ON A THEOREM OF BERNSTEIN AND ITS APPLICATIONS TO WEIGHTED MINIMAX SERIES*

Francisco Pérez Acosta

(Departamento de Análisis Matemático, Universidad de La Laguna, La Laguna 38271, Canary Islands, Spain)

Abstract

In this paper, some results about approximation in a norm S induced by the minimax series are studied. Then a Bernstein-type theorem for the norm S is established. Finally the Bernstein theorem is applied to prove the existence of certain equalities with minimax series and weighted minimax series.

Key words: Approximation theory, polynomials, Bernstein theorem, minimax series.

1. Introduction

Let f be a continuous function on [a, b]. Π_n will designate the set of all polynomials of degree less or equal than n and Π the set of all polynomials. As is well known, for each n the minimax of f is given by:

$$E_n(f) = \|f - p_n\|_{\infty} = \inf_{p \in \Pi_n} \|f - p\|_{\infty},$$

where p_n is the best uniform approximation of f in Π_n .

Let us also consider the minimax series given by the expression

$$S(f) \equiv \sum_{k=0}^{\infty} E_k(f)$$
(1.1)

The set of functions for which $S^*(f) = \sum_{k=0}^{\infty} E_k^*(f) < \infty$, where $E_k^*(f)$ denotes the error of best approximation of $f \in C[0, 2\pi]$ with trigonometric polynomials was already studied by S.N. Bernstein. He proved that such functions are of class $C^1[a, b]$.

The series (1.1) can be seen as a measure of "how good" the function f can be approximated by polynomials, in the next sense. If f and $g \in C[a, b]$ and $||f||_{\infty} = ||g||_{\infty}$ we will say that f is better approximated by polynomials than g on [a, b] if and only if S(f) < S(g).

On the other hand let $x_0 \in [a, b]$ be fixed. We set:

$$M_0 = \{ f \in C[a, b] : f(x_0) = 0 \},\$$

^{*} Received September 26, 1995.

$$\Pi^0 = \{ \text{polynomials } p : p(x_0) = 0 \},$$

$$\Pi^0_n = \{ \text{polynomials } p \in \Pi_n : p(x_0) = 0 \},$$

and

$$C_0 = \{ f \in M_0 : S(f) < \infty \}$$

By introducing,

$$S: C_0[a, b] \to \mathbb{R}$$
$$f \to S(f),$$

it can be proved that (C_0, S) is a normed space. Furthermore, $\forall f \in C[a, b]$ such that $S(f) < \infty$ there exists $g = f - f(x_0)$ such that $g \in C_0[a, b]$ and S(f) = S(g). The approximation of a function $f \in (C_0, S)$ by polynomials in Π_n , is studied in [5].

(i) For a given $f \in C_0$, let $p_n \in \Pi_n$ be a best approximation of f in the norm S. Who is p_n ?.

(ii) Is the space of all polynomials Π dense in (C_0, S) ?.

The answer to these questions is contained in [5]. We recall in the next section some results proved in [5] in order to make this paper selfcontained. Also the convergence in the space (C_0, S) is analyzed in [5] and it is proved that it is a Banach space.

2. Approximation by Polynomials in the Space (C_0, S)

Let f be a function in (C_0, S) . We consider the best approximation of f in Π_n $n = 0, 1, \cdots$ with respect to the norm S. That is, find $q_n \in \Pi_n$, such that:

$$S(f - q_n) = \inf_{p \in \Pi_n} S(f - p)$$

Let $p \in \Pi_n$. Then

$$E_k(f-p) = E_n(f), \quad (k \ge n)$$

and

$$E_k(f-p) \ge E_n(f), \quad (k < n).$$

Then,

$$\inf_{p \in \Pi_n} S(f-p) = \inf_{p \in \Pi_n} \sum_{k=0}^{n-1} E_k(f-p) + C(f),$$

where $C(f) = \sum_{k \ge n} E_k(f)$.

The existence of q_n can be deduced from the fact that (Π_n^0, S) is a normed space of finite dimension. Let us solve the following question, who is the approximant q_n ?

Proposition 1. Let $f \in C[a,b]$. Then $S(f-q_n) = \inf_{p \in \Pi_n} S(f-p)$ iff there exists a constant C such that

$$q_n = p_n + C \text{ where } \|f - p_n\|_{\infty} = \inf_{q \in \Pi_n} \|f - q\|_{\infty}$$
 (2.1)

(i.e. the best approximations of f in Π_n in the uniform norm and in the norm S coincide module an additive constant).

Proof. If p_n is the best uniform approximation of f in Π_n , then:

$$E_k(f - p_n) = E_n(f) \quad (k < n),$$

hence

$$\sum_{k=0}^{n-1} E_k(f - p_n) = nE_n(f),$$

and

$$\sum_{k=0}^{n-1} E_k(f-p) \ge n E_n(f) \; \forall p \in \Pi_n$$

(i.e. p_n is a best approximation of f on Π_n in the norm S).

Let q_n be another best approximation of f in Π_n in the norm S, then

$$\sum_{k=0}^{n-1} E_k(f - q_n) = nE_n(f)$$

hence

$$E_k(f - q_n) = E_n(f) \quad (k < n)$$

(i.e. there exists $r_k \in \Pi_k$ such that:

$$||f - (q_n + r_k)||_{\infty} = E_n(f)$$

Note that $q_n + r_k \in \Pi_n$ and, by the uniqueness of the best approximation P_n , we have

$$P_n = q_n + r_k, \quad 0 \le k < n,$$

for k = 0, $r_0 = C$ and $q_n = p_n + r_0$.

Remark 1. Since $S(f + \lambda) = S(f)$ for any continuous function f on [a, b], and $\lambda \in \mathbb{R}$, then from (2.1) it follows $q_n = p_n + C'$, C' being any arbitrary real constant.

Therefore in the space C_0 both approximations coincide and the uniqueness of best approximation in Π_n^0 with the norm S holds.

We now prove that the polynomials Π^0 are dense in (C_0, S) .

Proposition 2. For $n = 0, 1, 2, \dots$; let $\{p_n\}$ be the sequence of best polynomial approximation of degree n for a function $f \in C_0$ in the uniform norm. Then p_n converges to f in the norm S.

Proof. Let $f \in C_0$ be. With the previous notations:

$$S(f - p_n) = S(f) - \left(\sum_{k < n} E_k(f) - E_n(f)\right) = S(f) - \sum_{k < n} E_k(f) + nE_n(f),$$

then:

$$0 \le S(f - p_n) \le S(f), \quad \forall n,$$

and $S(f - p_n)$ is a decreasing sequence. Then there exists $\lim S(f - p_n)$ and:

$$\lim S(f - p_n) = \lambda, \quad 0 \le \lambda \le S(f).$$

Taking into account that $\sum_{k < n} E_k(f)$ is a partial sum of S(f), we have

$$\lim S(f - p_n) = \lim nE_n = \lambda$$

If $\lambda \neq 0$, then the series S(f) and the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$ have the same convergence character, the harmonic series diverges and $f \in C_0$ implies $S(f) < \infty$. Hence $\lambda = 0$ and the $\lim S(f - p_n) = 0$

We have immediately the following

Corollary 1. The set of polynomials Π^0 is dense in (C_0, S) .

Corollary 2. If $S(f) < \infty$ then $\lim nE_n(f) = 0$.

Now we will prove a Walsh's type theorem for (C_0, S) . (i.e. it is possible the simultaneous interpolation and approximation in the norm S).

Theorem 1. Let $f \in C_0[a, b]$ and let x_1, x_2, \dots, x_n be *n* distinct nodes on [a, b]. Let $\varepsilon > 0$. Then there exists a polynomial *p* such that:

$$p(x_i) = f(x_i), \quad (1 \le i \le n)$$

and

$$S(f-p) < \varepsilon$$

Proof. Let $f \in C_0$ and $\varepsilon > 0$. By Proposition 1, there exists a polynomial $p \in \Pi_m$ such that:

$$S(f-p) < \varepsilon,$$

and p being the best approximation to f in the norm S and in the uniform norm as in the proof of Proposition 1.

Then

$$E_m(f-p) = E_m(f) = ||f-p||_{\infty}$$

and

$$||f - p||_{\infty} \le S(f - p) < \varepsilon$$

Let q be the interpolation polynomial of f - p at the nodes $\{x_i\}$,

$$q(x) = \sum_{k=1}^{n} (f(x_k) - p(x_k)) L_k(x),$$
$$L_k(x) = \frac{\Pi(x)}{(x - x_k) \Pi'(x_k)}, \quad \Pi(x) = \prod_{j=1}^{n} (x - x_j).$$

Taking $p_1 = p + q$, results:

$$p_1(x_i) = p(x_i) + q(x_i) = f(x_i) \quad (1 \le i \le n),$$

and

$$S(f - p_1) \le S(f - p) + S(q) < \varepsilon + S(q),$$

in addition

$$S(q) \le \sum_{k=1}^{n} |f(x_k) - p(x_k)| S(L_k) \le ||f - p||_{\infty} \sum_{k=1}^{n} S(L_k) < \varepsilon M$$

where

$$M = \sum_{k=1}^{n} S(L_k).$$

Then

$$S(f-p_1) < \varepsilon(1+M),$$

ans the proof follows since $\varepsilon > 0$ is arbitray. \Box

3. The Minimax $E_n(f)$ and $F_n(f)$

We have two type of minimax $E_n(f)$ and $F_n(f)$, both corresponding to the same best approximant. Clearly, the minimax $E_n(f)$ does not give us information about how the function f could be approximated by polynomials of degree lesser than n. However, the number $F_n = S(f - p_n)$ contains certain information about this, because it can be expressed in terms of S(f) and the minimaxs $E_k(f)$ $(0 \le k \le n)$. Indeed, one has the following

Proposition 3.

$$F_n(f) = S(f) - \sum_{k < n} (E_k(f) - E_n(f))$$

for all $f \in C[a, b]$. Proof.

$$S(f - p_n) = \sum_{k=0}^{n-1} E_k(f - p_n) + \sum_{k=n}^{\infty} E_k(f) = \sum_{k=0}^{n-1} (E_k(f - p_n) - E_k(f)) + S(f)$$
$$= \sum_{k=0}^{n-1} (E_n(f) - E_k(f)) + S(f) = S(f) - \left(\sum_{k< n} E_k(f) - E_n(f)\right) \quad \Box$$

Proposition 4. The next recurrence relation holds:

$$\frac{F_{n+1} - F_n}{n+1} = E_{n+1} - E_n, \quad n = 0, 1, 2, \cdots$$

for all $f \in C[a, b]$.

Proof. We have that:

k=0

$$F_n = S(f - p_n) = nE_n(f) + \sum_{k \ge n} E_k(f) = (n+1)E_n(f) + \sum_{k \ge n+1} E_k(f),$$

$$F_{n+1} = S(f - p_{n+1}) = (n+1)E_{n+1}(f) + \sum_{k \ge n+1} E_k(f).$$

Hence

$$F_{n+1}(f) - F_n(f) = (n+1)[E_{n+1}(f) - E_n(f)]$$

4. A Bernstein's Type Theorem for the Norm Induced by the Minimax Series

The next result is known as the Bernstein's theorem: If a sequence

 $A_0 \ge A_1 \ge A_2 \ge \cdots, \lim A_n = 0,$

and an interval [a, b] are given, then there exists a function $f(x) \in C[a, b]$ with the minimax

$$E_n(f) = A_n, \quad (n = 0, 1, 2, \cdots)$$

See e.g. [4, pp.137].

We proof the next similar result for the minimax $F_n(f)$.

Theorem 2. If a sequence

$$B_0 \ge B_1 \ge B_2 \ge \cdots, \lim B_n = 0,$$

and an interval [a,b] are given, then there exists a function $f(x) \in C[a,b]$ such that $S(f) < \infty$ and

$$F_n(f) = B_n, \quad (n = 0, 1, 2, \cdots).$$

Proof. Let us consider

$$H_n = \frac{B_{n+1} - B_n}{n+1}, \quad n = 0, 1, 2, \cdots,$$
$$A_0 = \sum_{n=0}^{\infty} \frac{B_n - B_{n+1}}{n+1},$$
$$A_{n+1} = A_n + H_n, \quad n = 0, 1, 2, \cdots.$$

Note that

$$\sum_{n=0}^{\infty} \frac{B_n - B_{n+1}}{n+1} \le \sum_{n=0}^{\infty} (B_n - B_{n+1}) = B_0.$$

So $H_n \leq 0$ and $A_{n+1} \leq A_n$, $A_{n+1} = H_n + H_{n-1} + H_{n-2} + \dots + H_0 + A_0$. Then

$$\lim A_{n+1} = \left(\sum_{n=0}^{\infty} H_n\right) + A_0 = -A_0 + A_0 = 0,$$

and, from Bernstein's theorem there exists a function $f \in C[a, b]$ such that:

 $E_n(f) = A_n, \quad n = 0, 1, 2, \cdots.$

Let us now prove by induction that the following holds:

$$F_n(f) = B_n, \quad n = 0, 1, 2, \cdots.$$

On a Theorem of Bernstein and Its Applications to Weighted Minimax Series

For n = 0,

$$B_0 = \sum_{n=0}^{\infty} (B_n - B_{n+1}) = \sum_{n=0}^{\infty} (n+1)(A_n - A_{n+1})$$
$$= -\sum_{n=0}^{\infty} (n+1)A_{n+1} + \sum_{n=0}^{\infty} nA_n + \sum_{n=0}^{\infty} A_n = \sum_{n=0}^{\infty} E_n(f) = S(f) = F_0(f),$$

Suppose that $F_n(f) = B_n$ holds. For n + 1 we have:

$$F_{n+1}(f) = F_n(f) + (n+1)(E_{n+1} - E_n) = B_n + (n+1)(A_{n+1} - A_n)$$
$$= B_n + H_n(n+1) = B_{n+1}\Box$$

5. A Theorem of Bernstein's Type for the Norm Induced by the Weighted Minimax Series

The so called weighted minimax series are considered in [6]. If $\alpha = (n_k)_{k=0}^{\infty}$ is a sequence of real numbers n > 0 and $n_k \ge 0$, for all $k \ge 1$, then the weighted minimax series of $f \in C[a, b]$ relative to α , is the expression:

$$S_{\alpha}(f) \equiv \sum_{k=0}^{\infty} n_k E_k(f).$$

We can also consider the space

$$C_{\alpha,0} = \{ f \in C[a,b] : f(x_0) = 0, \text{ and } S_{\alpha}(f) < \infty \},\$$

where x is a fixed point of [a, b], and

$$S_{\alpha}: C_{\alpha,0}[a,,b] \to \mathbb{R}$$
$$f \to S_{\alpha}(f).$$

Then $(C_{\alpha,0}, S_{\alpha})$ is a Banach space. The convergence in these spaces is studied in [6]. Also the approximation by polynomials with the norm S_{α} is studied in [6]. Similar results for the case $\alpha \equiv 1$, exposed in the second paragraph of this paper are obtained. If p is the best uniform approximation of f on Π_n then p_n is a best approximation of fon Π_n with the norm S_{α} , and all best approximations of f on Π_n with the norm S_{α} are of the form p_n+C being C a constant. We can consider the minimaxs $F_{\alpha,n} = S_{\alpha}(f-p_n)$, $E_n(f) = ||f - p_n||_{\infty}$.

A recurrence relation between these minimax is established in the next result (which is a generalization of proposition 4).

Proposition 5.

$$F_{\alpha,n+1}(f) - F_{\alpha,n}(f) = S_{n+1}(E_{n+1}(f) - E_n(f))$$

where

$$S_n = \sum_{k < n} n_k.$$

Proof. We have that

$$F_{\alpha,n}(f) = S_{\alpha}(f - p_n) = S_n E_n(f) + \sum_{k \ge n} n_k E_k(f) = S_{n+1} E_n(f) + \sum_{k \ge n+1} n_k E_k(f),$$

and

$$F_{\alpha,n+1} = S(f - p_{n+1}) = S_{n+1}E_{n+1}(f) + \sum_{k \ge n+1} n_k E_k(f).$$

Hence

$$F_{\alpha,n+1}(f) - F_{\alpha,n}(f) = S_{n+1}(E_{n+1}(f) - E_n(f)) \square$$

We establish now a Bernstein's type theorem in the norm S_{α} . Theorem 3. If a sequence

$$C_0 \ge C_1 \ge C_2 \ge \cdots \lim C_n = 0,$$

and

$$\lim \frac{C_n}{S_n} = 0,$$

and an interval [a,b] are given, then there exists a function $f(x) \in C[a,b]$ such that $S_{\alpha}(f) < \infty$ and

$$F_{\alpha,n}(f) = C_n, \quad (n = 0, 1, 2, \cdots)$$

Proof. Set

$$H_n = \frac{C_{n+1} - C_n}{S_{n+1}} \quad n = 0, 1, 2, \cdots,$$
$$A_0 = \sum_{n=0}^{\infty} \frac{C_n - C_{n+1}}{S_{n+1}},$$
$$A_{n+1} = A_n + H_n, \quad n = 0, 1, 2, \cdots,$$

Note that $\sum_{n=0}^{\infty} \frac{C_n - C_{n+1}}{S_{n+1}} < \infty$ since $\sum_{n=1}^{\infty} \frac{C_n - C_{n+1}}{S_{n+1}} \le \sum_{n=1}^{\infty} \left(\frac{C_n}{S_n} - \frac{C_{n+1}}{S_{n+1}}\right) = \frac{C_0}{S_0}$. Hence $H_n \le 0$ and $A_{n+1} \le A_n$, $A_{n+1} = H_n + H_{n-1} + H_{n-2} + \dots + H_0 + A_0$. Then

$$\lim A_{n+1} = \left(\sum_{n=0}^{\infty} H_n\right) + A_0 = -A_0 + A_0 = 0,$$

and from Bernstein's Theorem, there exists a function $f \in C[a, b]$ such that:

$$E_n(f) = A_n, \quad n = 0, 1, 2, \cdots.$$

Then

$$F_{\alpha,n}(f) = C_n, \quad n = 0, 1, 2, \cdots.$$

will be verified by induction.

On a Theorem of Bernstein and Its Applications to Weighted Minimax Series

For n = 0,

$$C_0 = \sum_{n=0}^{\infty} (C_n - C_{n+1}) = \sum_{n=0}^{\infty} S_{n+1}(A_n - A_{n+1}) = -\sum_{n=0}^{\infty} S_{n+1}A_{n+1} + \sum_{n=0}^{\infty} S_{n+1}A_n$$
$$= -\sum_{n=0}^{\infty} S_{n+1}A_{n+1} + \sum_{n=1}^{\infty} S_nA_n + \sum_{n=0}^{\infty} n_nA_n = \sum_{n=0}^{\infty} n_nE_n(f) = S_\alpha(f) = F_{\alpha,0}(f),$$

Suppose that $F_{\alpha,n}(f) = C_n$ holds. For n+1 we have:

$$F_{\alpha,n+1}(f) = F_{\alpha,n}(f) + S_{n+1}(E_{n+1}(f) - E_n(f)) = C_n + S_{n+1}(A_{n+1} - A_n)$$
$$= + C_n + H_n S_{n+1} = C_{n+1} \quad \Box$$

6. Application of the Bernstein Theorem to the Existence of Certain Weighted Minimax Series and Certain Series with Minimax

Proposition 6. If $\alpha = (n_k)_{k=0}^{\infty}$ is a decreasing sequence and converges to zero, then for each $m = 1, 2, 3, \dots$, there exists f and $g \in C[a, b]$ such that:

$$S_{\alpha}(g) = \sum_{k=0}^{\infty} (E_k(f))^m$$

Proof. From Bernstein's theorem, there exists a fonction f such that:

$$E_k(f) = n_k, \quad k = 0, 1, 2, \cdots$$

and there exists a q such that:

$$E_k(g) = (E_k(f))^{m-1}, \quad k = 0, 1, 2, \cdots.$$

Thus,

$$S_{\alpha}(g) = \sum_{k=0}^{\infty} n_k (E_k(f))^{m-1} = \sum_{k=0}^{\infty} E_k(f) (E_k(f))^{m-1} = \sum_{k=0}^{\infty} (E_k(f))^m \quad \Box$$

Proposition 7. If $\alpha = (n_k)_{k=0}^{\infty}$ is an increasing sequence which tends to infinity, then for each $m = 1, 2, 3, \cdots$ and for each $f \in C[a, b]$ there exists $g \in C[a, b]$ such that:

$$S_{\alpha}(g) = \sum_{k=0}^{\infty} (E_k(f))^m$$

Proof. $\frac{(E_k(f))^m}{n_k}$ is a decreasing sequence which converges to zero. From Bernstein's theorem there exists g:

$$E_k(g) = \frac{(E_k(f))^m}{n_k}, \quad k = 0, 1, 2, \cdots.$$

then

$$S_{\alpha}(g) = \sum_{k=0}^{\infty} (E_k(f))^m \quad \Box$$

Proposition 8. If $(n_k)_{k=0}^{\infty}$ is a decreasing sequence which converges to zero, then for each $m = 1, 2, 3, \cdots$ and for each $f \in C[a, b]$ there exists $g \in C[a, b]$ such that:

$$S(g) = \sum_{k=0}^{\infty} n_k (E_k(f))^m$$

Proof. $n_k(E_k(f))^m$ is a decreasing sequence which converges to zero. Thus there exists g such that:

$$E_k(g) = n_k (E_k(f))^m, \quad k = 0, 1, 2, \cdots$$

so,

$$S(g) = \sum_{k=0}^{\infty} n_k (E_k(f))^m \quad \Box$$

Proposition 9. If $(n_k)_{k=0}^{\infty}$ is an increasing sequence and diverges, then for each $m = 2, 3, \cdots$ there exists f and $g \in C[a, b]$ such that:

$$S(g) = \sum_{k=0}^{\infty} n_k (E_k(f))^m$$

Proof. $\frac{1}{n_k}$ is a decreasing sequence which converges to zero. Then there exists $f \in C[a, b]$ such that:

$$E_k(f) = \frac{1}{n_k}, \quad k = 0, 1, 2, \cdots$$

Also there exists g such that:

$$E_k(g) = E_k^{m-1}(f), \quad k = 0, 1, 2, \cdots.$$

Therefore,

$$S(g) = \sum_{k=0}^{\infty} E_k(g) = \sum_{k=0}^{\infty} E_k^{m-1}(f) = \sum_{k=0}^{\infty} \frac{1}{n_k} n_k E_k^{m-1}(f)$$
$$= \sum_{k=0}^{\infty} n_k E_k(f) E_k^{m-1}(f) = \sum_{k=0}^{\infty} n_k (E_k(f))^m \Box$$

Proposition 10. (a) If $\alpha = (n_k)_{k=0}^{\infty}$ decreases to zero as n tends to infinity, then there exists $f \in C[a, b]$ such that:

$$S_{\alpha}(f) = \sum_{k=0}^{\infty} E_k^2(f).$$

On a Theorem of Bernstein and Its Applications to Weighted Minimax Series

(b) If $\alpha = (n_k)_{k=0}^{\infty}$ decreases to zero, then for each m > 1 there exists $f \in C[a, b]$ such that:

$$S_{\alpha}(f) = \sum_{k=0}^{\infty} (E_k(f))^m.$$

Proof. To prove (a) we can use Bernstein's theorem to get a function f such that:

$$E_k(f) = n_k, \quad k = 0, 1, 2, \cdots$$

Then,

$$S_{\alpha}(f) = \sum_{k=0}^{\infty} n_k E_k(f) = \sum_{k=0}^{\infty} E_k^2(f) \quad \Box$$

As for (b) we have just:

 $\left(n_{k}^{r}\right)\left(r>0\right)$ is a decreasing sequence which converges to zero. Then there exists f such that

$$E_k(f) = n_k^r, \quad k = 0, 1, 2, \cdots$$

Then

$$n_k = E_k^{\frac{1}{r}}(f), \quad k = 0, 1, 2, \cdots$$

and

$$S_{\alpha}(f) = \sum_{k=0}^{\infty} n_k E_k(f) = \sum_{k=0}^{\infty} E_k^{\frac{1}{r}}(f) E_k(f) = \sum_{k=0}^{\infty} E_k^{\frac{r+1}{r}}(f) E_k(f) = \sum_{k=0}^{\infty$$

Thus, taking $r = \frac{1}{m-1}, \frac{r+1}{r} = m$ we obtain

$$S_{\alpha}(f) = \sum_{k=0}^{\infty} (E_k(f))^m \quad \Box$$

Proposition 11. (a) If $\alpha = (n_k)_{k=0}^{\infty}$ is an increasing sequence which diverges to infinity, then there exists $f \in C[a, b]$ such that:

$$S_{\alpha}(f) = \sum_{k=0}^{\infty} E_k^{-1}(f).$$

(b) If $\alpha = (n_k)_{k=0}^{\infty}$ is an increasing sequence which diverges to infinity, and m > -1, then there exists $f \in C[a, b]$ such that:

$$S_{\alpha}(f) = \sum_{k=0}^{\infty} E_k^{-m}(f).$$

Proof. (a) $\left\{\frac{1}{n_k^{1/2}}\right\}$ is a decreasing which converges to zero. Then there exists f such at:

that:

$$E_k(f) = \frac{1}{n_k^{1/2}}, \quad k = 0, 1, 2, \cdots.$$

Then

$$S_{\alpha}(f) = \sum_{k=0}^{\infty} n_k \frac{1}{n_k^{1/2}} = \sum_{k=0}^{\infty} n_k^{1/2} = \sum_{k=0}^{\infty} \frac{1}{E_k(f)} \square$$

(b) $\left\{\frac{1}{n_k^r}\right\}$ (r > 0) is a decreasing sequence which converges to zero. Then there exists f such that:

$$E_k(f) = \frac{1}{n_k^r}, \quad k = 0, 1, 2, \cdots$$

Then

$$n_k = \frac{1}{E_k^{1/r}(f)}, \quad k = 0, 1, 2, \cdots$$

and

$$S_{\alpha}(f) = \sum_{k=0}^{\infty} n_k E_k(f) = \sum_{k=0}^{\infty} \frac{1}{E_k^{1/r}(f)} E_k(f) = \sum_{k=0}^{\infty} E_k^{(r-1)/r}(f)$$

Hence, by choosing, $r = \frac{1}{1+m} > 0$, then $\frac{r-1}{r} = -m$,

$$S_{\alpha}(f) = \sum_{k=0}^{\infty} E_k^{-m}(f) \quad \Box$$

Aknowledgments The author expresses his gratitude to the referee for their suggestions and comments.

References

- [1] E.W. Cheney, Introduction to Approximation Theory, Mc. Graw-Hill, 1966.
- [2] P.J. Davis, Interpolation & Approximation, Dover Publications, Inc. New York, 1975.
- [3] P.J. Laurent, Approximation et optimisation, Hermann, Paris, 1972.
- [4] I.P. Natanson, Constructive function theory, Vol. I. Frederick Ungar Publishing Co., Inc. 1964.
- [5] F. Pérez-Acosta, P. González-Vera, Approximation and convergence with the norm induced by the minimax series, *Rend. Sem. Mat. Univ. Polit. Torino*, to appear.
- [6] F. Pérez-Acosta, On weighted minimax series, Preprint, 1994.
- [7] F. Pérez-Acosta, On certain Banach spaces in connection with interpolation theory, Journal of comput. and Appl. Math., 83 (1997), 55–69.
- [8] T.J. Rivlin, The Chebyshev polynomials, John Wiley & Sons, Inc. U.S.A. 1974.