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THE LARGE TIME CONVERGENCE OF
SPECTRAL METHOD FOR GENERALIZED

KURAMOTO-SIVASHINSKY EQUATION (II)∗1)

Xin-ming Xiang
(Shanghai Normal University, Shanghai 200234, China)

Abstract

In this paper, we study fully discrete spectral method and long time behav-
ior of solution of generalized Kuramoto-Sivashinsky equation with periodic initial
condition. We prove that the large time error estimation for fully discrete solution
of spectral method. We prove the existence of approximate attractors AN , Ak

N

respectively and d(AN ,A) → 0, d(Ak
N ,A) → 0.
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1. Introduction

In the paper [1], we studed the generalized Kuramoto-Sivashinsky equation

ut + γuxxxx + βuxxx + αuxx + f(u)x + φ(u)xx = g(u) + h(x, t). (1.1)

We proved the existence and uniqueness of global solution for periodic initial problem
and gave the large time error estimation for the solution of continuous spectral method.

The aim of this paper is to study fully discrete spectral method and the long time
behavior of the solution of this system. In §1 we given the large time error estimation for
fully discrete solution of spectral method. In §2 we prove the existence of approximate
attractors AN , Ak

N and in §3 we prove the convergence of approximate attractors
d(AN ,A), d(Ak

N , A) → 0.

2. The Large Time Error Estimation of Fully Discrete Approximate
Solution

For the problem (1.1), we construct the following fully discrete approximate spectral
scheme

(1
k
(un

N − un−1
N ) + αun

Nxx + βun
Nxxx + γun

Nxxxx + f(un
N )x + φ(un

N )xx
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− g(un
N )− h(x, tn), χ

)
= 0, ∀χ ∈ SN , (2.1)

u0
N = u0N = FNu0, (2.2)

where the k is step size of time, FN is the orthogonal projective operator from L2(Ω)
to SN .

Lemma 1. If f(t), f ′(t) ∈ L2(R+), let fn = f(nk), k > 0, then

k
∞∑

n=1

f2
n ≤ (1 + k)

∫ +∞

0
|f |2dt + k

∫ +∞

0
|f ′|2dt. (2.3)

Proof. Using the integration by parts

kf2
n =

∫ tn

tn−1

(t− tn−1)
d

dt
f2dt +

∫ tn

tn−1

f2dt = 2
∫ tn

tn−1

(t− tn−1)ff ′dt +
∫ tn

tn−1

f2dt

≤
∫ tn

tn−1

(t− tn−1)(f2 + f ′2)dt +
∫ tn

tn−1

f2dt

≤ (1 + k)
∫ tn

tn−1

f2dt + k

∫ tn

tn−1

f ′2dt. (2.4)

Summing up for n in both sides of (2.4), we obtain the conclusion of Lemma.
Now we make priori estimates for the solution of (2.1)–(2.2).
Lemma 2. Under the conditions of Lemma 1 of [1] and assume ht ∈ L2(Q∞), then

we have the estimates for the solution of (2.1)–(2.2)

‖un
N‖2 ≤ 1

(1 + λk)n
‖u0‖2 + (1 + k)

∫ +∞

0
‖h(t)‖2dt + k

∫ +∞

0
‖ht(t)‖2dt ≤ C∗,

(2.5)

k
∞∑

n=1

‖Dj
xun

N‖2 ≤ C̃j

(
‖u0‖2 + (1 + k)

∫ +∞

0
‖h(t)‖2dt + k

∫ +∞

0
‖ht(t)‖2dt

)
= C∗

j ,

(2.6)
0 ≤ j ≤ 2,

where λ = −2
[
g0 +

1
2
(α + φ0 + 1)

]
> 0, C∗, C∗

j , 0 ≤ j ≤ 2 are constants independent
of N .

Lemma 3. If the conditions of Lemma 3 of [1] and Lemma 2 are satisfied and
assume hxt ∈ L2(Q∞), then we have

‖un
Nx‖2 ≤ 1

(1− 2kg0)n
‖u0x‖2 + C

[
(1 + k)

∫ +∞

0
‖hx(t)‖2 + k

∫ +∞

0
‖hxt(t)‖2dt

]

+ Ck
∞∑

j=1

‖uj
N‖2 ≤ E∗, ∀n ≥ 0, (2.7)

k
∞∑

n=1

‖D3
xun

N‖2 ≤ C∗
3 , (2.8)

where the same as Lemma 2, the constants E∗ and C∗
3 are all independent of N .
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The proof of Lemmas 2,3 is similar to the Lemmas 1, 3 of [1].
Now we estimate the error of fully discrete solution.
Let un = u(x, tn), by (1.1) at t = tn, we have

(1
k
(un − un−1) + αun

xx + βun
xxx + γun

xxxx + f(un)x + φ(un)xx − g(un)− h(x, tn), χ
)

=
(1
k
(un − un−1)− un

t , χ
)
, ∀χ ∈ SN . (2.9)

Putting un − un
N = un − FNun − (un

N − FNun) = ξn − ζn, then ζn satisfy

(1
k
(ζn − ζn−1) + αζn

xx + βζn
xxx + γζn

xxxx + f(un
N )x − f(un)x

+ φ(un
N )xx − φ(un)xx − g(un

N ) + g(FNun), χ
)

=
(1
k
(ξn − ξn−1) + αξn

xx + βξn
xxx + γξn

xxxx + g(FNun)− g(un), χ
)

+
(
un

t −
1
k
(un − un−1), χ

)
, ∀χ ∈ SN . (2.10)

Let χ = ζn, similar to the estimate of [1] and noting

∣∣∣
(
un

t −
1
k
(un − un−1), ζn

)∣∣∣ ≤





‖ζn‖
∥∥∥1
k

∫ tn

tn−1

(s− tn−1)utt(s)ds
∥∥∥ ≤ 1

8
‖ζn‖2

+Ck

∫ tn

tn−1

‖utt(s)‖2ds,

1
8
‖ζn‖2 +

C

kn2

∫ tn

tn−1

s2‖utt(s)‖2ds,

(2.11)

(2.12)

(g(un
N )− g(FNun), ζn) = (g′(ρn

3 )ζn, ζn) ≤ g0‖ζn‖2,

but

g(FNun)− g(un) = −g′(un)ξn +
1
2
g′′(ηn

3 )(ξn)2

= −g′′(ρn
4 )unξn − g′(0)ξn +

1
2
g′′(ηn

3 )(ξn)2.

By the orthogonal of ζn with ξn, (g′(0)ξn, ζn) = 0, hence we have

|(g(FNun)− g(un), ζn)| ≤ C‖g′′n‖L∞(‖un‖1 + ‖un
N‖1)‖ξn‖‖ζn‖

≤ 1
8
‖ζn‖2 + C‖g′′n‖2

L∞(‖un‖2
1 + ‖un

N‖2
1)‖ξn‖2.

Substituting the above estimates into (2.10) (let χ = ζn), we obtain

1
2k

(‖ζn‖2 − ‖ζn−1‖2) +
(
γ − α

2
− 2η

)
‖ζn

xx‖2 ≤
(
g0 +

α

2
+

1
4

)
‖ζn‖2

+ C1(‖un‖2
1 + ‖un

N‖2
1)‖ζn‖2 + C2(‖un‖2

1 + ‖un
N‖2

1)‖ξn‖2
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+ C3k

∫ tn

tn−1

‖utt(s)‖2ds. (2.13)

Noting γ − α

2
− 2η =

1
2
γ∗ > 0, g0 +

α

2
+

1
4

= −δ

2
< 0,

Rn
1 = 2C1(‖un‖2

1 + ‖un
N‖2

1), Rn
2 = 2C2(‖un‖2

1 + ‖un
N‖2

1),

then (2.14) can be written

‖ζn‖2 ≤ ‖ζn−1‖2 + kRn
1‖ζn‖2 + kRn

2‖ξn‖2 + C4k
2
∫ tn

tn−1

‖utt(s)‖2ds (2.14)

i.e.
‖ζn‖2 ≤ 1

1− kRn
1

[
‖ζn−1‖2 + kRn

2‖ξn‖2 + C5k
2
∫ tn

tn−1

‖utt(s)‖2ds
]
. (2.15)

According to Lemma 3 and Theorem 1 of [1] and we take k small enough such that

kRn
1 = 2kC1(‖un‖2

1 + ‖un
N‖2

1) <
1
2
. When 0 < x <

1
2
,

1
1− x

< 1 + 2x and ζ(0) = 0,

thus from (2.15) we have

‖ζn‖2 ≤ (1 + 2kRn
1 )

[
‖ζn−1‖2 + kRn

2‖ξn‖2 + C5k
2
∫ tn

tn−1

‖utt(s)‖2ds
]
≤ · · ·

≤
n∏

j=1

(1 + 2kRj
1)

n∑

p=1

[
kRp

2‖ξp‖2 + C5k
2
∫ tp

tp−1

‖utt(s)‖2ds
]
.

Thanks to ln(1 + x) ≤ x, for x ≥ 0, thus

ln
n∏

j=1

(1 + 2kRj
1) =

n∑

j=1

ln(1 + 2kRj
1) ≤ 2k

n∑

j=1

Rj
1,

from this we obtain
n∏

j=1

(1 + 2kRj
1) ≤ e

2k
∑n

j=1
Rj

1 ≤ exp
{
2kC

∞∑

j=1

(‖uj‖2
1 + ‖uj

N‖2
1)

}
≤ C.

Hence

‖ζn‖2 ≤ Ck
∞∑

j=1

Rj
2‖ξj‖2 + Ck2

∫ +∞

0
‖utt(s)‖2ds

≤ CN−2m sup
0<j<+∞

‖uj‖2
mk

∞∑

j=1

(‖uj‖2
1 + ‖uj

N‖2
1) + Ck2

∫ +∞

0
‖utt(t)‖2dt

≤ CN−2m sup
0<j<+∞

‖uj‖2
m

[
(1 + k)

∫ +∞

0
‖u(t)‖2

1dt + k

∫ +∞

0
‖ut(t)‖2

1dt

+ k
∞∑

j=1

‖uj
N‖2

]
+ Ck2

∫ +∞

0
‖utt(t)‖2dt ≤ C(N−2m + k2), ∀n ≥ 0.

(2.16)
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Using the triangle inequality, we obtain

‖un − un
N‖ ≤ ‖un − FNun‖+ ‖un

N − FNun‖ ≤ C(N−m + k), ∀n ≥ 0.

Summing up for n from 1 to Q on both sides of (2.13)

γ∗k
Q∑

n=1

‖ζn
xx‖2 + δk

Q∑

n=1

‖ζn‖2 ≤ 2C6k
Q∑

n=1

(‖un‖2
1 + ‖un

N‖2
1)(‖ζn‖2 + ‖ξn‖2)

+ 2C7k
2
∫ tQ

0
‖utt(s)‖2ds ≤ C8(N−2m + k2)k

∞∑

n=1

(‖un‖2
1 + ‖un

N‖2
1)

+ 2C7k
2
∫ +∞

0
‖utt(s)‖2ds

where C6, C7 and C8 are constants independent of Q. Thus we have

k
∞∑

n=1

(‖ζn
xx‖2 + ‖ζn‖2) ≤ C(N−2m + k2).

By the triangle inequality and interpolating inequality

k
∞∑

n=1

‖Dj
x(un − un

N )‖2 ≤ CN−2mk
∞∑

n=1

‖un‖2
m+j + C(N−2m + k2), 0 ≤ j ≤ 2.

Summing up, we obtain
Theorem 1. Suppose that the conditions of Lemma 3 is satisfied and f , φ, g ∈

C2, the solution of (1.1) u ∈ L∞(R+;Hm
p (Ω)) ∩ L2(R+;H1

p (Ω)), ut ∈ L2(R+;H1
p (Ω)),

utt ∈ L2(Q∞) (m ≥ 1), then for the solution of fully discrete problem (2.1)–(2.2) we
have the following large time error estimation

‖un − un
N‖ ≤ C(N−m + k), ∀n ≥ 0.

If further suppose that u, ut ∈ L2(R+;Hm+j
p (Ω)), 0 ≤ j ≤ 2, we have yet

k
∞∑

n=1

‖Dj
x(un − un

N )‖2 ≤ C(N−2m + k2).

3. The Existence of Global Approximate Attractors AN , Ak
N

For the problem (1.1), the existence of global attractor has been proved in [5].
Similar proof can be obtained for semidiscrete spectral approximate. Now we prove
semigroup operator Sk

N (n) of discrete problem (2.1) has a global attractor.
Lemma 4. Under the conditions of Lemma 3, suppose that f ∈ C1, φ ∈ C2,

g ∈ C1, u0 ∈ H2
p (Ω), then we have

‖un
Nxx‖2 ≤ 1

(1− 2g0k)n
‖u0xx‖2 + Ck

∞∑

n=0

(‖un
N‖2 + ‖un

Nx‖2)
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+ C

∫ ∞

0
(‖h(t)‖2 + ‖ht(t) |2)dt ≤ E, ∀n ≥ 0,

where the constant E is independent of N .
Combining the Lemmas 2-4, we can obtain that there exist constants Ai(i = 0, 1, 2)

independent of N , such that the solution of (2.1)-(2.2) belong to the set B0 , {un
N ∈

H2
p (Ω) ∩ SN |‖Di

xun
N‖ ≤ Ai, i = 0, 1, 2} for enough large n. Hence the set B0 is a

bounded absorbing set of {Sk
N (n)}. Moreover, the semigroup operator Sk

N (n) maps
H2

p ∩ SN to H2
p ∩ SN and SN is a space of finite dimension for every N , hence Sk

N (n)
is completely continuous operator for n ≥ 1. By the result of [2], we have

Theorem 2. The semigroup operator SN (t) and Sk
N (n) have a compact global

attractors AN and Ak
N respectively.

4. The Convergence of the Approximate Attractors AN and Ak
N

In order to prove the convergence of the approximate attractors, we need the fol-
lowing theorem [2].

Let Hη is a family closed subspace of H, 0 < η ≤ η0 and ∪0<η≤η0Hη is dense in H .
For every η > 0, the semigroup operator Sη(t) maps Hη into itself and every operator
Sη(t) is continuous for t ≥ 0. Suppose that for every compact interval I∗ ⊂ (0,+∞)

δη(I∗) = sup
u0∈Hη
‖u0‖H≤R

sup
t∈I∗

d(Sη(t)u0, S(t)u0) → 0, η → 0.

We also assume that for every η > 0, Sη(t) possesses an attractor Aη that attracts any
bounded open neigbourhood which include Aη ∪ A.

Theorem 3. Under the above assumptions, we have

d(Aη, A) → 0, η → 0,

where d(X, Y ) is semidistance between X and Y , i.e. d(X, Y ) = sup
x∈X

inf
y∈Y

‖x− y‖H .

At first we discuss d(AN ,A) → 0, if N → +∞.
Lemma 5. Under the conditions of Lemma 3, we suppose that f ∈ C2, φ ∈ C3

g ∈ C1, then we have

‖uxxx(t)‖2 ≤ 2
t2

∫ t

0
s‖uxxx(s)‖2ds

+
C

t2

∫ t

0
[‖sux(s)‖2 + ‖suxx(s)‖2 + ‖shx(s)‖2]ds, for t > 0.

Proof. On both sides of (1.1) taking the inner product of with t2ux6 , similar to
Lemma 4, we can obtain

1
2

d

dt
‖tuxxx‖2 +

γ

2
‖tux5‖2 ≤ t‖uxxx‖2 + C(‖tux‖2 + ‖tuxx‖2 + ‖thx‖2). (4.1)
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Integrating (4.1) on both sides, we can obtain the result of Lemma immeditely.
According to (3.6) of [1]

‖uN (t)− FNu(t)‖2 = ‖ζ(t)‖2 ≤
∫ t

0
R2(s)‖ξ(s)‖2 exp

( ∫ t

s
R1(τ)dτ

)
ds

)
,

where R1(t) = 2(C1 + C3)(‖u(t)‖2
1 + ‖uN (t)‖2

1), R2(t) = 2[2C2‖u(t)‖2 + C4(‖u(t)‖2
1 +

‖uN (t)‖2
1 + C5‖g′‖2

L∞ ] and Ci (i = 1, · · · , 5) are constants independent of t and N . By
using Lemma 1 and 3 of [1],

sup
t∈R+

‖R2(t)‖ ≤ C, exp
( ∫ +∞

0
R1(t)dt

)
≤ C,

we have

‖uN (t)− FNu(t)‖2 ≤ C

∫ +∞

0
‖ξ(s)‖2ds = C

∫ +∞

0
‖u(s)− FNu(s)‖2ds

≤ CN−6
∫ +∞

0
‖uxxx(s)‖2ds.

Using the inverse property

‖uN (t)− FNu(t)‖2
2 ≤ CN4‖uN (t)− FNu(t)‖2 ≤ CN−2

∫ +∞

0
‖uxxx(s)‖2ds

and by Lemma 5, we have

‖u(t)− uN (t)‖2
2 ≤ 2[‖u(t)− FNu(t)‖2

2 + ‖uN (t)− FNu(t)‖2
2]

≤ CN−2
(
‖uxxx(t)‖2 +

∫ +∞

0
‖uxxx(s)‖2ds

)

≤ CN−2
(1

t

∫ +∞

0
‖uxxx(s)‖2ds +

∫ +∞

0
(‖u(s)‖2

3 + ‖hx(s)‖2)ds
)
, t > 0.

Finally according to Theorem 3, we take H = H2
p (Ω) and I = [T1, T2] ⊂ R+, then we

have
Theorem 4. d(AN ,A) → 0, as N → +∞.
Next we discuss d(Ak

N ,A) → 0, as N → +∞, k → 0.
For this, we need some priori estemates of ut and utt. Taking the inner product of

(1.1) with ut, we obtain
Lemma 6. If f ∈ C1, φ, g ∈ C2, h ∈ C0 ∩ L2(Q∞), u0 ∈ H2

p (Ω), then we have

sup
0≤t<+∞

‖uxx(t)‖ ≤ C∗
4 ,

∫ +∞

0
‖ut(s)‖2ds ≤ C∗

5 ,

where C∗
4 , C∗

5 are constants independent of t.
Differentiating (1.1) with respect to t and taking the inner product of the result

identity with ut, we have
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Lemma 7. Under the conditions of Lemma 6, we suppose that f ∈ C2, φ ∈ C3,
h, ht ∈ L2(Q∞), then we have

t‖ut(t)‖2 + γ

∫ t

0
s‖utxx(s)‖2ds ≤

∫ t

0
‖ut(s)‖2ds

+ C∗
6

∫ t

0
s(‖ut(s)‖2 + ‖ht‖2)ds, t > 0,

where the constant C∗
6 is independent of t.

Differentiating (1.1) with respect to t and taking the inner product of result identity
with utxx and utt respectively, we have

Lemma 8. Under the conditions of Lemma 7, we have

t2‖uxt(t)‖2 + γ

∫ t

0
s2‖uxxxt(s)‖2ds ≤ 2

∫ t

0
s‖uxt(s)‖2ds + 2

∫ t

0
s‖ut(s)‖2ds

+ C∗
7

∫ t

0
s2[‖ut(s)‖2 + ‖uxx(s)‖2‖ut(s)‖2 + ‖ht(s)‖2]ds,

γt2‖uxxt(t)‖2 +
∫ t

0
s2‖utt(s)‖2ds ≤ αt2‖uxt(t)‖2 + 2γ

∫ t

0
s‖uxxt(s)‖2ds

+ C∗
8

∫ t

0
s2(‖uxt(s)‖2 + ‖uxx(s)‖2‖ut(s)‖2 + ‖uxx(s)‖4‖ut(s)‖2

+ ‖uxx(s)‖2‖uxt(s)‖2 + ‖uxxxt(s)‖2 + ‖ht(s)‖2)ds,

where the constants C∗
7 , C∗

8 are independent of t.
These Lemmas can be proved as Lemma 5.

Thus, for any T > 0,
∫ T

0
s2‖utt(s)‖2ds ≤ ET .

Lemma 9. Under the conditions of Lemma 3, we suppose that f ∈ C2, φ ∈ C3,
g ∈ C1, hx, hxt ∈ L2(Q∞), then we have

‖uM
Nxxx‖2 ≤ C

Mk
k

M−1∑

n=0

‖un
Nxxx‖2 + Ck

M−1∑

n=1

(‖un+1
Nxx‖2 + ‖un+1

Nx ‖2 + ‖hn+1
x ‖2), ∀M ≥ 1,

where the constant C is independent of N and M .
Proof. Setting χ = (n− 1)2k2un

Nx6 in (2.1), we obtain

(1
k
(un

N − un−1
N ) + αun

Nxx + βun
Nxxx + γun

Nxxxx + f(un
N )x

+ φ(un
N )xx − g(un

N )− h(x, tn), (n− 1)2k2un
Nx6

)
= 0, (4.2)

Because
(1
k
(un

N − un−1
N ),(n− 1)2k2un

Nx6

)
= −(n− 1)2k(un

Nxxx − un−1
Nxxx, un

Nxxx)

= − 1
2k

[‖nkun
Nxxx‖2 − ‖(n− 1)kun−1

Nxxx‖2 − (2n− 1)‖kun
Nxxx‖2

+ ‖(n− 1)k(un
Nxxx − un−1

Nxxx)‖2]
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and using the interpolating inequality and Hölder inequality

|(αun
Nxx, (n− 1)2k2un

Nx6)| ≤α(n− 1)2k2‖un
Nxxx‖ ‖un

Nx5‖
≤C(n− 1)2k2‖un

Nx5‖
4
3 ‖un

Nxx‖
2
3

≤ η‖(n− 1)kun
Nx5‖2 + C‖(n− 1)kun

Nxx‖2.

By using the imbedding theorem ‖un
Nx‖∞ ≤ C‖un

Nxx‖ and Lemma 3

|(f(un
N )x, (n− 1)2k2un

Nx6)| = |(f ′′(un
N )(un

Nx)2 + f ′(un
N )un

Nxx, (n− 1)2k2un
Nx5)|

≤ η‖(n− 1)kun
Nx5‖2

+ C(‖un
Nx‖2‖(n− 1)kun

Nxx‖2 + ‖(n− 1)kun
Nxx‖2)

≤ η‖(n− 1)kun
Nx5‖2 + C‖(n− 1)kun

Nxx‖2.

Similarly

|(φ(un
N )xx, (n− 1)2k2un

Nx6)| =|(φ′′′(un
N )(un

Nx)3 + 3φ′′(un
N )un

Nxun
Nxx

+ φ′(un
N )un

Nxxx, (n− 1)2k2un
Nx5)|

≤η‖(n− 1)kun
Nx5‖2 + C

3∑

j=1

‖(n− 1)kDj
xun

N‖2,

|(g(un
N ), (n− 1)2k2un

Nx6)| = |(g′(un
N )un

Nx, (n− 1)2k2un
Nx5)|

≤ η‖(n− 1)kun
Nx5‖2 + C‖(n− 1)kun

Nx‖2.

Substituting above estimates into (2.1), we obtain

1
2k

(‖nkun
Nxxx‖2 − ‖(n− 1)kun−1

Nxxx‖2)

+ ‖(n− 1)k(un
Nxxx − un−1

Nxxx)‖2 +
γ

2
‖(n− 1)kun

Nx5‖2

≤ 2n− 1
2

k‖un
Nxxx‖2 + C(‖(n− 1)kun

Nxx‖2 + ‖(n− 1)kun
Nx‖2 + ‖(n− 1)khn

x‖2).

Summing up for n from 1 to M

1
2k
‖MkuM

Nxxx‖2 ≤k
M∑

n=1

2n− 1
2

‖un
Nxxx‖2

+ C
M−1∑

n=1

(‖nkun+1
Nxx‖2 + ‖nkun+1

Nx ‖2 + ‖nkhn+1
x ‖2), ∀M ≥ 1,

i.e.

‖uM
Nxxx‖2 ≤ C

Mk
k

M−1∑

n=1

‖un
Nxxx‖2 + Ck

M−1∑

n=1

(‖un+1
Nxx‖2 + ‖un+1

Nx ‖2 + ‖hn+1
x ‖2), ∀M ≥ 1.

In (2.13), the substitution of (2.12) for (2.11) and similar to (2.16) we have (m = 3)

‖ζn‖2 ≤ CkN−6
n∑

p=1

(‖up‖2
1 + ‖up

N‖2
1)‖up

xxx‖2 + C
n∑

p=1

1
p2

∫ tp

tp−1

s2‖utt(s)‖2ds
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≤ CN−6
∫ T

0
‖uxxx(s)‖2ds + C

n∑

p=1

1
p2

∫ tp

tp−1

s2‖utt(s)‖2ds.

Since ∞∑

p=1

1
p2

< +∞,

∫ tp

tp−1

s2‖utt(s)‖2ds → 0,

as k → 0, we can obtain ‖ζn‖ → 0, as N →∞, k → 0, T1 ≤ nk ≤ T2. If setting χ = ζn
x4

on (2.10), similarly to the estimate of ‖ζn‖ we have ‖ζn
xx‖ → 0, as N → ∞, k → 0,

T1 ≤ nk ≤ T2. Finally, by using the triangle inequality

‖S(nk)u0 − Sk
N (n)u0‖2

2 = ‖u(nk)− un
N‖2

2 ≤ 2[‖u(nk)− FNu(nk)‖2
2 + ‖FNu(nk)− un

N‖2
2]

≤ C(N−2‖un
xxx‖2 + ‖ζn‖2) → 0

uniformly on [T1, T2] as N →∞, k → 0 and u0 ∈ SN , ‖u0‖2 ≤ R, i.e.

δN (I∗) = sup
u0∈SN ,‖u0‖2≤R

sup
nk∈[T1,T2]

d(Sk
N (n)u0, S(nk)u0) → 0, N →∞, k → 0.

According to Theorem 3, we immediately obtain
Theorem 5. Under the conditions of Lemma 3, suppose that f ∈ C2, φ ∈ C3,

g, h ∈ C2, h ∈ C0 ∩ L2(Q∞), ht ∈ L2(Q∞), u0 ∈ H2
p (Ω) then we have

d(Ak
N ,A) → 0, N →∞, k → 0.
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