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Abstract

In this paper, a exterior Signorini problem is reduced to a variational inequality
on a bounded inner region with the help of a coupling of boundary integral and
finite element methods. We established a equivalence between the original exterior
Signorini problem and the variational inequality on the bounded inner region cou-
pled with two integral equations on an auxiliary boundary. We also introduce a
finite element approximation of the variational inequality and a boundary element
approximation of the integral equations. Furthermore, the optimal error estimates
are given.
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1. Introduction

Partial differential equations subject to unilateral boundary conditions are usu-
ally called Signorini problems in the literature. These problems have been studied by
many authods since the appearence of the historical paper by A. Signorini in 1933
[25]. Signorini problems arose in many areas of applications e.g., the elasticity with
unilateral conditions[10], the fluid mechnics problems in media with semipermeable
boundaries[8,12], the electropaint process[1] etc. For the existence, uniqueness and reg-
ularity results for Signorini type problems we refer the reader to [3, 11]. Furthermore,
the numerical solution of the Signorini problems by the finite element method has
been discussed[4,13]. Boundary element method for solving Signorini problems has been
presented in [14, 15].

In this paper, we will present a coupling of boundary integral and finite element
methods for solving a exterior Signorini problem, which is reduced to a equivalent new
variational inequality on a bounded inner region coupled with two integral equations
on an auxiliary boundary. The bilinear form arising in this variational inequality is
continuous and coercive on suitable subspaces of some Sobolev space. This leads to
existence and uniqueness for the solution of the variational inequality. Furthermore, a
coupling of boundary element and finite element methods for numerical solution of the
variational inequality is proposed and optimal error estimates are derived.

∗ Received June 6, 1996.
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2. The New Variational Inequality on a Bounded Inner Region

Let Ωc be the complement of a bounded regular region in R2 with boundary Γ.
Suppose Γ = Γ0 ∪ Γ1 (as shown in Fig.1), with Γ0 ∩ Γ1 = φ, Γ0 6= φ, we consider the
following Signorini problem:





−∆u = f, in Ωc,

u = 0, on Γ0,

u ≥ 0,
∂u

∂n
≥ 0, on Γ1,

u
∂u

∂n
= 0, on Γ1,

u is bounded, when |x| → ∞,

(2.1)

Fig. 1

where f has its support in a bounded subregion Ω1 of Ωc. In case of Γ0 = φ, f satisfies
a compatibility condition[8] ∫

Ω1

fdx ≥ 0. (2.2)

Let Ω2 = Ωc\Ω̄1, Γ2 = ∂Ω2 (see Fig.2). We will solve the exterior Signorini problem
(2.1) by using the coupling of boundary element and finite element methods. Consider
the equivalent system of Signorini problem:





−∆u1 = f, in Ω1,

−∆u2 = 0, in Ω2,

u1 = u2, on Γ2,

∂u1

∂n
=

∂u2

∂n
= σ, on Γ2,

u1 = 0, on Γ0,

u1 ≥ 0,
∂u1

∂n
≥ 0, on Γ1,

u1
∂u1

∂n
= 0, on Γ1,

u2 is bounded, when |x| → ∞,

(2.3)

Fig. 2

where ui = u|Ωi , i = 1, 2, and
∂

∂n
denotes the outward normal derivative to the

boundary ∂Ω1 = Γ ∪ Γ2 (see Fig.2).
We note that u1 will be completely determined, if σ is known. On the other hand,

the function σ depends linearly on u1|Γ2 via the solution of the following exterior
boundary value problem





−∆u2 = 0, in Ω2,

u2 = u1, on Γ2,

u2 is bounded, when |x| → ∞.

(2.4)

Hence the next step in the coupling procedures is to derive equations on Γ2 which
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will relate σ and u1|Γ2 (i.e.
∂u1

∂n
|Γ2 and u1|Γ2) directly to that the original exterior

Signorini problem (2.1) may be reformulated as an equivalent Signorini problem in
bounded inner region Ω1.

There are various forms of equivalent nonlocal boundary problems for boundary
value problems by adopting non-symmetric scheme or symmetric (or positive definite)
scheme or quasi-symmetric schemes[4,6,7,9,16,18,19,20,24]. However, the difference among
these schemes will become more pronounced in their weak forms, even some coupling
procedure will not work without more strong restriction or modifiction e.g. in elasticity
(see Wendland [26]).

We adopt a coupling of boundary element and finite element methods[16], which
preserves the coercive property of the bilinear form for the original variational inequal-
ity. Therefore, the strong restriction for the coupling operator required by Wendland[26]

will no longer be needed. Using Green’s formula we represent the solution of (2.3) in
the form

u2(x) = −
∫

Γ2

∂G(x, y)
∂ny

u2(y)dsy +
∫

Γ2

G(x, y)dsy + α, x ∈ Ω2, (2.5)

where α is a constant, and G(x, y) is the fundmental solution for the two-dimensional
Laplacian,

G(x, y) =
1
2π

log |x− y|. (2.6)

Letting x approach Γ2, we arrive at the boundary integral equation

(1
2
I + T

)
u2(x)− F

∂u2

∂n
(x)− α = 0, x ∈ Γ2, (2.7)

where I denotes the identity operator, T and F are the double and simgle - layer
potentials defined by

Tu2(x) ≡
∫

Γ2

∂G(x, y)
∂ny

u2(y)dsy, x ∈ Γ2, (2.8)

F
∂u2

∂n
(x) ≡

∫

Γ2

G(x, y)
∂u2(y)
∂ny

dsy, x ∈ Γ2. (2.9)

We also arrive at the boundary integral equation for
∂u2

∂n
|Γ2

∂u2(x)
∂n

= −Wu2(x) +
(1
2
I + T′

)∂u2

∂n
(x), x ∈ Γ2, (2.10)

where the boundary integral operators T′ and W are defined by

T′∂u2

∂n
(x) ≡

∫

Γ2

∂G(x, y)
∂nx

∂u2

∂ny
(y)dsy, x ∈ Γ2, (2.11)

Wu2(x) ≡
∫

Γ2

∂2G(x, y)
∂nx∂ny

u2(y)dsy, x ∈ Γ2, (2.12)



564 W.J. TANG, H.Y. FU AND L.J. SHEN

Wu2(x) includes a hypersingular integral. Using the properties of the double - layer
potential[17,23], we get

Wu2(x) =
d

dsx

∫

Γ2

G(x, y)
du2(y)

dsy
dsy, x ∈ Γ2. (2.13)

In terms of the transmission conditionin (2.3), we have from (2.3), (2.7) (2.10) a nonlocal
boundary Signorini problem: Find (u1, σ) such that





−∆u1 = f, in Ω1,

u1 = 0, on Γ0,

u1 ≥ 0,
∂u1

∂n
≥ 0, on Γ1,

u1
∂u1

∂n
= 0, on Γ1,

(1
2
I + T

)
u1 − Fσ − α = 0, on Γ2,

∂u1

∂n
= −Wu1 +

(
1
2I + T′

)
σ, on Γ2.

(2.14)

Let us introduce two bilinear forms and the following function spaces:

a(u, v) =
∫

Ω1

∫

Ω1

∇u∇vdxdy,

b(σ, µ) =−
∫

Γ2

∫

Γ2

G(x, y)σ(x)µ(y)dsxdsy,

∗
H

1

(Ω1) ={u ∈ H1(Ω1), u|Γ0 = 0},
K ={v ∈ ∗

H
1

(Ω1), v ≥ 0, a.e. on Γ1},
∗
H
−1

2 (Γ2) =
{
µ ∈ H−1

2 (Γ2),
∫

Γ2

µds = 0
}
,

Wα =
∗
H

1+α

(Ω1)×
∗
H
−1

2+α

(Γ2),

with norm ‖(v, µ)‖2
Wα

= ‖v‖2
1+α,Ω1

+‖µ‖2

−1
2+α,Γ2

, where Hm(Ω1) and Hβ(Γ2) denote the

usual Sobolev spaces, m,β are two real numbers. We denote by < ·, · > and (·, ·)0 the

duality pairings on H−1
2 (Γ2)×H

1
2 (Γ2) and H1(Ω1)×H−1(Ω1) respectively. Then the

variational inequality of (2.14) reads: Given f ∈ H−1(Ω1), find (u, σ) ∈ K× ∗
H
−1

2 (Γ2),
such that 




a(u1, v − u1) + b
(

du1
ds , d(v−u1)

ds

)
−

〈(1
2
I + T′

)
σ, v − u1

〉

≥ (f, v − u1)0, ∀v ∈ K,

〈
µ,

(1
2
I + T

)
u1

〉
− 〈µ,Fσ〉 = 0, ∀µ ∈ ∗

H
−1

2 (Γ2),

(2.15)

where we know
〈Wu1, v〉 = b

(du1

ds
,
dv

ds

)
, (2.16)
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in terms of (2.13).

Alternatively, we may rewrite (2.15) in the form: Find (u1, σ) ∈ K× ∗
H
−1

2 (Γ2),
such that

A(u1, σ; v − u1, µ) ≥ (f, v − u1)0, ∀(v, µ) ∈ K× ∗
H
−1

2 (Γ2), (2.17)

where

A(u1, σ; v − u1, µ) =a(u1, v) + b
(du1

ds
,
dv

ds

)
−

〈(1
2
I + T′

)
σ, v

〉

+
〈
µ,

(1
2
I + T

)
u1

〉
− 〈µ,Fσ〉,

is a bilinear form on W0 ×W0.
We have following Lemmas.
Lemma 2.1. A(u, σ; v, µ) is a bounded bilinear form on W0 ×W0; that is there is

a constant M > 0, such that

|A(u, σ; v, µ)| ≤ M‖(u, σ)‖W0‖(v, µ)‖W0 , ∀(u, σ), (v, µ) ∈ W0. (2.18)

Furthermore, there is a constant β > 0, such that

A(v, µ; v, µ) ≥ β‖(v, µ)‖2
W0

, ∀(v, µ) ∈ W0. (2.19)

Proof. We recall that case (see [21]) b(σ, µ) is a bounded bilinear form on W0×W0,
i.e. there exists a constant C1 > 0, such that

b(µ, µ) ≥ C1‖µ‖2

−1
2 ,Γ2

, ∀µ ∈ ∗
H
−1

2 (Γ2). (2.20)

Then it is straightforward to check that A(u, σ; v, µ) is a bounded form on W0 ×W0,
i.e. there exists a constant M > 0, such that |A(u, σ; v, µ)| ≤ M‖(u, σ)‖W0‖(v, µ)‖W0 ,
∀(u, σ), (v, µ) ∈ W0. Furthermore[5], we have

A(v, µ; v, µ) =a(u, v) + b
(du

ds
,
dv

ds

)
+ b(µ, µ) ≥ |v|21,Ω1

+ C1‖µ‖2

−1
2 ,Γ2

≥β{‖v‖2
1,Ω1

+ ‖µ‖2

−1
2 ,Γ2

}, ∀(v, µ) ∈ W0,

with the constant β > 0, i.e. A(v, µ; v, µ) ≥ β‖(v, µ)‖2
W0

, ∀(v, µ) ∈ W0.

Lemma 2.2. Suppose (u1, σ) ∈ Wα with 0 ≤ α ≤ 1, then there exists a constant
Mα > 0, such that |A(u1, σ; v, µ)| ≤ Mα‖(u1, σ)‖Wα‖(v, µ)‖W−α , ∀(v, µ) ∈ W0.

The proof is omited here, which is similar to the proof of lemma 2.3 in [15].
By Lemma 2.1, an application of existence and uniqueness results for elliptic vari-

ational inequality of the first kind by Lions and Stampacchia[22] yields the following
result.
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Theorem 2.1. Suppose f ∈ H−1(Ω1), then the variational inequality problem

(2.17) has a unique solution (u1, σ) ∈ K× ∗
H
−1

2 (Γ2).
Suppose u(x) is the solution of the Signorini problem (2.1), then we know that

u1(x) ≡ u(x)|Ω1 ∈ K, σ ≡ ∂u

∂n
|Γ2 ∈

∗
H
−1

2 (Γ2). Moreover, (u1, σ) is a solution of the

variational inequality problem (2.17). By the uniqueness of the variational inequality
problem (2.17), let

u =

{
u1, in Ω1,

u2, in Ω2,

we know that the exterior Signorini problem (2.1) is equivalent to the variational in-
equality problem (2.17).

Furthermore, we have
Theorem 2.2. The variational inequality problem (2.17) is equivlent the following

saddle point problem: Find (u1, σ) ∈ K× ∗
H
−1

2 (Γ2), such that

L(u1, µ) ≤ L(u1, σ) ≤ L(v, σ), ∀v ∈ K, µ ∈ ∗
H
−1

2 (Γ2), (2.21)

where

L(v, µ) =
1
2
a(v, v) +

1
2
b
(dv

ds
,
dv

ds

)
−

〈
µ,

(1
2
I + T

)
v
〉
− 1

2
b(µ, µ)− 〈f, v〉0.

Proof. Suppose that (u1, σ) ∈ K× ∗
H
−1

2 (Γ2) is the solution of (2.21).

Then for any µ ∈ ∗
H
−1

2 (Γ2) and real number ε, σ+εµ ∈ ∗
H
−1

2 (Γ2), we have L(u1, σ+
εµ) ≤ L(u1, σ), that is

−ε
[〈

µ,
(1
2
I + T

)
u1

〉
+ b(σ, µ)

]
− ε2

2
b(µ, µ) ≤ 0.

Since ε is an arbitrary constant, we obtain

〈
µ,

(1
2
I + T

)
u1

〉
+ b(σ, µ) = 0, ∀µ ∈ ∗

H
−1

2 (Γ2).

On the other hand, for any u1, v ∈ K, we know that u1 + t(v − u1) ∈ K(0 ≤ t ≤ 1),
then K is convex, and we get

L(u1, σ) ≤ L(u1 + t(v − u1, σ), ∀v ∈ K,

that is

t
[
a(u1, v − u1) + b

(du1

ds
,
d(v − u1)

ds

)
−

〈(1
2
I + T′

)
σ, v − u1

〉

− (f, v − u1) +
t2

2

[
a(v − u1, v − u1) + b

(d(v − u1)
ds

,
d(v − u1)

ds

)]
≥ 0.
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Since t(0 ≤ t ≤ 1) is an arbitrary constant and

a(v − u1, v − u1) + b
(d(v − u1)

ds
,
d(v − u1)

ds

)
≥ 0,

we get

a(u1, v − u1) + b
(du1

ds
,
d(v − u1)

ds

)
−

〈(1
2
I + T′

)
σ, v − u1

〉
≥ (f, v − u1)0.

This means that (u1, σ) ∈ K× ∗
H
−1

2 (Γ2) is the solution of (2.15). Each of the above
steps is reversible, hence we conclude that the variational inequality (2.15) is equivalent
to the saddle point problem (2.21).

3. The Discrete Approximation of the Variational Inequality (2.17)

Suppose that Sh1 and Sh2 are two dimensional subspaces of
∗
H
−1

2 (Γ2), respectively.
Let Kh1 = {vh, vh ∈ Sh1 ∩K}. Moreover, we assume that Kh1 is a closed convex subset
of Sh1 .

We consider the approximation problem: Find (uh1 , σ
h) ∈ Kh1 × Sh2 such that

A(uh
1 , σh; vh − uh

1 , µh) ≥ (f, vh − uh
1)0, ∀vh ∈ Kh1 , µ

h ∈ Sh2 , (3.1)

which is equivalent to the following problem: Find (uh1 , σ
h) ∈ Kh1 × Sh2 such that





a(uh
1 , vh − uh

1) + b
(

duh
1

ds ,
d(vh−uh

1 )
ds

)
−

〈(1
2
I + T′

)
σh, vh − uh

1

〉

≥ (f, vh − uh
1)0, ∀vh ∈ Kh1 ,〈

µh,
(1
2
I + T

)
uh

1

〉
− 〈µh,Fσh〉 = 0, ∀µh ∈ Sh2 .

(3.2)

and the problem: Find (uh
1 , σh) ∈ Kh1 × Sh2 , such that

L(uh
1 , µh) ≤ L(uh

1 , σh) ≤ L(vh, σh), ∀(vh, µh) ∈ Kh1 × Sh2 , (3.3)

It is straightforward to check that for f ∈ H−1(Ω1), the problem (3.1) has a unique
solution (uh

1 , σh) ∈ Kh1 × Sh2 . Furthermore, we obtain the following abstract error
estimate.

Theorem 3.1. Suppose that f ∈ H−1+α(Ω1), and that the solution of (2.17),

(u1, σ), satisfies u1 ∈ K∩H1+α(Ω1), σ ∈ ∗
H
−1

2 (Γ2)∩H−1
2+α(Γ2), with 0 ≤ α ≤ 1, then

we have

‖(u1 − uh
1 , σ − σh)‖2

W0
≤Cα inf

(vh,µh)∈Kh1
×Sh2

{‖(u1 − vh, σ − µh)‖2
W0

+‖u1 − vh, σ − µh)‖W−α}, (3.4)

where (uh
1 , σh) is the solution of (3.1) and Cα is a constant independent of h1 and h2.



568 W.J. TANG, H.Y. FU AND L.J. SHEN

Proof. By Lamma 2.1 we have

‖(u1 − uh
1 , σ − σh)‖2

W0
≤ 1

β
A(u1 − uh

1 , σ − σh;u1 − uh
1 , σ − σh)

+
1
β
{A(u1 − uh

1 , σ − σh;u1 − vh, σ − µh)

+ A(u1, σ; vh − u1, µ
h − σ)

−A(uh
1 , σh; vh − uh

1 , µh − σh)

−A(u1, σ;uh
1 − u1, σ

h − σ)},
∀vh ∈ Kh1 , µ

h ∈ Sh2 .

On the other hand, we take v = uh
1 , µ = σh − σ in (2.17), then it follows

−A(u1, σ;uh
1 − u1, σ

h − σ) ≤ −(f, uh
1 − u1)0.

Similarly we take µh − σh instead of µh in (3.1), then we get

−A(uh
1 , σh; vh − uh

1 , µh − σh) ≤ −(f, vh − uh
1)0.

Hence we have

‖(u1 − uh
1 , σ − σh)‖2

W0
≤ 1

β
{A(u1 − uh

1 , σ − σh;u1 − vh, σ − µh)

+ A(u1, σ; vh − u1, µ
h − σ) + (f, u1 − vh)0}

≤ 1
β
{M‖(u1 − uh

1 , σ − σh)‖W0‖(u1 − vh, σ − µh)‖W0

+ Mα‖(u1, σ)‖Wα‖(u1 − vh, σ − µh)‖W−α

+ ‖f‖−1+α,Ω1‖u1 − vh‖1−α,Ω1}

≤1
2
‖(u1 − uh

1 , σ − σh)‖2
W0

+
m2

2β2
‖u1 − vh, σ − µh)‖2

W0

+
1
β

[Mα‖(u1, σ)‖Wα + ‖f‖−1+α,Ω1 ]

‖(u1 − vh, σ − µh)‖W−α , ∀(vh, µH) ∈ Kh1 × Sh2 .

Thus we derive the error estiamte (3.4) with

Cα = max
{ M2

β2
,
2
β

[Mα‖(u1, σ)‖Wα + ‖f‖−1+α,Ω1 ]
}
.

Let Jh1 denote a regular triangulation of Ω1, i.e. Ω1 is written as a union
⋃

T1∈Jh1

T1

of triangular T1 and
h1 = max

T1∈Jh1

{ diameter of T1}.

Assume that the boundary Γ2 of Ω1 is represented as x1 = x1(s), x2 = x2(s), 0 ≤
s ≤ L, and xj(0) = xj(L), j = 1, 2. Furthermore, Γ2 is divided into segments {T2} by



On the Coupling of Boundary Integral and Finite Element Methods for Signorini Problems 569

the points xj = (x1(si), x2(si)), i = 1, 2, · · · , N2. with 0 = s0 < s1 < · · · < sN2 = L.
We define

h2 = max
1≤i≤N2

|si+1 − si|,

and this partition of Γ2 is denoted as Jh2 .
Define

Sh1 = {vh ∈ C0(Ω1) |vh1 |T1 is a linear function on T1, ∀T1 ∈ Jh1},
(3.5)

Kh1 = {vh ∈ Sh1 , vh ≥ 0 on Γ1}, (3.6)

Sh2 =
{
µh | µh|T2 is a constant, ∀T2 ∈ Jh2 and

∫

Γ2

µhds = 0
}
. (3.7)

Obviously, Kh1 is a closed convex subset of Sh1 , and it is nonempty. Sh1 and Sh2

are two regular finite element spaces in the sense by Babuška and Aziz[26] which satisfy
the following approximation property:

inf
vh∈Kh1

{‖u1 − vh‖2
1,Ω1

+ ‖u1 − vh‖1−α,Ω1} ≤ C1
αh2α

1 [‖u1‖2
1+α,Ω1

+ ‖u1‖1+α,Ω1 ],

inf
µh∈Sh2

{‖σ − µh‖2

−1
2 ,Γ2

+ ‖σ − µh‖−1
2−α,Γ2

} ≤ C2
αh2α

2 [‖σ‖2

−1
2+α,Γ2

+ ‖σ‖−1
2+α,Γ2

].

By the abstract error estimate (3.4), we obtain
Theorem 3.2. Suppose that Sh1 and Sh2 are given by (3.5) and (3.7), f and

the solution (u1, σ) satisfy the assumptions of Theorem 3.1. Then the following error
estimate holds:

‖(u1 − uh
1 , σ − σh)‖2

W0
≤C̃α{h2α

1 [‖u1‖2
1+α,Ω1

+ ‖u1‖1+α,Ω1 ]

+ h2α
2 [‖σ‖2

−1
2+α,Γ2

+ ‖σ‖−1
2+α,Γ2

]}, (3.8)

where C̃α is a constant independent of h1 and h2.
From above it is easy to see that we can choose the subspaces Kh1 and Sh2 indepen-

dently. We avoid a faster mesh refinement of the boundary elements than that of the
finite elements required by Wendland[26]. For optimal error estimate, we should take
h1 = h2.
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en dimension 2, R.A.I.R.O. Anal. Numer., 11 (1977), 27–60.
[22] J.L. Lions, G. Stampacchia, Variational inequlity, Comm. Pure Appl. Math., 20 (1967),

493–519.
[23] J.C. Nedelec, Integral equations with nonintegrable kernels, Integral Equations Oper, The-

ory, 5 (1982), 562–572.
[24] C. Pollizztto, A symmetric definite BEM for formulation for elasto-plastic rate problem. In:

Brebbia, C.A., Wendland, W.L., Kuhn, G.(eds.), Boundary Element IX, Vol. 2, Springer-
Verlag, (1987), 315–334.

[25] A. Signorini, Sopra alcune questioni di elastostatica, Atti della Societa per il Progresso della
scienza, 1933.

[26] W.L. Wendland, On asymptotic error estimates for the combined boundary and finite ele-
ment methods, In: Innovative Numerical Methods in Engineering. Shaw, R.P., et al. (eds.):
Proceedings of the 4th Int. Symm., Springer-Verlag, Berlin and New York, (1987), 55–69.


