
INTERNATIONAL JOURNAL OF c© 2005 Institute for Scientific
NUMERICAL ANALYSIS AND MODELING Computing and Information
Volume 2, Number 1, Pages 1–18

A POSTERIORI ERROR ESTIMATION FOR
NON-CONFORMING QUADRILATERAL FINITE ELEMENTS

MARK AINSWORTH

(Communicated by Zhimin Zhang)

Abstract. We derive an a posteriori error estimator giving a computable upper

bound on the error in the energy norm for finite element approximation using

the non-conforming rotated Q1 finite element. It is shown that the estimator

also gives a local lower bound up to a generic constant. The bounds do not

require additional assumptions on the regularity of the true solution of the

underlying elliptic problem and, the mesh is only required to be locally quasi-

uniform and may consist of general, non-affine convex quadrilateral elements.
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1. Introduction

Non-conforming finite element methods are of considerable interest in the numer-
ical approximation of elliptic partial differential equations where issues of stability
and locking [4] may render a conforming scheme practically useless. A large num-
ber of non-conforming finite element methods [7] were developed in the engineering
community on a more or less ad hoc basis and found to produce excellent numerical
results in practice. The mathematical support for such elements only came at a later
stage, followed by the development of new non-conforming elements accompanied
by proofs of stability and convergence [8, 14].

Whilst the topic of a posteriori error estimation for conforming finite element
methods has now matured to a high level of sophistication [2, 3, 15], the situation
regarding non-conforming finite element schemes is at a relatively primitive stage.
An early important contribution to the theory of a posteriori error estimation for the
non-conforming P1 triangular finite element of Crouzeix-Raviart [8] was made by
Dari et. al. [10] who obtained two sided bounds on the error measured in the energy
norm up to generic constants. These ideas were later extended to non-conforming
mixed finite element approximation of Stokes flow [9] using the Crouzeix-Raviart
finite element. Hierarchical basis type estimators were explored in [11], whilst [5]
derived estimators based on gradient averaging techniques. More recently, a new a
posteriori error estimator was derived [1] and shown to provide two-sided bounds on
the error and, significantly, the upper bound does not involve any generic constants
meaning that one has a guaranteed computable upper bound on the error measured
in the energy norm.
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The aim of the present work is to extend the ideas of [1] to the non-conforming
rotated Q1 element of Rannacher and Turek [14] for meshes of quadrilaterals. The
study of approximation properties on quadrilateral elements is rather delicate owing
to the fact that the mapping from the standard reference element to the physical
element is in general non-affine. This is exacerbated by the fact that, despite its
name, the rotated Q1 element does not contain the full approximation space Q1,
even in the case of affine elements. Together, these effects may even lead to non-
convergence of the approximation error under certain unfavourable circumstances.
Nevertheless, conditions on the mesh under which the element is able to produce an
optimal rate of convergence are well-understood [12, 13] in the context of a priori
error estimation where, roughly speaking, it is found that the elements should not
be too distorted from parallelograms.

Here, we derive a computable a posteriori error estimator that produces an upper
bound on the error in the energy norm that is valid even for non-affine elements.
Moreover, it is shown that the estimator is efficient in the sense that it also gives
a lower bound up to a generic constant independent of the mesh-size. The bounds
are obtained without making any additional assumptions on the regularity of the
true solution of the underlying elliptic problem, and the mesh is only required to
be locally quasi-uniform, thereby allowing the use of an adaptive local refinement
algorithm.

In view of the difficulties in the a priori convergence estimates, one might suspect
the upper bound property of the a posteriori error estimator to degenerate on
meshes containing elements that are too highly distorted. This proves not to be
the case, and it is worth emphasising that our upper bound remains valid under
the very mild assumption that the elements are convex. Of course, the effects
of element distortion may well mean that, by analogy with the actual error, the
estimator converges at a sub-optimal rate. This is to be expected from a reliable
and efficient estimator, but it should be borne in mind that this is a defect of
the underlying mesh and approximation scheme and not of the a posteriori error
estimator. On the contrary, the availability of a computable upper bound means
that one can actually use elements that are more distorted than one might have
been comfortable with from the a priori viewpoint, secure in the knowledge that
if the estimator is sufficiently small, then the overall approximation is acceptable
thanks to the upper bound property of the estimator.

2. Model Problem and Its Non-conforming Discretisation

Consider the model problem of finding u such that

(1) −div(agradu) = f in Ω

subject to u = 0 on ΓD and n · agradu = g on ΓN , where Ω is a planar polygonal
domain and the disjoint sets ΓD and ΓN form a partitioning of the boundary of Ω.
The data satisfy f ∈ L2(Ω), g ∈ L2(ΓN ) and a ∈ L∞(Ω) is assumed non-negative.
For simplicity, we shall assume that a is piecewise constant on the finite element
mesh.

The variational form of the problem consists of seeking u ∈ H1
E(Ω) such that

(2) (agradu,grad v) = (f, v) +
∫

ΓN

gv ds ∀v ∈ H1
E(Ω)

where H1
E(Ω) = {v ∈ H1(Ω) : v = 0 on ΓD}. The notation (·, ·)ω is used to denote

the L2-inner product over a domain ω, with the subscript omitted where ω is the
physical domain Ω. The corresponding norm is denoted by ‖·‖ω.
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Figure 1. Geometry and degrees of freedom for rotated Q1 element

Let P denote a partitioning of the domain Ω into the disjoint union of convex
quadrilateral elements such that the non-empty intersection of any two distinct
elements is either a single common node or common edge. In addition, the non-
empty intersection of an element with the exterior boundary is a portion of either
ΓD or ΓN . The family of partitions is assumed to be locally quasi-uniform in the
sense that the ratio of the diameters of any adjacent elements is bounded above
and below uniformly over the whole family of partitions.

Each element K ∈ P is the image of the reference element S = (−1, 1)2 under an
invertible bilinear mapping F K : S → K. The elements are assumed to be regular
in the sense that there exist positive constants c and C, independent of K, such
that

(3) ‖DF K‖L∞(S) ≤ ChK , ‖DF−1
K ‖L∞(S) ≤ Ch−1

K

and

(4) ch2
K ≤ det(DF K) ≤ Ch2

K on S

where hK denotes the diameter of the element K and DF K denotes the Jacobian
matrix of the transformation F K . These conditions are investigated more fully in
the Appendix.

The rotated Q1 finite element is defined by a triple (S, P, Σ) consisting of the
reference element S = (−1, 1)2, the local polynomial space P = {1, x̂, ŷ, x̂2 − ŷ2}
and the set degrees of freedom Σ specified by function evaluation at the midpoints
of the sides of S shown in Fig. 1. A Lagrange basis for the finite element is given
by

φ̂1 = 1
4 + 1

2 x̂ + 1
4 (x̂2 − ŷ2)

φ̂2 = 1
4 + 1

2 ŷ − 1
4 (x̂2 − ŷ2)

φ̂3 = 1
4 − 1

2 x̂ + 1
4 (x̂2 − ŷ2)

φ̂4 = 1
4 − 1

2 ŷ − 1
4 (x̂2 − ŷ2)

and satisfies the conditions φ̂k(m̂`) = δk`, where {m̂`} consists of midpoints of
edges.

The construction of the associated finite element space on a partitioning P is
accomplished in the usual fashion. More specifically, let N index the set of element
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vertices, ∂P denote the set of element edges and M = {mγ : γ ∈ ∂P} denote the
set of points located at midpoints of edges. The non-conforming rotated Q1 finite
element space is defined by

XP =
{
v : Ω → R : v|K ◦ F K ∈ P ∀K ∈ P, v continuous at mγ ∈M\∂Ω

}

with the subspace XP,E defined by

XP,E = {v ∈ XP : v(mγ) = 0 for γ ⊂ ΓD} .

The non-conforming finite element approximation of problem (2) consists of finding
uP ∈ XP,E such that

(5) (agradP uP ,gradP v) = (f, v) +
∫

ΓN

gv ds ∀v ∈ XP,E

where gradP denotes the operator defined by

(gradP v)|K = grad(v|K), K ∈ P.

The spaces XP and XP,E are non-conforming in the sense that their elements
may have jump discontinuities across inter-element boundaries and as a conse-
quence, one does not have an internal approximation of the model problem.

The usual finite element interpolation operator associated with the finite element
space XP would be defined in terms of the values of the function to be approximated
sampled at the midpoints M. However, such an interpolant (i.e. involving sampling
values pointwise) is not bounded on the space H1(Ω). For this reason, it will be
useful to consider an alternative interpolant defined in terms of average values of
the traces of the function over edges. Standard results on traces show that the
operator ΠP : H1

E(Ω) → XP,E is well-defined by the conditions

(6)
∫

γ

ΠPv ds =
∫

γ

v ds ∀γ ∈ ∂P.

More precisely, if the degrees of freedom Σ on the reference element are chosen to
be average values over edges rather than function values at midpoints, then the
corresponding Lagrange basis is given in terms of the nodal basis by

(7)

ψ̂γ̂1 = 1
4 + 1

2 x̂ + 3
8 (x̂2 − ŷ2)

ψ̂γ̂2 = 1
4 + 1

2 ŷ − 3
8 (x̂2 − ŷ2)

ψ̂γ̂3 = 1
4 − 1

2 x̂ + 3
8 (x̂2 − ŷ2)

ψ̂γ̂4 = 1
4 − 1

2 ŷ − 3
8 (x̂2 − ŷ2)

and satisfies ∫

γ̂`

ψ̂γ̂k
ds = 2δk`

where {γ̂`} are the edges of the reference element S. The corresponding global basis
function ψγ associated with an edge γ ∈ ∂P is defined elementwise by

(8) ψγ |K = ψ̂γ̂ ◦ F−1
K , γ = F K(γ̂)

and satisfies the condition ∫

γ′
ψγ ds = hγδγγ′
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where hγ denotes the length of edge γ. The interpolation operator is then given
explicitly by the expression

(9) ΠPv =
∑

γ⊂∂P
vγψγ

where vγ denotes the average value of v on an edge γ. Note that the restriction
of ΠPv to a particular element K is locally defined (involving only averages of the
function v on the edges of the particular element) and, in addition, ΠP locally
preserves constants. For future reference, we note that this means that

(10)
∑

γ⊂∂K

ψγ = (ΠP1)|K = 1

for each element K ∈ P. Exploiting the above properties and applying standard
scaling arguments leads to the conclusion that there exists a positive constant C
depending only on the shape of the element such that the following local element-
wise approximation property holds:

(11) ‖v −ΠPv‖K + h
1/2
K ‖v −ΠPv‖∂K ≤ ChK‖grad v‖K .

We shall make use of the following Poincaré inequality

(12) inf
c∈R
‖v − c‖K ≤ CphK‖grad v‖K

where Cp is a positive constant that depends only on the shape of the element and
not its diameter hK . In a similar vein, we shall make use of the following inequality
relating the variation of the trace of a function over an edge γ of an element K to
the gradient over the element

(13) inf
c∈R
‖v − c‖γ ≤ Cth

1/2
γ ‖grad v‖K .

Bounds for Cp and Ct can be deduced from [6] or may be computed directly by
solving an eigenvalue problem and exploiting the usual monotonicity properties of
the eigenvalues with respect to the domain. It will be found that the constants will
appear in the estimator as multiplicative factors in what will generally be higher
order terms in the error estimator. This means that approximate upper bounds for
Cp and Ct will be sufficient for practical purposes.

3. A Posteriori Error Analysis Framework

Our objective is to derive a computable estimator for the error e = u − uP in
the non-conforming approximation measured in the energy norm |||v||| defined by

(14) |||v|||2 = (agradP v,gradP v).

The following Helmholtz type decomposition (taken from Dari et al. [10]) will
prove itself useful in this respect:

Lemma 1. Let

H =
{

w ∈ H1(Ω) :
∫

Ω

w dx = 0 and
∂w

∂s
= 0 on ΓN

}
.

The error e may be decomposed in the form

(15) agradP e = agrad ε + curl ξ

where ε ∈ H1
E(Ω) satisfies

(16) (agrad ε,grad v) = (agradP e,grad v) ∀v ∈ H1
E(Ω)
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and ξ ∈ H satisfies

(17) (a−1 curl ξ, curlw) = (gradP e, curlw) ∀w ∈ H
where curl denotes the operator curlw = −∂yw e1 + ∂xw e2. Moreover,

(18) |||e|||2 = |||ε|||2 + (a−1 curl ξ, curl ξ).

Lemma 1 shows that the error e in the non-conforming finite element approx-
imation may be viewed as a sum of the projection ε of the total error onto the
conforming space H1

E(Ω) and referred to as the conforming error, plus a remainder
ξ referred to as the non-conforming error. The orthogonality of the splitting with
respect to the energy norm is an immediate consequence of the projection prop-
erty. The practical import of the result is that it reduces the problem of obtaining
a posteriori error estimators to the derivation of estimators for the conforming and
non-conforming errors independently. An estimator for the total error is then given
by summing the estimators for the independent contributions. This task will occupy
us for the next two sections.

4. Estimation of Conforming Error

The conforming part ε ∈ H1
E(Ω) of the error defined in equation (16). Equally

well, by writing e = u− uP and using the original equation (2), we have

(agrad ε,grad v) = (f, v) +
∫

ΓN

gv ds− (agradP uP ,grad v).

The interpolant defined in (6) satisfies ΠP : H1
E(Ω) → XP,E and, thanks to (5), we

conclude that

0 = (f, ΠPv) +
∫

ΓN

gΠPv ds− (agradP uP ,gradP ΠPv)

and consequently,

(agrad ε,grad v) =

(f, v −ΠPv) +
∫

ΓN

g(v −ΠPv) ds− (agradP uP ,gradP(v −ΠPv)).

Let gK ∈ L2(∂K) be defined by

gK =





1
2
nK · (aK gradP uP |K + aK′ gradP uP |K′) on γ = ∂K ∩ ∂K ′

g on γ ⊂ ΓN

nK · aK gradP uP |K on γ ⊂ ΓD

then,
∑

K∈P

∫

∂K

gK(v −ΠPv) ds =
∫

ΓN

g(v −ΠPv) ds, v ∈ H1
E(Ω).

Hence,

(agrad ε,grad v) =
∑

K∈P

{
(f, v −ΠPv)K +

∫

∂K

gK(v −ΠPv) ds− (agradP uP ,gradP(v −ΠPv))K

}
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and then integrating the final term by parts and simplifying, we find that

(agrad ε,grad v) =
∑

K∈P

{
(r, v −ΠPv)K − 1

2

∫

∂K

Jν(v −ΠPv) ds

}
(19)

where r denotes the interior residual defined elementwise by

r|K = f + divP(agradP uP) on K

and Jν denotes the jump residual defined edgewise by

Jν
|γ =





nK · gradP uP |K + nK′ · gradP uP |K′ on γ = ∂K ∩ ∂K ′

2(g − nK · gradP uP |K) on γ = ∂K ∩ ΓN

0 on γ ⊂ ΓD.

The equation (19) for the conforming error comprises of a volume term and a
boundary term. The next step is to derive convenient representation formulae for
each of these terms.

4.1. Representation of Volume Residual. Introduce vector-valued interior
functions on the reference element S as follows

θ̂1 = −3
4
(1− x̂2)e1; θ̂2 = −3

4
(1− ŷ2)e2

and

θ̂3 = − 9
16

ŷ(1− x̂2)e1 − 9
16

x̂(1− ŷ2)e2

where e1 and e2 are the unit cartesian basis vectors, along with edge functions
associated with the boundary of S,

θ̂γ̂1 =
1
4
(x̂ + 1)e1; θ̂γ̂2 =

1
4
(ŷ + 1)e2;

θ̂γ̂3 =
1
4
(x̂− 1)e1; θ̂γ̂4 =

1
4
(ŷ − 1)e2.

It is readily verified that normal components of the interior functions vanish on the
boundary while the normal components of the edge functions satisfy

n̂ · θ̂γ̂k

∣∣∣
γ̂`

=
1
2
δk`, 1 ≤ k ≤ 4, 1 ≤ ` ≤ 4

where n̂ denotes the unit outward normal on the boundary of S.
A corresponding set of functions is defined on a physical element K via the Piola

transformation

(20) θ =
DF K

det(DF K)

(
θ̂ ◦ F−1

K

)
,

and thus, thanks to standard properties of the Piola transformation, it follows that
these functions satisfy

(21) div θ =
1

det(DF K)
d̂iv θ̂ in K

where d̂iv denotes the divergence with respect to variables on the reference element,
and

(22) nK · θγk
|γ`

=
1
|γ`|δk`, 1 ≤ k ≤ 4, 1 ≤ ` ≤ 4,
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where nK denotes the unit outward normal on the boundary of K, and |γ`| denotes
the length of edge γ`. Of course, the normal components of the transformed interior
functions remain zero.

The next result defines a weighted projection operator that turns out to be
useful in measuring the data oscillation for non-affine elements. In the case of
affine elements (where the Jacobian DF K is constant) the operator is precisely
orthogonal projection.

Lemma 2. Let r ∈ L2(K) be given. Define πK r ∈ L2(K) by the rule

(23) πK r ◦ F−1
K =

1
4det(DF K)

[α0 + 6α1x̂ + 6α2ŷ + 9α3x̂ŷ]

where

(24) α0 =
∫

K

r dx; α1 =
∫

K

rx̂ dx; α2 =
∫

K

rŷ dx; α3 =
∫

K

rx̂ŷ dx

with x̂ = F−1
K (x). Then,

(25)
∫

K

(r − πK r)v̂ dx = 0, ∀v̂ ∈ {1, x̂, ŷ, x̂ŷ}.

Proof. Elementary. ¤
The construction of the error estimator hinges on the following representation

formula:

Lemma 3. Let r ∈ L2(K) be given. Define σK ∈ L2(K) by

(26) σK = α1θ1 + α2θ2 + α3θ3 +
∑

γ⊂∂K

αγθγ

where α1, α2 and α3 are given in (24), and

(27) αγ =
∫

K

rψγ dx, γ ⊂ ∂K

with ψγ defined as in (8). Then,

(28) (σK ,grad v)K =
∫

K

r ΠPv dx−
∫

K

(πK r)v dx

for all v ∈ H1(K), and

(29) ‖σK‖a−1,K ≤ ChK‖r‖a−1,K

where ‖f‖a−1,K = ‖a−1/2f‖K for K ∈ P, and C is a positive constant that is
independent of the mesh-size.

Proof. Observing that thanks to (10), we have

∑

γ⊂∂K

αγ =
∫

K

r


 ∑

γ⊂∂K

ψγ


 dx =

∫

K

r dx = α0,

and then making use of (21), we find that

div σ =
1

det(DF K)

(
3
2
α1x̂ +

3
2
α2ŷ +

9
4
α3x̂ŷ +

1
4

∑
γ

αγ

)
= πK r.

Moreover, thanks to (22), we have∫

γ

vn · σ ds = αγvγ
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where vγ is the average value of v on γ and, applying (9), we have
∫

∂K

vn · σ ds =
∑

γ⊂∂K

αγvγ =
∫

K

r


 ∑

γ⊂∂K

vγψγ


 dx =

∫

K

r ΠPv dx.

The identity for σK now follows at once from the integration by parts formula

(σK ,grad v)K =
∫

∂K

vn · σ ds−
∫

K

v div σ dx

on inserting the earlier results. The bound on the norm of σK is obtained by first
observing that

‖σK‖2a−1,K =
∫

S

1
(a ◦ F K)

1
det(DF K)

|DF Kσ̂K |2 dx̂ ≤ CK

aK
‖σ̂‖2S

where

CK =
‖DF K‖2L∞(S)

minS det(DF K)
is a constant that depends on the shape of the element K but not, thanks to as-
sumptions (3)-(4), on the mesh-size. Applying the triangle inequality and bounding
the coefficients αk by ChK‖r‖K , we obtain

a−1
K ‖σ̂‖2S ≤ Ca−1

K h2
K‖r‖2K = Ch2

K‖r‖2a−1,K

and the bound follows. ¤
4.2. Representation of Boundary Residual. Introduce scalar-valued functions
on the reference element S as follows

(30) ϑ̂1 = −ŷ; ϑ̂2 = x̂; ϑ̂3 = x̂ŷ

along with functions associated with the edges of S defined as follows

(31)

ϑ̂γ̂1 =
3
8
(1 + x̂)(1− ŷ2)

ϑ̂γ̂2 = −3
8
(1 + ŷ)(1− x̂2)

ϑ̂γ̂3 = −3
8
(1− x̂)(1− ŷ2)

ϑ̂γ̂4 =
3
8
(1− ŷ)(1− x̂2).

The function ϑ̂γ̂ vanishes everywhere on the boundary of S apart from the edge γ̂.
Let ϑ denote the usual pull-back of ϑ̂ defined on element K by ϑ = ϑ̂ ◦ F−1

K .
By analogy with the interior residual, we shall need a projection operator on

the boundary to measure the data oscillation. However, the simpler structure of
the approximation on the boundary means that we have a standard orthogonal
projection this time.

Lemma 4. Let γ ⊂ ∂K and G ∈ L2(γ) be given. Then,

(32) πγ G =
1
hγ

∫

γ

G ds + 3
x̂γ

hγ

∫

γ

Gx̂γ ds

satisfies

(33)
∫

γ

(G− πγ G)v̂ ds = 0, ∀v̂ ∈ {1, x̂γ}

where x̂γ ∈ (−1, 1) is the reference coordinate on the edge γ.
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Proof. Elementary. ¤

The following representation formula will be used to handle the boundary resid-
ual:

Lemma 5. Define

(34) χK = β1ϑ1 + β2ϑ2 + β3ϑ3 +
∑

γ⊂∂K

βγϑγ

where

(35) β1 =
1
4
(ρ1 − ρ3); β2 =

1
4
(ρ2 − ρ4); β3 = −1

8
(ρ1 − ρ2 + ρ3 − ρ4)

and

(36) ρk =
∫

γk

Jν ds−
∫

∂K

Jνψγk
ds

with

(37) βγ =
∫

γ

Jν x̂γ ds, γ ⊂ ∂K

where x̂γ ∈ (−1, 1) is the reference coordinate on edge γ. Then,

(38) (curlχK ,grad v)K =
∑

γ⊂∂K

∫

γ

(πγ Jν) v ds−
∫

∂K

Jν ΠPv ds

for all v ∈ H1(K), and there exists a positive constant C such that

(39) ‖curlχK‖a−1,K ≤ C
∑

γ⊂∂K

h1/2
γ ‖Jν‖a−1,γ

where ‖g‖a−1,γ = ‖a−1/2
γ g‖γ and aγ = max{aK : γ ∈ ∂K}.

Proof. Observe that

curlχK =
DF K

det(DF K)
ĉurl χ̂K

and
n · curlχK =

2
hγ

n̂γ · ĉurl χ̂K = − 2
hγ

∂χ̂K

∂ŝ

where ŝ denotes arclength on the reference element. Consequently, integrating by
parts gives

(curlχK ,grad v)K =
∫

∂K

vn · curlχK ds =
∑

γ⊂∂K

− 2
hγ

∫

γ

v
∂χ̂K

∂ŝ
ds.

A direct computation reveals that on each edge γ ⊂ ∂K,

∂χ̂K

∂ŝ

∣∣∣∣
γ

= −1
2
ργ − 3

2
x̂γβγ

where we have made use of the fact that

∑

γ⊂∂K

ργ =
∑

γ⊂∂K

∫

γ

Jν ds−
∫

∂K

Jν


 ∑

γ⊂∂K

ψγ


 = 0

since the term in parentheses is unity, thanks to (10). Simplifying, we have

∂χ̂K

∂ŝ

∣∣∣∣
γ

=
1
2

∫

∂K

Jνψγ ds− 1
2

∫

γ

Jν ds− 3
2
x̂γ

∫

γ

Jν x̂γ ds.
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Therefore, in view of (32), we find

− 2
hγ

∂χ̂K

∂ŝ

∣∣∣∣
γ

= − 1
hγ

∫

∂K

Jνψγ ds + (πγ Jν)|γ .

Furthermore,

∑

γ⊂∂K

1
hγ

∫

∂K

Jνψγ ds

∫

γ

v ds =
∫

∂K

Jν

(∑
γ

vγψγ

)
ds =

∫

∂K

JνΠPv ds

and the identity follows at once on collecting the foregoing results. The bound for
the norm of curlχK is obtained using essentially the same argument as the one
used to derive (29) after bounding the coefficients βk by

∑
γ⊂∂K h

1/2
γ ‖Jν‖γ . ¤

4.3. A Posteriori Error Bounds. We now come to the main result of this section
giving two-sided bounds on the conforming part of the error.

Theorem 1. Let r ∈ L2(K) and Jν ∈ L2(∂K) denote the interior residual and
inter-element flux jump respectively, and define σK and χK as in Lemmas 3 and 4.
Then,

(40) |||ε|||2 ≤
∑

K∈P

(
‖σK +

1
2

curlχK‖a−1,K + ∆K

)2

where

(41) ∆K = CphK‖r − πK r‖a−1,K +
1
2
Ct

∑

γ⊂∂K

h1/2
γ ‖Jν − πγ Jν‖a−1,γ .

Moreover, there exists a positive constant c, independent of any mesh-size, such
that for each element K ∈ P, there holds

(42) c‖σK +
1
2

curlχK‖a−1,K ≤ |||ε|||K̃ + ∆K

where K̃ is the patch comprising of the element K and its neighbours.

Proof. For all v ∈ H1
E(Ω), the conforming part of the error ε ∈ H1

E(Ω) satisfies

(agrad ε,grad v) =
∑

K∈P

{
(r, v −ΠPv)K − 1

2

∫

∂K

Jν(v −ΠPv) ds

}
.

Applying Lemmas 3 and 4, we obtain

(r, v −ΠPv)K − 1
2

∫

∂K

Jν(v −ΠPv) ds =

−(σK +
1
2

curlχK ,grad v)K + (r − πK r, v)K − 1
2

∑

γ⊂∂K

∫

γ

(Jν − πγ Jν)v ds.

The terms appearing above are estimated in turn as follows. The first term is
bounded directly using the Cauchy-Schwarz inequality

−(σK +
1
2

curlχK ,grad v)K ≤ ‖σK +
1
2

curlχK‖a−1,K |||v|||K .

The second term is bounded by first exploiting property (25) to write

(r − πK r, v)K = (r − πK r, v − c)K
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for arbitrary c ∈ R. Then, applying the Cauchy-Schwarz inequality, taking the
infimum over c and using the Poincaré inequality (12), we obtain

(r − πK r, v)K ≤ CphK‖r − πK r‖K‖grad v‖K

= CphK‖r − πK r‖a−1,K |||v|||K .

The third term is treated similarly by first writing∫

γ

(Jν − πγ Jν)v ds =
∫

γ

(Jν − πγ Jν)(v − c) ds

for c ∈ R, and arguing as above using inequality (13), we arrive at

−
∫

γ

(Jν − πγ Jν)v ds ≤ Cth
1/2
γ ‖Jν − πγ Jν‖γ‖grad v‖K

= Cth
1/2
γ ‖Jν − πγ Jν‖a−1,γ |||v|||K .

The upper bound for |||ε||| follows at once on choosing v = ε ∈ H1
E(Ω), summing the

above estimates over all elements and applying the Cauchy-Schwarz inequality.
The lower bound is obtained by applying the triangle inequality and estimates (29)

and (39) to give

c‖σK +
1
2

curlχK‖a−1,K ≤ hK‖r‖a−1,K +
∑

γ⊂∂K

h1/2
γ ‖Jν‖a−1,γ .

Bounds for the terms appearing above are obtained using the residual equation (19)
and a standard ‘bubble’ function argument (see, for example, [2, Section 2.3]) lead-
ing to

chK‖r‖a−1,K ≤ |||ε|||K + hK‖r − πK r‖a−1,K

and

ch1/2
γ ‖Jν‖a−1,γ ≤
|||ε|||γ̃ + h1/2

γ ‖Jν − πγ Jν‖a−1,γ +
∑

K⊂γ̃

hK‖r − πK r‖a−1,K

where c is a positive constant independent of any mesh-size. Inserting these bounds
into the above estimate leads to the local lower bound on the error claimed. ¤

5. Estimation of Non-Conforming Error

The next result will be helpful in deriving bounds for the non-conforming con-
tribution ξ to the total error:

Lemma 6. Let ξ ∈ H be defined as in (17). Then,

(43) (a−1 curl ξ, curl ξ) = min
u∗∈H1

E(Ω)
|||u∗ − uP |||2 .

The proof of the result can be found in [1]. Evidently, inserting any function
u∗ ∈ H1

E(Ω) into the right hand side of (43) gives an upper bound on the non-
conforming part of the error. However, if one is to obtain an efficient upper bound,
then some care has to be exercised in the choice of u∗. Furthermore, if the bound is
to be readily calculable, then it is necessary for the function u∗ to have a reasonably
simple form.

Bearing these considerations in mind, u∗ is taken to be a piecewise (pull-back)
biquadratic function on the partition P. The function is fully specified once the
values at the element vertices, edge midpoints and element centroids are defined.
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The values at a vertex located on the Dirichlet boundary ΓD are predetermined
by the requirement u∗ ∈ H1

E(Ω). At one of the remaining vertices, at say xn,
n ∈ N , the finite element approximation uP will in general be discontinuous. Let
Ωn ⊂ P denote the set of elements that have xn as one of their vertices. The
value of u∗ at vertex is defined to be the average of the values of the finite element
approximation uP at the vertex,

(44) u∗(xn) =





0, if xn ∈ ΓD

1
|Pn|

∑

K∈Pn

uP(xn)|K , otherwise.

where |Pn| denotes the number of elements in the set Pn. The finite element
approximation is continuous at edge midpoints and there is no ambiguity in defining
the value of u∗ at the midpoints according to the rule

(45) u∗(mγ) =

{
0, if mγ ∈ ΓD

uP(mγ), otherwise.

Finally, the finite element approximation is single-valued within each element, and
we may therefore define

(46) u∗(xK) = uP(xK), ∀K ∈ P
where xK denotes the centroid of element K.

With these definitions, it follows that u∗ ∈ H1
E(Ω) and may be used to obtain

an upper bound for the non-conforming contribution to the error.
We now turn to the efficiency of the estimator.

Theorem 2. Let u∗ ∈ H1
E(Ω) be constructed as described above. Then,

(47) ‖curl ξ‖a−1,Ω ≤ |||uP − u∗|||
and, moreover, there exists a positive constant c, independent of any mesh-size,
such that

(48) |||uP − u∗|||K ≤ C‖curl ξ‖a−1,K̃ .

Proof. The upper bound is an immediate consequence of the preceding arguments.
Some preparation will be needed for the lower bound.

The jump Jτ in the tangential derivative on an edge γ is defined by

Jτ
|γ =





tK · curluP |K + tK′ · curluP |K′ on γ = ∂K ∩ ∂K ′

tK · graduP |K on γ = ∂K ∩ ΓD

0 on γ ⊂ ΓN

where tK denotes the unit tangent vector on ∂K, taken in an anti-clockwise sense.
Let γ ∈ ∂K − ΓN be any edge that is not located on the Neumann boundary and
let βγ denote the pull-back quadratic function associated with the midpoint of γ.
Since the mapping γ̂ → γ = F K(γ̂) is affine, it follows that uP |γ is quadratic and
hence, Jτ

γ is quadratic. Let βγJτ
γ denote the usual extension of Jτ to the element(s)

neighbouring edge γ. Then, a scaling argument (see, e.g. [2, Section 2.3]) shows
that

(49) ch−1/2
γ ‖curl(βγJτ

γ )‖γ̃ ≤ ‖Jτ
γ ‖γ ≤ C‖β1/2

γ Jτ
γ ‖γ
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where c and C are positive constants independent of any mesh-size. Now, let w ∈ H
be the difference between βγJτ

γ and its constant average value over Ω. This choice
of w in (17) gives

(a−1 curl ξ, curl(βγJτ
γ )) = (gradP e, curl(βγJτ

γ ))

and then writing the right hand as a sum of contributions from individual elements
K ⊂ γ̃, integrating by parts and noting that the true solution u ∈ H1

E(Ω), we
obtain

(a−1 curl ξ, curl(βγJτ
γ )) =

∫

γ

βγ(Jτ
γ )2 ds.

Applying the Cauchy-Schwarz inequality and making use of (49) we arrive at

c‖Jτ‖2γ ≤ ‖a−1 curl ξ‖γ̃‖curl(βγJτ )‖γ̃ ≤ Ch−1/2
γ ‖a−1 curl ξ‖γ̃‖Jτ‖γ

and hence,

(50) h1/2
γ ‖Jτ

γ ‖γ ≤ C‖a−1 curl ξ‖γ̃ .

Suppose that distinct elements K and K ′ share the common edge γ. Then, since
uP is continuous at the midpoint mγ ,

|uP(xn)|K′ − uP(xn)|K | =
∣∣∣∣∣
∫ xn

mγ

Jτ
γ ds

∣∣∣∣∣ .

Hence, by a Cauchy-Schwarz inequality,

|uP(xn)|K′ − uP(xn)|K | ≤ h1/2
γ ‖Jτ

γ ‖γ

and applying (50), we have

(51) |uP(xn)|K′ − uP(xn)|K | ≤ ‖a−1 curl ξ‖γ̃ , xn ∈ γ = ∂K ∩ ∂K ′.

Suppose that element K has an edge γ on the Dirichlet portion of the boundary.
Then, since uP(mγ) vanishes,

|uP(xn)|K | =
∣∣∣∣∣
∫ xn

mγ

Jτ
γ ds

∣∣∣∣∣
and arguing as before, we obtain

(52) |uP(xn)|K | ≤ ‖a−1 curl ξ‖γ̃ , xn ∈ γ = ∂K ∩ ΓN

We now turn to the efficiency of the estimator on an element K ∈ P. Both uP|K
and u∗|K are pull-back biquadratic functions on K whose values agree at the element
centroid and edge midpoints. That is, the difference uP − u∗ on an element K ∈ P
vanishes at the centroid and edge midpoints, and may therefore be written in the
form

(uP − u∗)|K =
∑

n∈N (K)

c(K)
n θ∗n

where θ∗n is the pull-back biquadratic approximation associated with vertex n, and

c(K)
n =

1
|Pn|

∑

K′∈Pn

(
uP(xn)|K′ − uP(xn)|K

)

for xn 6∈ ΓD and c
(K)
n = −uP(xn)|K if xn ∈ ΓD. By writing the difference

uP(xn)|K′ − uP(xn)|K as a telescoping sum of differences of values between neigh-
bouring elements, and then applying estimates (51) and (52) as needed, we arrive
at the estimate

|c(K)
n | ≤ ‖a−1 curl ξ‖Ωn ,
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which holds regardless of the location of xn.
Standard scaling arguments reveal that |||θ∗n||| is independent of the element size

and therefore, with the aid of the triangle inequality,

|||uP − u∗|||K ≤ C
∑

n∈N (K)

|c(K)
n | |||θ∗n|||K ≤ C‖curl ξ‖a−1,K̃

where the constant is independent of the coefficient a and any mesh-size. ¤
6. Summary and Practical Application of the Theory

Applying Lemma 1 and Theorems 1 and 2, we obtain the following upper bound
for the total error

(53) |||e|||2 ≤
∑

K∈P
(‖σK +

1
2

curlχK‖2a−1,K + ∆K)2 + |||uP − u∗|||2

along with corresponding local lower bounds.
Given an element K ∈ P, we evaluate the functions σ̂K and χ̂K defined in

Lemmas 3 and 5 in terms of the local residual r|K and the jump Jν
γ in the normal

flux over the element boundary. The estimator for the conforming part of the error
is then obtained by evaluating

‖σK +
1
2

curlχK‖2a−1,K =

1
aK

∫

S

(σ̂K +
1
2
ĉurl χ̂K)>GK(x̂)(σ̂K +

1
2
ĉurl χ̂K) dx̂(54)

where GK is the matrix defined by

GK(x̂) =
1

det(DF K)
DF K(x̂)>DF K(x̂)

and studied in the Appendix. For an affine element, this integral may be evaluated
exactly using numerical quadrature, but this will not always be the case and there
is a danger that the upper bound property will be lost due to inexact quadrature.
An alternative approach is to use the bound

GK(x̂) ≤ 1

1− δ̂K

GK(0).

This bound is to be understood in terms of the values of the corresponding quadratic
forms induced by the matrices, and is proven in the Appendix where δ̂K is also
defined and shown to depend on the amount by which the element is distorted
from an affine element but not on any mesh-size. In particular, δ̂K vanishes in the
case of an affine element. The resulting contribution to the error estimator becomes

1
aK

(1− δ̂K)−1

∫

S

(σ̂K +
1
2
ĉurl χ̂K)>GK(0)(σ̂K +

1
2
ĉurl χ̂K) dx̂(55)

and provides an upper bound that can be evaluated exactly using numerical quad-
rature. The efficiency of the estimator is unaffected by this change thanks to the
assumptions (3)-(4) on the elements.

The upper bound also involves the data oscillation term

∆K = CphK‖r − πK r‖a−1,K +
1
2
Ct

∑

γ⊂∂K

h1/2
γ ‖Jν − πγ Jν‖a−1,γ .

The terms appearing in the norms mean that ∆K will often be of higher order,
or even negligible, compared with the previous contribution to the estimator. The
norms appearing in this quantity could be computed directly, but bounds are needed
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for the constants Cp and Ct. It is unnecessary to obtain the sharpest possible bounds
for these constants since the norms are relatively small and over-estimation of the
constants is unlikely to detrimentally affect the estimator in practice. The usual
approach is to to simply neglect this term completely when evaluating the estimator.

The estimator for the non-conforming contribution to the error involves compu-
tation of values of the post-processed approximation u∗ at element vertices. Once
again, the possibility arises of inexact quadrature compromising the upper bounds.
Now,

|||uP − u∗|||2K = aK

∫

K

grad(uP − u∗)> grad(uP − u∗) dx

and denoting the push-forward of uP − u∗ on element K by û, we obtain

|||uP − u∗|||2K = aK

∫

S

(ĝrad û)>GK(x̂)−1(ĝrad û) dx̂

where the matrix GK(x̂) is defined above. Applying the lower bound

GK(x̂) ≥ (1− δ̂K)GK(0)

from the Appendix, we obtain

|||uP − u∗|||2K ≤ aK(1− δ̂K)−1

∫

S

(ĝrad û)>GK(0)−1(ĝrad û) dx̂.

As before, the integral may be evaluated exactly using numerical quadrature and
the integrity of the upper bound property is not compromised.

7. Appendix

Let K ∈ P be any element satisfying conditions (3)-(4). Let F K denote the
bilinear mapping from the reference element S onto the element. The matrix GK

is defined by

(56) GK(x̂) =
1

det(DF K(x̂))
DF K(x̂)>DF K(x̂), x̂ ∈ S

where DF K is the Jacobian of the transformation F K . A direct computation
reveals that

(57) DF K(x̂) = DF K(0) + δK ⊗w

where ⊗ denotes the outer product, w is the vector (x̂2, x̂1)> and

δK =
1
4
(x1 − x2 + x3 − x4).

where x1, . . . , x4 denote the vertices of K enumerated in an anti-clockwise sense.
The vector δK may be related to the distance between the midpoints of the lines
joining diagonally opposite vertices to one another (see Fig. 2). Obviously, this
quantity vanishes in the case of an affine element.

Assumptions (3) and (4) mean that the matrix GK is invertible everywhere
on S, and in particular GK(0) is invertible. The following result gives quantitative
bounds comparing the matrix GK and its determinant at a general point x̂ ∈ S with
the corresponding quantities evaluated at the centroid of S. The bound involves
the length δ̂K of the vector DF K(0)−1δK ∈ S which may be interpreted as the
pre-image of the vector δK on the reference element. As such, δ̂K is independent
of any mesh-size and depends purely on the shape of the physical element. The
actual numerical value of δ̂K on a particular element is readily evaluated within the
standard finite element routines.



NON-CONFORMING QUADRILATERAL ELEMENTS 17

� � �
� � �
� � �
� � �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
� �
� �

� �
� �
	 	
	 	


 


 

� �
� �

� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � � �

                   
                   
                   
                   
                   
                   
                   
                   
                   
                   
                   
                   
                   
                   
                   
                   

� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �

� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �
� � � � � � � � � � � � � � � � � � �

� �
� �
� �
� �
� �

� �
� �
� �
� �
� �

� �
� �
� �

� �
� �
� �

xx

xx

x

1

2

4

P
24

13
P

2δ

x3

Figure 2. Geometric interpretation of the vector δK joining the
midpoints P13 and P24 between opposite vertices of physical ele-
ment

Lemma 7. Let

(58) δ̂K = ‖DF K(0)−1δK‖1.
where ‖·‖1 denotes the vector norm on R2 defined by ‖w‖1 = |w1|+ |w2|. If δ̂K ∈
[0, 1), then for all x̂ ∈ S there holds

(59) (1− δ̂K) det(DF K(0)) ≤ det(DF K(x̂)) ≤ (1 + δ̂K) det(DF K(0))

and

(60) (1− δ̂K)GK(0) ≤ GK(x̂) ≤ (1− δ̂K)−1GK(0).

Proof. Note that the results are trivially true if δK vanishes and we therefore assume
the contrary. Moreover, note that for any vector v ∈ R2, we have w>v = x̂2v1+x̂1v2

and the extrema of this quantity over x̂ ∈ S are given by ±‖v‖1, and are attained
when x̂1 = ± sgn(v2) and x̂2 = ± sgn(v1). The bounds for the determinant are then
an easy consequence of the following identity readily obtained from (57)

(61) det(DF K(x̂)) = (1 + κ(x̂)) det(DF K(0))

valid for all x̂ ∈ S, where

κ(x̂) = w>DF K(0)−1δK ∈ [−δ̂K , δ̂K ], x̂ ∈ S.

Fix x̂ ∈ S and let CK denote the matrix

CK = (1 + κ(x̂))−1/2DF K(x̂)DF K(0)−1,

then using identity (57), it is not difficult to see that the eigensolutions of CK are
given by

v1 = DF K(0)w⊥, λ1 = (1 + κ(x̂))−1/2 ;

v2 = δK , λ2 = (1 + κ(x̂))1/2
.

Thus, the spectral radius of the matrix CK is given by

ρ(CK) = max
x̂∈S

(
(1 + κ(x̂))1/2

, (1 + κ(x̂))−1/2
)

=
(
1− δ̂K

)−1/2

.
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Now, observe that thanks to (61),

C>
KCK =

1
1 + κ(x̂)

(DF K(x̂)DF K(0)−1)>(DF K(x̂)DF K(0)−1)

=
det(DF K(0))
det(DF K(x̂))

(DF K(x̂)DF K(0)−1)>(DF K(x̂)DF K(0)−1)

= det(DF K(0)) DF K(0)−>GK(x̂)DF K(0)−1.

Hence, on rearranging and bounding in terms of the spectral radius, we obtain

GK(x̂) ≤ ρ(CK)2GK(0)

and the upper bound follows on inserting the bound for the spectral radius. The
lower bound follows in a similar fashion on observing that

C−1
K C−>

K = det(DF K(0))−1DF K(0)GK(x̂)−1DF K(0)>

and that the spectral radius of C−1
K coincides with that of CK . ¤
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