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Abstract

The paper discusses H-splitting and H-compatible splitting furthermore, some

properties are given. Asynchronous parallel multisplitting algorithm and its gener-

alization for linear systems Ax = b are established. Convergence of these algorithms

is proved under given conditions. The convergent range of relaxation factor ω is

given, numerical example is shown.

1. Properties of H-splitting

A. Frommer and D.B. Szyld[3] proposed H-splitting and H-compatible splitting for

two-stage methods. But they didn’t discuss two splitting furthermore. We will show

some properties of H-splitting and H-compatible splitting before we apply them to

establish asynchronous parallel multisplitting algorithm.

Definition 1. ([3]) Given A ∈ L(Rn), A = M − N(M , N ∈ L(Rn)), which is

called H-splitting, if 〈M〉− |N | is an M -matrix; which is called H-compatible splitting,

if 〈A〉 = 〈M〉 − |N |. Where 〈A〉 is Ostrowski matrix, |N | is absolution matrix.

Obviously, for an H-matrix, an H-compatible splitting is an H-splitting, but an

H-splitting is not necessarily an H-compatible splitting. For example:

A =

[
1 0.25

−1 1

]

=

[
1 0

−2 1

]

−
[

0 −0.25

−1 0

]

= M − N

〈M〉 − |N | =

[
1 −0.25

−3 1

]

6= 〈A〉.

But 〈M〉 − |N | is an M -matrix.

Property 1. Given A ∈ L(Rn), let A = M − N be an H-splitting. Then A is an

H-matrix.

Proof. By definition, 〈M〉 − |N | is an M -matrix.

〈A〉 = 〈M − N〉 ≥ 〈M〉 − |N |

By comparison property of M -matrix, 〈A〉 is an M -matrix.

∗ Received March 21, 1994.



98 C.L. WANG AND Z.Y. YOU

Hence, A is an H-matrix.

Property 2. Given A ∈ L(Rn), let A = M − N be an H-splitting. Then

ρ(〈M〉−1|N |) < 1 and ρ(|M−1N |) < 1.

By definition, 〈M〉− |N | is an M -matrix, hence 〈M〉 is an M -matrix. This implies

that 〈M〉 − |N | is a convergent regular splitting, then ρ(〈M〉−1|N |) < 1.

By 〈M〉−1 ≥ |M−1|, we have

|M−1N | ≤ |M−1||N | ≤ 〈M〉−1|N |.

Hence, ρ(|M−1N |) < 1.

Property 3. Let A be a nonsingular H-matrix, let A = Mi − Ni(i = 1, 2) be

H-compatible splittings. If |N1 ≥ |N2|, then ρ(〈M1〉−1|N1|) ≥ ρ(〈M2〉−1|N2|).
Proof. By definition of H-compatible splitting and comparison property of regular

splittings [1], conclusion is proved directly.

But it is not true for H-splitting, for example:

A =

[
1 −0.25

−1 1

]

= M1 − N1 =

[
1 0

0 1

]

−
[
0 0.25

1 0

]

,

A =

[
1 −0.25

−1 1

]

= M2 − N2 =

[
1 0

−1.5 1

]

−
[

0 0.25

−0.5 0

]

,

|N1| ≥ |N2|, ρ(〈M2〉−1|N2|) =
3 +

√
41

16
> 0.56, ρ(〈M1〉−1|N1|) = 0.5.

2. Asynchronous Parallel Algorithm

The parallel multisplitting iterative method for solving large systems of linear alge-

braic equations

Ax = b, A ∈ L(Rn) x, b ∈ Rn (2.1)

was first presented by O’Leary and White[4] in 1985. Since then, many papers have dealt

with parallel multisplitting iterative methods for linear and nonlinear problems[4]−[10]

etc. In order to make use of parallel computer efficiently, a great deal of research is

currently being focused on asynchronous implementation, in which computation and

communication are performed independently in each processor so that processor idle

time is reduced, time of convergence is shorted and so on.

In this section, we will establish asynchronous parallel iterative methods based on

H-splitting.

Let A = Mi −Ni(i = 1, 2, · · · , l) be H-splittings, Ei(i = 1, 2, · · · , l) are nonnegative

diagonal matrices and
l∑

i=1

Ei = I, where I is the identity matrix. (2.1) changes into

following equivalent form:

x =
l∑

i=1

EiM
−1
i Nix +

l∑

i=1

EiM
−1
i b, (2.2)
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which is the fixed-point equation that must be satisfied by solution of (2.1)[4].

Synchronous parallel multisplitting iterative method:

xk+1
i = EiM

−1
i Nix

k + EiM
−1
i b, i = 1, 2, · · · , l,

xk+1 =
l∑

i=1

xk+1
i

Definition 2. For k = 1, 2, · · · and i = 1, 2, · · · , l, let there be given nonempty sets

I(k) ∈⊂ {1, · · · , l} and n-tuples si(k) ≡ (si
1(k), · · · , si

n(k)) ∈ (N ∪ {0})n (N represents

positive integer). Suppose that the following assumption hold.

(i) For i ∈ {1, · · · , l} and j ∈ {1, · · · , n}, there exists a positive integer T1 such that

k − T1 ≤ si
j(k) ≤ k (2.3)

(ii) For i ∈ {1, · · · , l}, there exists a positive integer T2 such that

i ∈ (I(k), · · · , I(k − T2)) (2.4)

We change synchronous parallel multisplitting method into asynchronous parallel

algorithm (I).

xk+1
i = EiM

−1
i Nix

si(k) + EiM
−1
i b i = 1, 2, · · · , l

xk+1 =
∑

i∈I(k)

xk+1
i +

∑

i6∈I(k)

Eix
si(k)

We introduce the relaxed factor ω > 0 and generalize algorithm (I) into algorithm

(II)

xk+1
i = EiM

−1
i Nix

si(k) + EiM
−1
i b i = 1, 2, · · · , l

xk+1 = (1 − ω)xsi(k) + ω
( ∑

i∈I(k)

xk+1
i +

∑

i6∈I(k)

Eix
si(k)

)

The above two asynchronous parallel models generalize that of [8] or [9].

3. Convergence

For convenience, A = DA−BA is Jacobi splitting, JA = D−1
A BA unless specification.

Lemma 1. Given A ∈ L(Rn), let A = M − N be H-splitting. If there exists

a strictly diagonally dominant matrix G such that 〈M〉 − |N | ≥ 〈G〉. Then 〈M〉 −
|N | is a strictly diagonally dominant matrix. Furthermore, if diag(M) = DG, then

‖〈M〉−1|N | ‖∞ ≤ ‖JG‖∞ < 1.

Proof. By assumption, we have 〈G〉, 〈M〉− |N | are M -matrices. Then 〈M〉− |N | ≥
〈G〉 implies that 〈M〉 − |N | is a strictly diagonally dominant matrix.

By assumption, 〈M〉−1|N | ≤ I − 〈M〉−1〈G〉. Let e = (1, 1, · · · , 1)T .

〈M〉−1|N |e ≤ e − 〈M〉−1〈G〉e ≤ e − |D−1
G |〈G〉e ≤ JGe.
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Hence, ‖〈M〉−1|N | ‖∞ ≤ ‖JG‖∞. On thd other hand, by assumption of G, we have,

‖JG‖∞ < 1.

Theorem 1. Given A ∈ L(Rn), let A = Mi − Ni (i = 1, 2, · · · , l) be H-splittings,

there exists a strictly diagonally dominant matrix G such that 〈Mi〉 − |Ni| ≥ 〈G〉, and

diag(〈Mi〉) = DG, (i = 1, 2, · · · , l). Then {xk} generated by algorithm (I) converges to

the solution of (2.1).

Proof. Let ek = xk − x∗, where x∗ is the solution of (2.1).

By algorithm (I), we have

ek+1 =
∑

i∈I(k)

EiM
−1
i Nie

si(k) +
∑

i6∈I(k)

Eie
si(k)

=
∑

i∈I(k)

EiM
−1
i Nie

si(k) +
∑

i∈I(k−ti)

EiM
−1
i Nie

si(k−ti)

|ek+1| ≤
∣
∣
∣

∑

i∈I(k)

EiM
−1
i Ni

∣
∣
∣ |esi(k)| +

∣
∣
∣

∑

i∈I(k−ti)

EiM
−1
i Ni

∣
∣
∣ |esi(k−ti)|

≤
∑

i∈I(k)

Ei〈Mi〉−1|Ni| |esi(k)| +
∑

i∈I(k−ti)

Ei〈Mi〉−1|Ni| |esi(k−ti)|

≤
l∑

i=1

Ei〈Mi〉−1|Ni| max
1≤i≤l

{|esi(k)|, |esi(k−ti)|},

thus, ‖ek+1‖∞ ≤
∥
∥
∥

l∑

i=1

Ei〈Mi〉−1|Ni|
∥
∥
∥
∞

· max
1≤i≤l

{‖esi(k)‖∞, ‖esi(k−ti)‖∞}.

By assumption, we have k − T1 ≤ si(k) ≤ k, 0 ≤ ti ≤ T2, i = 1, · · · , l. Hence, let

T = T1 + T2.

‖ek+1‖∞ ≤ ‖JG‖∞ max
0≤j≤T

‖ek−j‖∞ (3.1)

By ‖JG‖∞ < 1, we have lim
k→∞

‖ek+1‖∞ = 0, that is, lim
k→∞

xk = x∗.

Corollary 1. Let A be a strictly diagonally dominant matrix, let A = Mi−Ni (i =

1, 2, · · · , l) be H-compatible splittings. If diag(〈Mi〉) = diag(〈A〉), then {xk} generated

by algorithm (I) converges to the solution of (2.1).

Theorem 2. Given A ∈ L(Rn), let A = Mi − Ni(i = 1, 2, · · · , l) be H-splittings,

and there exists an H-matrix G such that 〈Mi〉 − |Ni| ≥ 〈G〉(i = 1, 2, · · · , l). If

diag(〈Mi〉) = DG, then {xk} generated by algorithm (I) converges to the solution of

(2.1).

Proof. By definition of H-matrix, there exists a positive diagonal matrix P such

that GP is strictly diagonally dominant matrix. Obviously, 〈Mi〉P and 〈Mi〉P − |Ni|P
are M -matrices.

By lemma 1, 〈Mi〉P − |Ni|P are also strictly diagonal dominant matrices, and

‖(〈Mi〉P )−1|Ni|P‖∞ ≤ ‖P−1JGP‖∞ < 1 (i = 1, 2, · · · , l).
Let Pek = xk − x∗, where x∗ is the solution of (2.1). By algorithm (I), we have

Pek+1 =
∑

i∈I(k)

EiM
−1
i NiPesi(k) +

∑

i6∈I(k)

EiPesi(k)
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=
∑

i∈I(k)

EiM
−1
i NiPesi(k) +

∑

i∈I(k−ti)

EiM
−1
i NiPesi(k−ti)

|Pek+1| ≤
∣
∣
∣

∑

i∈I(k)

EiM
−1
i Ni|P |esi(k)

∣
∣
∣ +

∑

i∈I(k−ti)

Ei|M−1
i Ni|P |esi(k−ti)|

≤
∑

i∈I(k)

Ei〈Mi〉−1|Ni|P |esi(k)| +
∑

i∈I(k−ti)

Ei〈Mi〉−1|Ni|P |esi(k−ti)|

≤
l∑

i=1

Ei〈Mi〉−1|Ni|P max
1≤i≤l

{|esi(k)|, |esi(k−ti)|},

Similar proving processing as theorem 1, we have

||ek+1||∞ ≤ ||P−1JGP ||∞ max
0≤j≤T

||ek−j ||∞. (3.2)

Hence, lim
k→∞

||ek+1||∞ = 0, that is, lim
k→∞

xk = x∗.

Corollary 2. Let A be a nonsingular H-matrix, let A = Mi −Ni(i = 1, 2, · · · , l) be

H-compatible splittings, if diag(〈Mi〉) = diag(〈A〉), then {xk} generated by algorithm

(I) converges to the solution of (2.1).

Lemma 2. Suppose that A is an H-matrix, A = DA−BA is Jacobi splitting. Then

there exists a positive diagonal matrix P such that ||P−1JAP ||∞ = ρ(|JA|).
Proof. By property of H-matrix [11], there exists an optimally scaled matrix P

such that AP satisfies the following equations:

∑

j 6=i

|aijPj |

|aiiPi|
= ρ(|JA|), i = 1, 2, · · · , n,

which implies ||P−1JAP ||∞ = ρ(|JA|).
Theorem 3. Given A ∈ L(Rn), let A = Mi − Ni(i = 1, 2, · · · , l) be H-splittings.

If there exists an H-matrix G such that 〈Mi〉 − |Ni| ≥ 〈G〉, diag(〈Mi〉) = DG, (i =

1, 2, · · · , l), if 0 < ω <
2

1 + ρ(|JG|)
, then {xk} generated by algorithm (II) converges to

the solution of (2.1).

Proof. Let Pek = xk−x∗, where P is the optimally scaled matrix, x∗ is the solution

of (2.1).

The same proving proceeding as that of theorem 2, we have

||ek+1||∞ ≤ |1 − ω| + ω
∥
∥
∥

l∑

i=1

Ei〈Mi〉−1|Ni|
∥
∥
∥
∞

max
0≤j≤T

||ek−j||∞

≤ |1 − ω| + ω||P−1JGP ||∞ max
0≤j≤T

||ek−j||∞,

By lemma 2, we have

||ek+1||∞ ≤ |1 − ω| + ωρ(|JG|) max
0≤j≤T

||ek−j ||∞.
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When 0 < ω <
2

1 + ρ(|JG|)
,

|1 − ω| + ωρ(|JG|) < 1.

Hence lim
k→∞

||ek+1||∞ = 0 ⇒ lim
k→∞

xk = x∗.

Corollary 3. Let A be a nonsingular H-matrix, let A = Mi − Ni (i = 1, 2, · · · , l)
be H-compatible splittings, diag(〈Mi〉) = diag(〈A〉) (i = 1, 2, · · · , l). When 0 < ω <

2

1 + ρ(|JA|)
, then {xk} generated by algorithm (II) converges to the solution of (2.1).

Following discusses the convergence rate of algorithm (I).

Definition 3. Let {xk}∞k=0 be a sequence in Rn such that lim
k→∞

xk = x∗. Then

σ({xk}∞k=0) = lim
k→∞

sup ||xk − x∗||
1
k is the R1-factor of the sequence {xk}∞k=0.

This factor is independent of choice of the norm || · ||.
Theorem 4. Let A be a nonsingular H-matrix, and A = Mi − Ni(i = 1, · · · , l)

be H-splittings. T = T1 + T2. If there exists a nonsingular H-matrix G such that

〈G〉 ≤ 〈Mi〉 − |Ni|, and diag(〈Mi〉) = diag(〈G〉), then σ({xk}∞k=0) ≤ T
√

ρ(|JG|).
Proof. Let ek = P−1(xk − x∗), where P is the optimally scaled matrix, x∗ is the

solution of (2.1). Similar proving proceeding as (3.2), we have

||ek+1||∞ ≤ ||P−1JGP ||∞ max
0≤j≤T

||ek−j ||∞. (3.3)

By lemma 2, we obtain

||ek+1||∞ ≤ ρ(|JG|) max
0≤j≤T

||ek−j ||∞.

Hence,

σ({xk}∞k=0) = lim
k→∞

sup(||xk − x∗||)
1
k = lim

k→∞
sup(||Pek||)∞))

1
k

≤ lim
k→∞

sup(||P ||∞)
1
k · (||ek||∞)

1
k

≤ lim
k→∞

sup (ρ(|JG|)
k
T max

0≤j≤T
||ej ||∞||P ||∞)

1
k

≤ lim
k→∞

sup T

√

ρ(|JG|)
(

max
0≤j≤T

||ej ||∞||P ||∞
) 1

k = T

√

ρ(|JG|).

Corollary 4. Let A be a nonsingular H-matrix, and A = Mi − Ni(i = 1, · · · , l)
be H-compatible splittings, T = T1 + T2. If diag(Mi) = diag(A) (i = 1, · · · , l), then

σ({xk}∞k=0) ≤ T
√

ρ(|JA|).

4. Numerical Example

We use our algorithm to solve usually block tridiagonal linear equations as follows.

Ax = b
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Where

A =













A11 A12

A21 A22 A23

A32 A33 A34

A43 A44 A45

A54 A55 A56

A65 A66













A11 =










2 −0.4

−0.2 2 −0.4

−0.2 2 −0.4

−0.2 2 −0.4

−0.2 2










A21 =










0 0 −0.1 −0.2 −0.2

−0.2 0 0 −0.1 −0.2

−0.2 −0.2 0 0 −0.1

−0.1 −0.2 −0.2 0 0

0 −0.1 −0.2 −0.2 0










Aii =










1 −0.2 0 0 0

−0.1 1 −0.2 0 0

0 −0.1 1 −0.2 0

0 0 −0.1 1 −0.2

0 0 0 −0.1 1










, 2 ≤ i ≤ 6

Aii−1 =










0 0 0.05 0.1 0.1

0.1 0 0 0.05 0.1

0.1 0.1 0 0 0.05

0.05 0.1 0.1 0 0

0 0.05 0.1 0.1 0










, 3 ≤ i ≤ 6

Aii+1 =










−0.2 −0.1 −0.1 −0.05 0

0 −0.2 −0.1 −0.1 −0.05

−0.05 0 −0.2 −0.1 −0.1

−0.1 −0.05 0 −0.2 −0.1

−0.1 −0.1 −0.05 0 −0.2










, 1 ≤ i ≤ 5

b = (1.15, 0.95, 0.95, 0.95, 1.35, −0.15, −0.25, −0.25, −0.25, −0.05, 0.6, 0.5, 0.5,

0.5, 0.7, 0.6; 0.5, 0.5, 0.5, 0.7, 0.6, 0.5, 0.5, 0.5, 0.7, 1.05, 0.95, 0.95, 0.95, 1.15)T .

We use three splitting as follows.

(1) Guass-Seidel splitting;

(2) Jacobi splitting;

(3) SOR splitting.

The power matrices E1 = diag (1, · · · , 1
︸ ︷︷ ︸

10

, 0, · · · , 0
︸ ︷︷ ︸

20

), E2 = diag (0, · · · , 0
︸ ︷︷ ︸

10

, 1, · · · , 1
︸ ︷︷ ︸

10

, 0, · · · , 0
︸ ︷︷ ︸

10

),

E3 = diag (0, · · · , 0
︸ ︷︷ ︸

20

, 1, · · · , 1
︸ ︷︷ ︸

10

).
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The initial value x(0) = (50, 100, 150, −200, −100, 0, −90, 200, 200, −250, 110,
120, 130, 140, 150, 120, 170, 100, −190, −500, −10, −20, −30, 30, 50, −50, −80, −10,
0, 110)T , the accuracy ǫ = 0.0001.

method G − S
SOR method in [4] algorithm (I)

Jacobi
(ω = 1.0) (ω = 1.0) (ω = 0.9)

iterative

number
15 15 24 15 29

waiting

amount
3960 740

computing

amount
3970 3970 6360 3970 7470

Notes: Waiting time is replaced by waiting multiplying amount, computing time

is replaced by multiplying amount. In the table, the parameter ω is the

optimal parameter.
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