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Abstract

This paper discusses the optimal preconditioning in the domain decomposition
method for Wilson element. The process of the preconditioning is composed of the
resolution of a small scale global problem based on a coarser grid and a number
of independent local subproblems, which can be chosen arbitrarily. The condition
number of the preconditioned system is estimated by some characteristic numbers
related to global and local subproblems. With a proper selection, the optimal
preconditioner can be obtained, while the condition number is independent of the
scale of the problem and the number of subproblems.

1. The Construction of Preconditioner

Let Ω be a polygon domain in R2, f ∈ L2(Ω). Consider the homogeneous Dirichlet
boundary value problem of Poisson equation,




−4u = f, in Ω

u|∂Ω = 0
(1.1)

Assume that, for domain Ω, there are a coarser subdivision TH with mesh size H

and an another one Th with mesh size h, which is obtained by refining TH . The both
subdivisions satisfy the quasi-uniformity and the inverse hypothesis.

For a given element T , Pm(T ) denotes the space of all polynomials with the de-
gree not greater than m, Qm(T ) denotes the space of all polynomials with the degree
corresponding to x or y not greater than m.

Let VH and Vh be some nonconforming finite element spaces corresponding to TH

and Th respectively. For problem (1.1), the nodal parameters on the boundary ∂Ω are
all zero. For finite element spaces Vh and VH , the finite element equations for problem
(1.1) are

ah(uh, vh) = (f, vh), ∀vh ∈ Vh, (1.2)
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aH(uH , vH) = (f, vH), ∀vH ∈ VH , (1.3)

respectively. Where (·, ·) is L2(Ω) inner product and

ah(v, w) =
∑

T∈Th

∫

T

(∂u

∂x

∂v

∂x
+

∂u

∂y

∂v

∂y

)
dxdy,

aH(v, w) =
∑

T∈TH

∫

T

(∂u

∂x

∂v

∂x
+

∂u

∂y

∂v

∂y

)
dxdy.

For v ∈ Vh, denote the vector of its nodal parameters by Ch(v), and for v ∈ VH ,
denote the vector of its nodal parameters by CH(v). Thus, equations (1.2) and (1.3)
can be written as

AhCh(uh) = Fh (1.4)

AHCH(uH) = FH (1.5)

where Ah, AH are the stiffness matrices corresponding to problems (1.2) and (1.3)
respectively, and Fh, FH are the loading vectors.

Now consider how to solve (1.2). The Preconditioned Conjugate Gradient method
(PCG) would be used. So the preconditioning matrix Q needs to be constructed.

Let {ω1, ω2, · · · , ωM} be a domain decomposition of Ω, i.e., Ω = ∪M
k=1ωk, and ωm ∩

ωn = ∅(m 6= n). For each ωk, it is extended to Ωk, such that the boundary of Ωk is
consists of the edges of Th and

dist {∂ωk, ∂Ωk} ≥ L, (1.6)

where L is a fixed positive constant. For each element T ∈ Th, the number of subdo-
mains Ωk containing T does not exceed a fixed number.

Corresponding to Th, a subdivision of Ωk can be obtained, and the corresponding
nonforming finite element space is denoted by Vh,k. The corresponding finite element
equation is

ak(uk, vk) = (f, vk)k, ∀vk ∈ Vh,k, (1.7)

where (·, ·)k is L2(Ωk) inner product and

ak(uk, vk) =
∑

T∈Th,T⊂Ωk

∫

T

(∂uk

∂x

∂vk

∂x
+

∂uk

∂y

∂vk

∂y

)
dxdy.

The stiffness matrix is denoted by Ak.
Let Ek be the zero extension operator from Vh,k to Vh, i.e., ∀vk ∈ Vh,k,∀T ∈ Th

Ekvk|T =





vk|T , T ⊂ Ωk

0, otherwise
(1.8)
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For vk ∈ Vh,k, its nodal parameter vector is denoted by Ck(vk). In the sense of
nodal parameter vectors, a mapping matrix Ek is given, that is

Ch(Ekvk) = EkCk(vk), ∀vk ∈ Vh,k. (1.9)

Let IH be a linear operator from VH to Vh. Let IH be the matrix such that

Ch(IHvH) = IHCH(vH), ∀vH ∈ VH . (1.10)

The expression for the inverse Q−1 of the preconditioner Q is defined as follows,

Q−1 = IHA−1
H I>H +

M∑

k=1

EkA
−1
k E>k , (1.11)

while Q−1 is symmetric and positive.
In the PCG iteration, only Q−1 not Q will take part in the operation, the expression

for Q is not necessary. The process of Q−1 is to solve the finite element equations on
coarser subdivision and the subdomains simultaneously. The computing is fully parallel.

The convergence of PCG method is dependent on the condition number of matrix
Q−1Ah. Smaller the condition number is, faster the convergence is. The condition
number of Q−1Ah is bounded by the ratio of the upper bounds of the generalized
Rayleich quotient

R(v) =
(AhQ−1AhCh(v), Ch(v))

(AhCh(v), Ch(v))
, ∀v ∈ Vh. (1.12)

to the low one.
The remainder of the paper will give the linear operator IH for Wilson element, and

estimate R(v) and get the bound of the condition number.
Throughout the paper, C always denotes the positive constant independent of H,

h and the choice of the subdomains.
For a set G ∈ R2 and an integer m, Sobolev semi-norm is denoted by | · |m,G. For

subdivisions TH and Th, define the following discrete Sobolev norms,

| · |m,H =
( ∑

T∈TH

| · |2m,T

)1/2
, | · |m,h =

( ∑

T∈Th

| · |2m,T

)1/2
.

2. Wilson Element

In the case of Wilson element, the subdivision elements are rectangles. Wilson
finite element space Vh = {v | v ∈ L2(Ω), v|T ∈ P2(T ), ∀T ∈ Th, and v is continuous
at vertices of Th and v vanishes at the vertices on ∂Ω }. Similarly, spaces VH and Vh,k

can be defined. The function v of Wilson space is uniquely determined by its values at

the vertices, and the values of
∂2

∂x2
v and

∂2

∂y2
v on all elements.
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The bilinear interpolation operator using the function values at the vertices, for
element T , is denoted by Q1

T . Q1
H and Q1

h are the interpolation operators corresponding
to TH and Th respectively.

For all vH ∈ VH , define IHvH ∈ Vh as follows,
1. IHvH equals to Q1

HvH at the vertices of Th.
2. For each element T ′ of Th, there exists an element T ∈ TH with T ′ ⊂ T , then

∂2

∂x2
IHvH |T ′ =

H

h

∂2

∂x2
vH |T ,

∂2

∂y2
IHvH |T ′ =

H

h

∂2

∂y2
vH |T .

Before estimating the condition number of Q−1Ah, some preparation results will be
given.

Lemma 1. There exists a constant C independent of H, h, such that,

|vH − IHvH |m,h ≤ CH1−m|vH |1,H , m = 0, 1 ∀vH ∈ VH . (2.1)

Proof. For a given rectangle T , its four vertices are denoted by Ai
T (1 ≤ i ≤ 4). It

is easy to show that for arbitrary element T in TH or in Th,

1
C
|p|20,T ≤

{ 4∑

i=1

|T ||p(Ai
T )|2 + |T |3

(∣∣∣∂
2p

∂x2

∣∣∣
2
+

∣∣∣∂
2p

∂y2

∣∣∣
2)}

≤ C|p|20,T , (2.2)

1
C
|p|21,T ≤

{ ∑

1≤i,j≤4

|p(Ai
T )− p(Aj

T )|2 + |T |2
(∣∣∣∂

2p

∂x2

∣∣∣
2
+

∣∣∣∂
2p

∂y2

∣∣∣
2)}

≤ C|p|21,T , (2.3)

are true for all p ∈ P2(T ), where |T | is the area of T .
Now let vH ∈ VH and T ∈ TH , then from the definition of IH and (2.2),

|vH − IHvH |20,T =
∑

S∈Th,S⊂T

|vH − IHvH |20,S ≤ C
∑

S∈Th,S⊂T

{ 4∑

i=1

h2|(vH − IHvH)(Ai
S)|2

+ h6
(∣∣∣ ∂2

∂x2
(vH − IHvH)|S

∣∣∣
2
+

∣∣∣ ∂2

∂y2
(vH − IHvH)|S

∣∣∣
2)}

= C
∑

S∈Th,S⊂T

{ 4∑

i=1

h2|(Q1
h −Q1

H)vH(Ai
S)|2

+ h6
(
1− H

h

)2(∣∣∣ ∂2

∂x2
vH |T

∣∣∣
2
+

∣∣∣ ∂2

∂y2
vH |T

∣∣∣
2)}

≤ C
∑

S∈Th,S⊂T

{
|(Q1

h −Q1
H)vH |20,S + H2h4

(∣∣∣ ∂2

∂x2
vH |T

∣∣∣
2
+

∣∣∣ ∂2

∂y2
vH |T

∣∣∣
2)}

By the interpolation property and the inverse inequality, one gets

|vH − IHvH |20,T ≤ CH2|vh|21,T

{
1 +

∑

S∈Th,S⊂T

h4H−4
}
.
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Since the number of the elements contained in T is bounded by CH2/h2, one has

|vH − IHvH |20,T ≤ CH2|vh|21,T . (2.4)

From the definition of IH and (2.3),
∑

S∈Th,S⊂T

|vH − IHvH |21,S ≤ C
∑

S∈Th,S⊂T

{ ∑

1≤i,j≤4

|(vH − IHvH)(Ai
S)− (vH − IHvH)(Aj

S)|2

+ h4
(∣∣∣ ∂2

∂x2
(vH − IHvH)|S

∣∣∣
2
+

∣∣∣ ∂2

∂y2
(vH − IHvH)|S

∣∣∣
2)}

= C
∑

S∈Th,S⊂T

{ ∑

1≤i,j≤4

|(Q1
h −Q1

H)vH(Ai
S)− (Q1

h −Q1
H)vH(Aj

S)
∣∣∣
2

+ h4
(
1− H

h

)2(∣∣∣ ∂2

∂x2
vH |T

∣∣∣
2
+

∣∣∣ ∂2

∂y2
vH |T

∣∣∣
2)}

≤ C
∑

S∈Th,S⊂T

{
|(Q1

h −Q1
H)vH |21,S + H2h2

(∣∣∣ ∂2

∂x2
vH |T

∣∣∣
2
+

∣∣∣ ∂2

∂y2
vH |T

∣∣∣
2)}

It leads to ∑

S∈Th,S⊂T

|vH − IHvH |21,S ≤ C|vH |21,T . (2.5)

Lemma 1 follows from (2.4) and (2.5).
Lemma 2. There exists a constant C independent of H, h, such that,

|vH |1,H ≤ C|IHvH |1,h, ∀vH ∈ VH . (2.6)

Proof. Let vH ∈ Vh and T ∈ TH . (2.3) gives

|vH |21,T ≤ C
{ ∑

1≤i,j≤4

|vH(Ai
T )− vH(Aj

T )|2 + H4
(∣∣∣ ∂2

∂x2
vH |T

∣∣∣
2
+

∣∣∣ ∂2

∂y2
vH |T

∣∣∣
2)}

= C
{ ∑

1≤i,j≤4

|Q1
HvH(Ai

T )−Q1
HvH(Aj

T )|2 + H4
(∣∣∣ ∂2

∂x2
vH |T

∣∣∣
2
+

∣∣∣ ∂2

∂y2
vH |T

∣∣∣
2)}

≤ C
{
|Q1

HvH |21,T + H4
(∣∣∣ ∂2

∂x2
vH |T

∣∣∣
2
+

∣∣∣ ∂2

∂y2
vH |T

∣∣∣
2)}

= C
{ ∑

S∈Th,S⊂T

|Q1
HvH |21,S + H4

(∣∣∣ ∂2

∂x2
vH |T

∣∣∣
2
+

∣∣∣ ∂2

∂y2
vH |T

∣∣∣
2)}

≤ C
{ ∑

S∈Th,S⊂T

∑

1≤i,j≤4

|Q1
HvH(Ai

S)−Q1
HvH(Aj

S)|2

+ H4
(∣∣∣ ∂2

∂x2
vH |T

∣∣∣
2
+

∣∣∣ ∂2

∂y2
vH |T

∣∣∣
2)}
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= C
{ ∑

S∈Th,S⊂T

∑

1≤i,j≤4

|IHvH(Ai
S)− IHvH(Aj

S)|2

+ H4
(∣∣∣ ∂2

∂x2
vH |T

∣∣∣
2
+

∣∣∣ ∂2

∂y2
vH |T

∣∣∣
2)}

Noticing that H2/h2 is not greater than the number of elements in Th which are
contained in T , one gets, from the definition of IH ,

|vH |21,T ≤ C
∑

S∈Th,S⊂T

{ ∑

1≤i,j≤4

|IHvH(Ai
S)− IHvH(Aj

S)|2

+ H2h2
(∣∣∣ ∂2

∂x2
vH |T

∣∣∣
2
+

∣∣∣ ∂2

∂y2
vH |T

∣∣∣
2)}

≤ C
∑

S∈Th,S⊂T

{ ∑

1≤i,j≤4

|IHvH(Ai
S)− IHvH(Aj

S)|2

+ h4
(∣∣∣ ∂2

∂x2
IHvH |S

∣∣∣
2
+

∣∣∣ ∂2

∂y2
IHvH |S

∣∣∣
2)}

Combining (2.3) and the above inequality, one has

|vH |21,T ≤ C
∑

S∈Th,S⊂T

|IHvH |21,S . (2.7)

Lemma 2 follows.
Let P : L2(Ω) → VH is the orthogonal projection operator in the sense of L2(Ω),

that is, for v ∈ L2(Ω), Pv ∈ VH and

(v, vH) = (Pv, vH), ∀vH ∈ VH .

Lemma 3. For all v ∈ H1
0 (Ω), the following estimates are uniformly true,

|v − Pv|m,H ≤ CH1−m|v|1,H , m = 0, 1, (2.8)

|Pv|1,H ≤ C|v|1,H . (2.9)

Lemma 3 can be proved by the similar way used in [2].

3. The Condition Number

Let PH : Vh → IHVH and Pk : Vh → EkVh,k (k = 1, 2, · · · ,M) be the orthogonal
projection operators in the sense of inner product ah(·, ·), that is, for vh ∈ Vh, PHvh ∈
IHVH and

ah(PHvh, IHvH) = ah(vh, IHvH), ∀vH ∈ VH , (3.1)
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and Pkvh ∈ EkVh,k and

ah(Pkvh, Ekvk) = ah(vh, Ekvk), ∀vk ∈ Vh,k. (3.2)

For all v ∈ Vh, let uH
v ∈ VH be the solution of equation

aH(uH
v , vH) = ah(v, IHvH), ∀vH ∈ VH , (3.3)

that is,
AHCH(uH

v ) = I>HAhCh(v).

It is easy to show that

(AhQ−1AhCh(v), Ch(v)) = ah(uH
v , uH

v ) +
M∑

k=1

ah(Pkv, v), ∀v ∈ Vh. (3.4)

Lemma 4. There exists a constant C independent of H, h and the choice of sub-
domains, such that,

R(v) ≤ C, ∀v ∈ Vh. (3.5)

Proof. By the way used in Lemma 2.1 in paper [4], one can prove that

M∑

k=1

ah(Pkv, v) ≤ Cah(v, v), ∀v ∈ Vh. (3.6)

From (3.3) and (2.1), one gets

aH(uH
v , uH

v ) = ah(v, IHuH
v ) ≤ ah(v, v)1/2ah(IHuH

v , IHuH
v )1/2 ≤ Cah(v, v)1/2|IHuH

v |1,h

≤ Cah(v, v)1/2|uH
v |1,H ≤ Cah(v, v)1/2aH(uH

v , uH
v )1/2,

aH(uH
v , uH

v ) ≤ Cah(v, v). (3.7)

Lemma 4 follows from (3.6) and (3.7).
Lemma 5. For all v ∈ Vh,

ah(PHv, v) +
M∑

k=1

ah(Pkv, v) ≤ CaH(uH
v , uH

v ) +
M∑

k=1

ah(Pkv, v). (3.8)

Proof. It is sufficient to show the following inequality

ah(PHv, v) ≤ CaH(uH
v , uH

v ). (3.9)

By (3.1) and (3.3),

ah(PHv, IHvH) = ah(v, IHvH) = aH(uH
v , vH), ∀vH ∈ VH ,
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and

ah(PHv, PHv)1/2 = sup
0 6=w∈VH

ah(PHv, IHw)
ah(IHw, IHw)1/2

= sup
0 6=w∈VH

aH(uH
v , w)

ah(IHw, IHw)1/2

≤ aH(uH
v , uH

v )1/2 sup
0 6=w∈VH

aH(w, w)1/2

ah(IHw, IHw)1/2

≤ CaH(uH
v , uH

v )1/2 sup
0 6=w∈VH

|w|1,H

|IHw|1,h
,

(2.6) leads to (3.9).
Lemma 6. For all v ∈ Vh,

ah(v, v) ≤ C
(
1 +

H2

L2

)(
1 +

h2

L2

)[
ah(PHv, v) +

M∑

k=1

ah(Pkv, v)
]
. (3.10)

Proof. If there exist ṽH ∈ IHVH , uk ∈ EkVh,k, k = 1, 2, · · · ,M , such that,





v = ṽH +
M∑

k=1

uk

ah(ṽH , ṽH) +
M∑

k=1

ah(uk, uk) ≤ βah(v, v),

(3.11)

then (see [1])

ah(v, v) ≤ βah

(
PHv +

M∑

k=1

Pkv, v
)
. (3.12)

It is necessary to find a decomposition of v which makes (3.11) true for some β. The
subdomains {Ωk, k = 1, 2, · · · ,M} are an open covering of Ω. There exists a sufficiently
smooth partition of unit for the open covering, {ϕk, k = 1, 2, · · · ,M}, such that

1.
M∑

k=1

ϕk = 1, and 0 ≤ ϕk ≤ 1, k = 1, 2, · · · ,M .

2. |Dϕk| ≤ CL−1, |D2ϕk| ≤ CL−2, k = 1, 2, · · · ,M .
Where C is a constant independent of M and the choice of subdomains.

For v ∈ Vh, define ṽH = IHPQ1
hv, then v can be written by

v = ṽH +
M∑

k=1

ϕk(v − ṽH).

The interpolation operator of Wilson element, for T ∈ Th, is denoted by ΠT , and Πh is
the interpolation operator corresponding to Th. Πh(ϕk(v− ṽH)) is well defined because
ϕk(v−ṽH) is piecewise smooth. On the other hand, ϕk is sufficiently smooth, and v−ṽH
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is continuous at the vertices. Hence Πh(ϕk(v − ṽH)) ∈ Vh. Πh(ϕk(v − ṽH)) ∈ EkVh,k

since Πh(ϕk(v − ṽH))|Ω−Ωk
= 0. A decomposition of v is obtained by

v = ṽH +
M∑

k=1

Πh(ϕk(v − ṽH)). (3.13)

Inequalities (2.1) and (2.9) and the interpolation property of Q1
h give

ah(ṽH , ṽH) ≤ C|ṽH |21,h ≤ C|v|21,h. (3.14)

Let k ∈ {1, 2, · · · ,M}, T ∈ Th and T ⊂ Ωk. Denote the center point of T by A0
T .

By inequality (2.3), one has

|Πh[(ϕk −Π1
T ϕk)(v − ṽH)]|20,T ≤ C

{ ∑

1≤i,j≤4

|ϕk(v − ṽH)(Ai
T )− ϕk(v − ṽH)(Aj

T )|2

+ h4
(∣∣∣∂

2(ϕk(v − ṽH))
∂x2

(A0
T )

∣∣∣
2
+

∣∣∣∂
2(ϕk(v − ṽH))

∂y2
(A0

T )
∣∣∣
2)}

≤ C
{ ∑

1≤i,j≤4

|ϕk(Ai
T )((v − ṽH)(Ai

T )− (v − ṽH)(Aj
T ))|2

+
∑

1≤i,j≤4

|(ϕk(Ai
T )− ϕ(Aj

T ))(v − ṽH)(Aj
T ))|2

+ h4
(∣∣∣∂

2ϕk

∂x2
(A0

T )
∣∣∣
2
+

∣∣∣∂
2ϕk

∂y2
(A0

T )
∣∣∣
2)|(v − ṽH)(A0

T )|2

+ h4
(∣∣∣∂ϕk

∂x
(A0

T )
∣∣∣
2∣∣∣∂(v − ṽH)

∂x
(A0

T )
∣∣∣
2
+

∣∣∣∂ϕk

∂y
(A0

T )
∣∣∣
2∣∣∣∂(v − ṽH)

∂y
(A0

T )
∣∣∣
2)

+ h4
(∣∣∣∂

2(v − ṽH)
∂x2

(A0
T )

∣∣∣
2
+

∣∣∣∂
2(v − ṽH)

∂y2
(A0

T )
∣∣∣
2)|ϕ(A0

T )|2
}

Denote Sobolev maximum semi-norm by | · |m,∞,T . The property of ϕk leads to

|Πh(ϕk(v − ṽH))|21,T ≤C{(h2L−2 + h4L−4)|v − ṽH |20,∞,T

+ (h2 + h4L−2)|v − ṽH |21,∞,T + h4|v − ṽH |22,∞,T }.
(3.15)

From the inverse inequality, one gets

|Πh(ϕk(v − ṽH))|21,T ≤C{(L−2 + h2L−4)|v − ṽH |20,T

+ (1 + h2L−2)|v − ṽH |21,T }. (3.16)

Summing the above inequality for all T ⊂ Ωk, one gets

|Πh(ϕk(v − ṽH))|21,h =
∑

T∈Th,T⊂Ωk

|Πh(ϕk(v − ṽH))|21,T
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≤ C
∑

T∈Th,T⊂Ωk

{(L−2 + h2L−4)|v − ṽH |20,T + (1 + h2L−2)|v − ṽH |21,T }.

Summing the above inequality for all k, one has

M∑

k=1

|Πh(ϕk(v − ṽH))|21,h ≤ C{(L−2 + h2L−4)|v − ṽH |20,h + (1 + h2L−2)|v − ṽH |21,h}.

where the fact, that the numbers of subdomains containing each elements in Th are
bounded, has been used.

Estimates (2.9) and (2.1) and the interpolation property of Q1
h give that

M∑

k=1

|Πh(ϕk(v − ṽH))|21,h ≤ C
(
1 +

H2

L2

)(
1 +

h2

L2

)
|v|21,h.

Since the norms | · |1,h and ah(·, ·)1/2 are equivalent, the above estimate and (3.14) lead
to

ah(ṽH , ṽH) +
M∑

k=1

ah(Πh(ϕk(v − ṽH)),Πh(ϕk(v − ṽH))) ≤ C
(
1 +

H2

L2

)(
1 +

h2

L2

)
ah(v, v).

(3.17)
(3.10) follows.

The main theorem of the paper can be immediately obtained by (3.4), (3.5), (3.8)
and (3.10).

Theorem. For Wilson element and the operator IH defined in section 2, there
exists a constant C independent of H, h and the choice of subdomains, such that the
condition number of Q−1Ah satisfies

Cond (Q−1Ah) ≤ C
(
1 +

H2

L2

)(
1 +

h2

L2

)
(3.18)

Estimate (3.18) leads to that the condition number is independent of the scale of
problem and the number of subdomains if H = L. So the optimal preconditioning is
obtained.
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