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KURAMOTO-SIVASHINSKY EQUATION (II)*V
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Abstract

In this paper, we study fully discrete spectral method and long time behav-
ior of solution of generalized Kuramoto-Sivashinsky equation with periodic initial
condition. We prove that the large time error estimation for fully discrete solution
of spectral method. We prove the existence of approximate attractors Ay, A’fv
respectively and d( Ay, A) — 0, d(A%;, A) — 0.
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1. Introduction
In the paper [1], we studed the generalized Kuramoto-Sivashinsky equation

We proved the existence and uniqueness of global solution for periodic initial problem
and gave the large time error estimation for the solution of continuous spectral method.

The aim of this paper is to study fully discrete spectral method and the long time
behavior of the solution of this system. In §1 we given the large time error estimation for
fully discrete solution of spectral method. In §2 we prove the existence of approximate
attractors Ay, A?V and in §3 we prove the convergence of approximate attractors

d(ANa -’4)7 d(AIIC\U A) — 0.

2. The Large Time Error Estimation of Fully Discrete Approximate
Solution

For the problem (1.1), we construct the following fully discrete approximate spectral
scheme

1 _
(F (R = a4 0 + BuRsae + Rz + R s+ G(UR )
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— g(uR) = h(z,tn),x) =0, Vx € Sy, (2.1)

u(])v = UQON — FNUO, (2.2)

where the k is step size of time, Fly is the orthogonal projective operator from L?()
to Sy.
Lemma 1. If f(t), f'(t) € L*(R"), let f, = f(nk), k > 0, then

o] +oco “+oo
ES <1+ k)/ |f|2dt + k/ ' 2dt. (2.3)
n=1 0 0
Proof. Using the integration by parts
tn d tn tn tn
kf? :/ (t—tn_l)—fzdwr/ frdt = 2/ (t—tn_l)ff’dt—i—/ fAdt
tn—1 dt tn—1 tn—1 tn—1

tn 2 /2 tn 2
< [T -t g )dt+/tn1f dt

tn—1

tn tn
< (1+k) f2dt + k fdt. (2.4)
tn_1 tn—l
Summing up for n in both sides of (2.4), we obtain the conclusion of Lemma.
Now we make priori estimates for the solution of (2.1)—(2.2).
Lemma 2. Under the conditions of Lemma 1 of [1] and assume hy € L*(Qs), then
we have the estimates for the solution of (2.1)—(2.2)

1 +o0 +oo
a3l < ol + (k) [ R4k [ b)) Pde < C
(1+ k) 0 0 (2.5)
- j 2 e 2 oo 2 +oo 2
B ID3uk] < Gy (lluol + L+ 8) [ IB@Pde+k [ ha(@))2dr) = €,
— 0 0 (2.6)
0<j=<2,

where X = —2{90 + %(a + ¢o + 1)} >0, C*, C7, 0 < j <2 are constants independent
of N.

Lemma 3. If the conditions of Lemma 3 of [1] and Lemma 2 are satisfied and
assume hyy € L?(Qs), then we have

1 —+o00 +o00
o< ————lue ||+ C (1 k/ hthk/ Bt (8)]1%dt
up||” < (1—2kgo)n”“° 1=+ [( + k) A [ ()17 + A | et (1) ] ]
+CkY |luly|> < E*, Vn>0, (2.7)
j=1
o0
kY | D3uy||* < Cs, (2.8)
n=1

where the same as Lemma 2, the constants E* and C35 are all independent of N.
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The proof of Lemmas 2,3 is similar to the Lemmas 1, 3 of [1].
Now we estimate the error of fully discrete solution.
Let u™ = u(x,ty), by (1.1) at t = t,,, we have

1 - n n n n n n
(%(un —u" 1) + AUy, + ﬁu:m:x + YUzzra + f(u )il? + (b(u )zw - g(u ) - h’(x7tn)7X)
1 - n
:(%(u"—u" 1)—ut,x>, Vx € Sn. (2.9)

Putting v — uf}, = u" — Fyu" — (ujy — Fyu™) = " — (", then (" satisfy

(6" = ™) A, + B 9o + S () = ()
+ (U oz — O™} — g(uy) + g(Fyu™), X)

:<%(€n £ 1) + aga:w + chcaza: + 7 x:ca:a: + Q(FNUH) — g(un)’ X)
1

+ (U? - %(Un - Un_l)aX)7 Vx € Sn. (2.10)

Let x = ¢™, similar to the estimate of [1] and noting

IEUE [ (s b)) < S
L _— n—1 )Wttt =3
1 tn
[ s Wa) | ER el / Juae(5)2ds, (2.11)
t
n "2 2 2.12
Sllenl+ 22 / | (o), (2.12)

(9(u) — g(Enu"),¢") = (¢'(P5)C", ") < gollC"1,

but

1
g(Fyu™) = g(u") = =g/ ()" + S g" (n) (€")*
1
= —g"(p)u"e" = g'(0)8" + 5" (n5) (€")*.
By the orthogonal of ¢™ with £, (¢'(0)™, ¢™) = 0, hence we have

(g(Fnu") = g(u"), ¢")] < Cllg [zoo (lJa [l + e )N T
IIC"H2 + Cllgnllzoe (a1 + llup ID)11€™ 12

Substituting the above estimates into (2.10) (let x = (™), we obtain

1
S =1 1) + (v = 5~ ) Il < (g0 -+ 5 + ) ICIP

+ Cr([lu 1§ + R DS + Ca(llu™[1F + llui ID)l1€™ I



206 X.M. XIANG

tn
+03k/ uge () | 2ds. (2.13)
ty

1 14
Noting = 5 =2 = 37" >0, o+ 5 + 7 = —5 <0,

Ry =201 (Ju" |3 + [[uf ), B3 = 2Co(|[u"|f} + [lui ),

then (2.14) can be written

tn
I < 1Ig" 1P + kRY(IC™I* + kRS [1€"* + C4k2/ et (5)[|*ds (2.14)

n—1
i.e.

tn
2 < (16112 + kRGP + Csk® [ () ] (2.15)

< b
~ 1-kR} _—
According to Lemma 3 and Theorem 1 of [1] and we take k£ small enough such that
KR = 20y (|2 + lu|2) < 1  When 0 < @ < &, —— < 1422 and ¢(0) =

21—z
thus from (2.15) we have

tn
16712 < (1 2kRD) I + KRBIE"I + Cok? [ fun(s)]Pds] <

n—1

< TL+ 2680 3 (KBS + Cok [ un(s) 2ds)-
j=1

p:l tp,1

Thanks to In(1 + z) < z, for z > 0, thus

n [J(1+2kR]) =Z (1+2kR]) <2k R,
i1 =1 j=1

from this we obtain
[T +26R]) < @55 < exp {260 S (I I + 1))} < €.
7j=1 j=1
Hence
+oo
I < ek S BN + 0 [ )P
7j=1

—+o00
SON s IR SR + D) + R [ fuatolPar
0<j<+o0 j=1

< CON™ sup Huyufn[(uk)/ ||u(t)|y§dt+k/ [ ()| Tt
0<j <400 0 0

> . +oo
B [ ]?] + 0k2/ gt (8)[|2dt < C(N"2™ 4 k2), V¥n > 0.
j=1 0 (2.16)
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Using the triangle inequality, we obtain
[u" —ui|| < [u" = Fyu"[| 4 [[ufy — Fyu"[| < C(NT™ + k), Vn = 0.

Summing up for n from 1 to @ on both sides of (2.13)

Q Q Q
VR YNGR+ 0k Y lICIP < 2Csk D ([T + llun DS + 1167 1%)

n=1 n=1 n=1

tQ —2m - n n
+2C7k2/0 [uee(s)[|Pds < Cs(N ™ + E2)k Y ([[u”[1F + [[uf]I7)
n=1

“+o00
420k /O uge (5)[|2ds

where Cg, C7 and Cg are constants independent of (). Thus we have
o0
kY (ICEI17 + 1CM1%) < C(NT2™ + k).
n=1
By the triangle inequality and interpolating inequality

kY DLW —uf) P S CNT2E Y [uf5,; + C(NT2" + k%), 0<j<2

n=1 n=1
Summing up, we obtain
Theorem 1. Suppose that the conditions of Lemma 3 is satisfied and f, ¢, g €
C?, the solution of (1.1) u € L>®(R*; HM(Q)) N LQ(R"’;H;(Q)), ut € LQ(R“‘;H;(Q)),
ur € L?(Qoo) (m > 1), then for the solution of fully discrete problem (2.1)—(2.2) we
have the following large time error estimation

|lu" —uR]| < C(N"™+k), Yn>0.

If further suppose that u,u; € L*>(R™; H;f‘“(Q)), 0 < j <2, we have yet

kD IDLW" —uR)lI* < C(NT2™ + k).

n=1

3. The Existence of Global Approximate Attractors Ay, A%

For the problem (1.1), the existence of global attractor has been proved in [5].
Similar proof can be obtained for semidiscrete spectral approximate. Now we prove
semigroup operator S (n) of discrete problem (2.1) has a global attractor.

Lemma 4. Under the conditions of Lemma 3, suppose that f € C', ¢ € C?,
geC, ug e Hg(Q), then we have

1

2 n |12 n 2
o [0 2 + Ck )
(1 — 2gok)™ luowall® + Ck Y (lup I + lluf |*)

n=0

[ [
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+C [ ORI+ ha(t) )it < B, o >0,
0

where the constant E is independent of N.

Combining the Lemmas 2-4, we can obtain that there exist constants A;(i = 0, 1,2)
independent of N, such that the solution of (2.1)-(2.2) belong to the set By = {u}, €
Hg(Q) N Sy||Diu|| < Ai i = 0,1,2} for enough large n. Hence the set By is a
bounded absorbing set of {S%(n)}. Moreover, the semigroup operator S (n) maps
Hg NSy to Hg N Sy and Sy is a space of finite dimension for every IV, hence S]k{[(n)
is completely continuous operator for n > 1. By the result of [2], we have

Theorem 2. The semigroup operator Sy(t) and S%(n) have a compact global
attractors Ay and Ak respectively.

4. The Convergence of the Approximate Attractors Ay and A%,

In order to prove the convergence of the approximate attractors, we need the fol-
lowing theorem [2].

Let H,, is a family closed subspace of H, 0 <7 < 19 and Ug<y<y,Hy is dense in H .
For every n > 0, the semigroup operator S, (t) maps H, into itself and every operator
Sy(t) is continuous for ¢ > 0. Suppose that for every compact interval I* C (0, +00)

6,(I*) = sup supd(S,(t)ug, S(t)ug) — 0, n —O0.
wg€EHy tel*
lluollg <R

We also assume that for every n > 0, 5, (t) possesses an attractor .A,, that attracts any
bounded open neigbourhood which include A, U A.
Theorem 3. Under the above assumptions, we have

d(A,, A)—0, n—0,

where d(X,Y") is semidistance between X and Y, i.e. d(X,Y) = sup inf ||z — y|/z.
reX YEY

At first we discuss d( Ay, A) — 0, if N — 4o0.
Lemma 5. Under the conditions of Lemma 3, we suppose that f € C?, ¢ € C3
g € C1, then we have

9 rt
s (12 <55 [ slhss(s) s
C [t
t7 (st ()1 + | suae (s)I7 + l[sha(s)[P)ds,  fort > 0.
Proof. On both sides of (1.1) taking the inner product of with #?u,e, similar to

Lemma 4, we can obtain

1d

§%l\tumll2 + %Htux5”2 < tttass |® + Cllltual® + ltues|* + lthe||?). (4.1)
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Integrating (4.1) on both sides, we can obtain the result of Lemma immeditely.
According to (3.6) of [1]

lun () = Fyu(®)|* = [<()]* < /0 Ro(s) ()P exp ( / ' Ry(r)dr)ds),

where Ry(t) = 2(C1 + C3)([u(®) [T + llun (1)[7), Ra(t) = 2[2C2lu(®)[* + Ca(u(t)[T +
|un ()]12 + Cs]|g'|2] and C; (i = 1,---,5) are constants independent of ¢ and N. By
using Lemma 1 and 3 of [1],

+oo

sup R0 < €. exp ([ Raltyir) < .

teR* 0
we have

2 too 2 +oo 2
Jun(t) = Exu(F <€ [ l()IPds = € [ lu(s) = Fu(s) fds
+00
<CON-® / itz (5)||2ds.
0
Using the inverse property
“+oo
lun(t) = Fyu(t)|[3 < ON*[lun(t) = Fyu()]|? < CN—2/O [z ()P ds

and by Lemma 5, we have

lu®) — un ()15 < 2[llu(t) — Fxu®)]l3 + lun(t) — Fyu(t)|3]

+oo
< ON (eI + [ ltzaa(s)ds)
0
B 1 +o0 +o0
<ON2(5 [t lPds + [ (@I + [ha(o)]Pds). ¢ 0.

Finally according to Theorem 3, we take H = H3(Q) and I = [T}, T5] C R", then we
have

Theorem 4. d(Ay, A) — 0, as N — +oo.

Next we discuss d(A%;, A) — 0, as N — +o0, k — 0.

For this, we need some priori estemates of u; and uy. Taking the inner product of
(1.1) with us, we obtain

Lemma 6. If f € C!, ¢, g € C?, h € C'NL*(Qx), uo € H(Q), then we have

—+00
sup |[uge(8)]| < €7, /0 lus(s)||*ds < C3,

0<t<+o00

where C}, C§ are constants independent of t.
Differentiating (1.1) with respect to ¢ and taking the inner product of the result
identity with us, we have
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Lemma 7. Under the conditions of Lemma 6, we suppose that f € C?, ¢ € C3,
h,hi € L*(Qso), then we have

t t
I +7 [ slrse(s)ds < [ ua(o)ds
t
+ G [ sl + halP)ds,¢> o0,

where the constant Cf is independent of t.

Differentiating (1.1) with respect to ¢ and taking the inner product of result identity
with u., and uy respectively, we have

Lemma 8. Under the conditions of Lemma 7, we have

t t t
s+ [ 52 tar(s)ds < 2 [ sluan(s)|ds +2 [ sllun(s)]*ds
t
G [ + usa (5) Pl () + () s,
t t
1 i ()12 + | u(s) s < ot e +27 [ sluzan(o)]ds

+C5 /Ot 5% (lat ()17 + llaw ()1 lur ()11 + lluaa ()] *lue(s)]*
+ ttaw (8) [ [at ()17 + l[uaaat ()17 + [7e(5)11*)ds,
where the constants C7, Cg are independent of t.
These Lemmas can be proved as Lemma 5.
Thus, for any 7' > 0, /OT $2|lue(s)|*ds < Erp.

Lemma 9. Under the conditions of Lemma 3, we suppose that f € C?, ¢ € C3,
g € CY, hy, hat € L2(Qoo), then we have

M-1 M—1
C

1> < s Y NuRgeall? + Ck Y (i l® + i P+ [R5, VM > 1,
n=0 n=1

where the constant C is independent of N and M.
Proof. Setting x = (n — 1)%k*u’y_¢ in (2.1), we obtain

1

(ke =) + 0ty + B + VR + (W)
+ (U aw — g(ul) — h(z,t,), (n — 1)%%%6) =0, (4.2)
Because
1 _ _
(%(U?V - URI 1)?(” - 1)2k2u71<716) - —(TL - 1)2k(u7](7xxx - u%mix?“%xzx)
1 _
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and using the interpolating inequality and Holder inequality

(@l (= 1)K uf,6)| <a(n — 1)K [uf |l 1ufs|
4 2
<C(n = 1%k ||ul,s |13 [[ufrpe |13
<nll(n — DkuR,s |* + Cll(n = Dkuf, .
?V ) - Nz6 /| — Nz ,(u%)u}z\/azw’( - ) kzuN:r:5)|
|(f (uR)zs (n = 12K uly6)| = |(F" (uh) (ule,)® + f
< nll(n — Dkuf,s |
+ C(lufe Pl (n = DkuRe, I* + [ (n = Dkufe,, 1)
< nll(n = Dkuf,s * + Cll(n — DkuRy .

By using the imbedding theorem ||u};, | < C|lu},,| and Lemma 3

Similarly
|(D(u)zwr (n = 1)Kl 0)| =[(0" (uR) (uhy)® + 36" (Ul ) ulfry U e
+ qS (UN)U?szxv ( ) k2uNz5)|
3
<nll(n = Dkuf,s >+ C Y [l(n — DkDiuf |,
j=1

[(g(ufy), (n = 1)*k?ulyge)| = (9 (R )uras (n = 1)k uf,s)]
<l (n = Dkufyes|* + Cll(n — Dkui, %

Substituting above estimates into (2.1), we obtain

1 n
%(anuNxm:HZ - H(n - 1>kuszwH )

||2 Y
2

Fllu g I* + Ol (0 = Dkuyp |* + 10 = Dkuf, 2 + [ (n = Dkhg]).

+ ||(n - 1)k(uNx:r:E - U’wa:v) ||(n - 1)ku71i/ac5H2

2n —1
<

Summing up for n from 1 to M

1

+ CMi(IIHICU?VEUII2 + kw2 + InkR2TY?), VM > 1,
n=1
i.e.
N e * < Mkk Z W3 gaal|? + Ck Z (R 12 + et 2 + A 2), VM > 1.
In (2.13), the substitution of (2.12) for (2.11) and similar to (2.16) we have (m = 3)

™12 <CkN_GZ [P (1§ + [luf 1T Hum|!2+CZ / 5°[|uwe(s) | ds

p=1
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6 [T 2 1ot 2
<CN~ / | tzaa ()| ds—i-CZ *2/ s%[luw(s)[|"ds.
0 p=1 p tp—1

Since
— 1 e 2
Z — < o0, / s7||uge(s)]|*ds — 0,
p=1p tpfl

as k — 0, we can obtain |[("|| — 0, as N — oo, k — 0, T1 < nk < Ty. If setting y = Cra
on (2.10), similarly to the estimate of ||¢"| we have ||(2,]| — 0, as N — oo, k — 0,
T1 < nk < T5s. Finally, by using the triangle inequality

1S (nk)uo — SX (n)uoll3 = llu(nk) — ulI3 < 2[|lu(nk) — Fyu(nk)|3 + || Fyu(nk) — u|[3]
< C(N gy |* + [1C"]1%) — 0

uniformly on [T7,T»] as N — oo, k — 0 and ug € Sy, |Jugll2 < R, i.e.

In(I") = sup sup  d(S%(n)ug, S(nk)ug) —0, N — oo, k— 0.
upESN,||luoll2<R nke[T1,T3)

According to Theorem 3, we immediately obtain
Theorem 5. Under the conditions of Lemma 3, suppose that f € C?, ¢ € C?,
g,heC? heC'NL*(Qux), hi € L?*(Quo), ug € Hg(Q) then we have

d(A%, A) —0, N —oo, k—0.
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