kind of average such as Roe average, and

Q(Λ)
j+

1
2

= diag

(

Q

(

(λ1)j+1
2

)

, · · · , Q
(

(λm)
j+

1
2

))

. (3.13)

In section 5, we will give numerical results for the system of Euler equations in one

dimension by using the scheme (3.12).

4. Nonlinear Conservation Laws in Two Dimensions

In this section , we firstly discuss scalar hyperbolic conservation laws in two dimen-

sions
∂u

∂t
+
∂f(u)

∂x
+
∂g(u)

∂y
= 0 (4.1)

We use the conservative scheme

un+1
j,k = uj,k − λ(f

j+
1
2 ,k

− f
j−

1
2 ,k

) − µ(g
j,k+

1
2
− g

j,k−
1
2
) (4.2)

to approximate the equation (4.1).

For the second order accuracy, we take

f
j+

1
2 ,k

= f̃
j+

1
2 ,k

+ Φ
j+

1
2 ,k

+ φ
j+

1
2 ,k

g
j,k+

1
2

= g̃
j,k+

1
2

+ Ψ
j,k+

1
2

+ ψ
j,k+

1
2

where

f̃
j+

1
2 ,k

=
1

2
[fj,k + fj+1,k −Q(a

j+
1
2 ,k

)∆
j+

1
2 ,k
u]

g̃
j,k+

1
2

=
1

2
[gj,k + gj,k+1 −Q(b

j,k+
1
2
)∆

j,k+
1
2
u]

Φ
j+

1
2 ,k

=
1

2
[Q(a

j+
1
2 ,k

) − λa2

j+
1
2 ,k

]d
j+

1
2 ,k
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Ψ
j,k+

1
2

=
1

2
[Q(b

j,k+
1
2
) − µb2

j,k+
1
2

]d
j,k+

1
2

and

a
j+

1
2 ,k

=







fj+1,k − fj,k

uj+1,k − uj,k
, uj+1,k 6= uj,k

f ′(uj,k), uj+1,k = uj,k

b
j,k+

1
2

=







gj,k+1 − gj,k

uj,k+1 − uj,k
, uj,k+1 6= uj,k

g′(uj,k), uj,k+1 = uj,k

the limiters

d
j+

1
2 ,k

= d(∆
j−

1
2 ,k
u,∆

j+
1
2 ,k
u,∆

j+
3
2 ,k
u)

d
j,k+

1
2

= d(∆
j,k−

1
2
u,∆

j,k+
1
2
u,∆

j,k+
3
2
u)

φ
j+

1
2 ,k

= −µa
j+

1
2 ,k
mg

j+
1
2 ,k
, ψ

j,k+
1
2

= −λb
j,k+

1
2
mf

j,k+
1
2

mg

j+
1
2 ,k

= minmod [∆
j,k+

1
2
g,∆

j+1,k+
1
2
g,∆

j,k−
1
2
g,∆

j+1,k−
1
2
g]

mf

j,k+
1
2

= minmod [∆
j+

1
2 ,k
f,∆

j+
1
2 ,k+1

f,∆
j−

1
2 ,k
f,∆

j−
1
2 ,k+1

f ]

For making the scheme (4.2) satisties the “condition B”, we modify ψ
j,k+

1
2
− ψ

j,k−
1
2

into

−λ
2
[b

j,k+
1
2
mf

j,k+
1
2

− b
j,k−

1
2
mf

j,k−
1
2

]
(

d
j−

1
2 ,k

∆
j+

1
2 ,k
u

+
d

j+
1
2 ,k

∆
j−

1
2 ,k
u

)

and φ
j+

1
2 ,k

− φ
j−

1
2 ,k

into

−µ
2
[a

j+
1
2 ,k
mg

j+
1
2 ,k

− a
j−

1
2 ,k
mg

j−
1
2 ,k

]
(

d
j,k−

1
2

∆
j,k+

1
2
u

+
d

j,k+
1
2

∆
j,k−

1
2
u

)

For the scheme defined above, we have

Theorem 4.1. If the function d satisfies that

d(α1, α2, α3) = rkαk, k = 1, 2, 3, 0 ≤ rk ≤ θ ≤ 2

then the scheme defined above satisfies the “condition B” if the inequalities

λmax
j,k

Q(a
j+

1
2 ,k

) ≤ 3

4(3 + 2θ)
(4.3)

µmax
j,k

Q(b
j,k+

1
2
) ≤ 3

4(3 + 2θ)
(4.4)

holds.
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Proof. Since the proof is similar to that of Theorem 3.1, it is omitted.

Now, we generalize the high resolution SCB schemes to hyperbolic systems of con-

servation laws.

For the system of equations (1.2), the Jacobian matrices of the functions f and g

Ax =
∂f

∂u
and Ay =

∂g

∂u
(4.5)

λx
1 , λ

x
2 , · · · , λx

m and λy
1, λ

y
2, · · · , λy

m denote the eigenvalues of Ax and Ay, respectively.

rx
1 , r

x
2 , · · ·, rx

m, lx1 , l
x
2 , · · · , lxm and ry

1 , r
y
2 , · · · , ry

m, ly1 , l
y
2 , · · · , lym denote right and left eigen-

vectors of the matrices Ax and Ay, respectively. So,

Ax = RxΛxLx and Ay = RyΛyLy (4.6)

where

Rx = (rx
1 , · · · , rx

m), Λx = diag (λx
1 , · · · , λx

m) and Lx = (lx1 , · · · , lxm)T

Ry = (ry
1 , · · · , ry

m), Λy = diag (λy
1, · · · , λy

m) and Ly = (ly1 , · · · , lym)T . (4.7)

In the scheme (4.2), the difference of the function u is replaced to the system (1.2) in

x- or y-direction respectively by

(αx
s )

j+
1
2 ,k

= (lxs )T
j+

1
2 ,k

∆x

j+
1
2 ,k

u and αx

j+
1
2 ,k

= ((αx
1)

j+
1
2 ,k
, · · · , (αx

m)
j+

1
2 ,k

)T

(4.8)

(αy
s)j,k+

1
2

= (lys )T
j,k+

1
2

∆y

j,k+
1
2

u and αy

j,k+
1
2

= ((αy
1)j,k+

1
2
, · · · , (αy

m)
j,k+

1
2
)T

(4.9)

So, the numerical flux can be generalized into

f
j+

1
2 ,k

=
1

2
(fj,k + fj+1,k) −

1

2
Rx

j+
1
2 ,k

{

Q(Λx)
j+

1
2 ,k
αx

j+
1
2 ,k

−
[

Q(Λx)
j+

1
2 ,k

− λ(Λx)2
j+

1
2 ,k

]

•
(

d

(

(αx
1)

j−
1
2 ,k
, (αx

1)
j+

1
2 ,k
, (αx

1 )
j+

3
2 ,k

)

, · · · , d
(

(αx
m)

j−
1
2 ,k
, (αx

m)
j+

1
2 ,k
, (αx

m)
j+

3
2 ,k

))T

+
µ

2
(Λx)

j+
1
2 ,k

(Lx)T
j+

1
2

mg

j+
1
2 ,k

}

(4.10)

and

g
j,k+

1
2

=
1

2
(gj,k + gj,k+1) −

1

2
R

y

j,k+
1
2

{

Q(Λy)
j,k+

1
2
αy

j,k+
1
2

−
[

Q(Λy)
j,k+

1
2
− µ(Λx)2

j,k+
1
2

]

•
(

d

(

(αy
1)j,k−1

2
, (αy

1)j,k+
1
2
, (αy

1)j,k+
3
2

)

, · · · , d
(

(αy
m)j,k− 1

2
, (αy

m)
j,k+

1
2
, (αy

m)
j,k+

3
2

))T

+
λ

2
(Λy)

j,k+
1
2
(Lx)T

j,k+
1
2

mf

j,k+
1
2

}

(4.11)

where the index
j+

1
2 ,k

or
j,k+

1
2

represents some kind of average such as Roe average,

and

Q(Λx)
j+

1
2 ,k

= diag

(

Q

(

(λx
1)

j+
1
2 ,k

)

, · · · , Q
(

(λx
m)

j+
1
2 ,k

))

, (4.12)
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Q(Λy)
j,k+

1
2

= diag

(

Q

(

(λy
1)j,k+

1
2

)

, · · · , Q
(

(λy
m)

j,k+
1
2

))

, (4.13)

and

mg

j+
1
2 ,k

= minmod

[

∆
j,k+

1
2
g,∆

j+1,k+
1
2
g,∆

j,k−
1
2
g,∆

j+1,k−
1
2
g

]

(4.14)

mf

j,k+
1
2

= minmod

[

∆
j+

1
2 ,k

f ,∆
j+

1
2 ,k+1

f ,∆
j−

1
2 ,k

f ,∆
j−

1
2 ,k+1

f

]

. (4.15)

In section 5, we will give numerical results for the system of Euler equations in two

dimensions by using the above scheme.

5. Numerical Experiments

In this section, we give some numerical examples to the schemes constructed in

provious sections.

All numerical results presented here were performed on a PC-AST/486 computer.

Firstly, we briefly describe our two test problems in one dimension: Sod and Lax

problems.
∂u

∂t
+
∂f(u)

∂x
= 0 (5.1)

where

u =





ρ

ρu

E



 , f(u) =





ρu

ρu2

(E + p)u



 (5.2)

where ρ, u,E, and p are respectively density, velocity, total energy, and pressure of a

γ-law gas with γ = 1.4. The pressure satisfies the equation of state p = 0.4
(

E− 1

2
ρu2

)

.

The sound speed is c =
√

1.4p/ρ.

The Sod and Lax problems are simple Riemann-problems given respectively by the

initial data

(ρ(x), u(x), p(x)) =

{

(1, 0, 1) if x < 0.5

(0.125, 0, 0.1) if x ≥ 0.5
(5.3)

and

(ρ(x), u(x), p(x)) =

{

(0.445, 0.698, 3.528) if x < 0.5

(0.5, 0, 0.571) if x ≥ 0.5
(5.4)

100 equally space grid points are used over the interval [0, 1] for both problems, with

T = 0.18 for the Roe problem (Fig. 1), and T = 0.14154 for the Lax problem (Fig. 2).

The CFL restriction=0.6.

Moreover, let us describe two test problems in two dimensions: the regular shock

reflection problem and the ramp problem[1].

∂u

∂t
+
∂f(u)

∂x
+
∂g(u)

∂y
= 0 (5.5)
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where

u =









ρ

m

n

E









f(u) =









m

m2/ρ+ p

mn/ρ

m(E + p)/ρ









g(u) =









n

mn/ρ

n2/ρ+ p

n(E + p)/ρ









(5.6)

where ρ,m, n,E, and p are respectively density, momentum in x-direction and y-

direction, total energy, and pressure of a γ-law gas with γ = 1.4. The pressure satisfies

the equation of state p = 0.4
(

E − 1

2
(m2 + n2)/ρ

)

. The sound speed is c =
√

1.4p/ρ.

m = ρu, n = ρv, where u, v are velocities in x- and y-directions, respectively.

To begin, let us discuss the treatment of boundary conditions. As the case in [1], the

accuracy of our unsplit scheme is also sensitive to the reflecting boundary conditions,

which is different from the operator split methods. In our calculation, the treatment of

reflecting boundary conditions is as following:

Assume the point x0 be the boundary grid point, and the next grid points in the

calculating domain x1, x2. So, To calculate the function value of u on the boundary

grid point x0, u
n+1
0 , the values of u at t = tn level on the outside grid points, un

−1 and

un
−2, should be known. For the reflecting boundary conditions, in our calculation, take

un
−1 = −un

1 and un
−2 = −un

2 . (5.7)

For the outflow boundary conditions, take

un
−1 = un

0 and un
−2 = un

0 . (5.8)

For the system of equations (5.5), Jacobian matrices of the functions f and g are

respectively:

A =
∂f

∂u
and B =

∂g

∂u
(5.9)

and

A = RxΛxLx B = RyΛyLy (5.10)

where the concrete forms of matrices A,Rx,Λx,Lx, B,Ry,Λy, and Ly refer to ref.[4].
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Fig.1a Density Fig.2a Density
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Fig.1 The Sod problem Fig.2. The Lax problem

Now, let us consider the regular shock reflection problem [1] (Fig. 3). The compu-

tational domain is a rectangle of length 4 and height 1. This domain is divided into a

60 × 20 rectangular grids, with ∆x = 1/15, ∆y = 1/20. The boundary conditions are

that of a reflection condition along the bottom boundary, supersonic outflow along the

right boundary, and Dirichlet conditions on the other two sides, given by

(ρ, u, v, p)T |(0,y,t) = (1., 2.9, 0., 1/1.4)T

(ρ, u, v, p)T |(x,1,t) = (1.69997, 2.61934,−0.50632, 1.52819)T . (5.11)

Initially, set the solution in the entire domain to be that at the left boundary. we

iterate for 1000 time steps using CFL=0.45 with ∆x = 1/15 and ∆y = 1/20, at which

time the solution reach a steady state. We show the contour plots of the density in the

Fig. 4 and the value of density at y = 0.5 in the Fig. 5, respectively.
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Fig.3 The regular shock reflection problem

Fig.4 Regular shock reflection problem with ∆x = 1/15 and ∆y = 1/20 1000 time steps, CFL=0.45
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Fig.5. The value of density at y = 0.5

The second problem is the ramp problem[4], which is solved on the domain (x, y) ∈
(0, 4) × (0, 1) with t running from t = 0 to t = 0.2. The initial data are

u(x, y, 0) =

{

uL for y ≥ h(x, 0)

uR for y < h(x, 0)
(5.12)

where

uL = (8., 57.1597,−33.0012, 563.544)T

uR = (1.4, 0., 0., 2.5)T (5.13)

h(x, t) =
√

3
(

x− 1

6

)

− 20t.

Data uL and uR correspond to a Mach 10 planar shock (γ = 1.4) at an angle

of 60o with the x-axis. The boundary conditions for boundaries A − F in Fig.6 are

time-dependent. The location of the point separating boundaries E and F is

xEF =
1

6
+

√
3

3
(1 + 20t).

The boundary conditions are

A : u(x, y) = uL, B: same as A, C : reflecting



192 N. ZHAO

D : u(x, y) = uR, E: same as A, F : same as D.

Fig.7 depicts the density at t = 0.2 for the ramp problem with ∆x = ∆y = 1/30, and

Figure 8 the density with ∆x = ∆y = 1/60, respectively.

bb
B

0.00

A

1.00
E / F

D

3.002.001.00

C

Fig.6. The ramp problem domain

Fig.7. The ramp problem with ∆x = ∆y = 1/30, final time 0.2, CFL=0.45

Fig.8. The ramp problem with ∆x = ∆y = 1/60, final time 0.2, CFL=0.45
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