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Abstract

In this paper, concerned with the Cauchy problem for 2D nonlinear hyperbolic
conservation laws,we construct a class of uniformly second order accurate finite
difference schemes, which are based on the E-schemes. By applying the conver-
gence theorem of Coquel-Le Floch [1], the family of approximate solutions defined
by the scheme is proven to converge to the unique entropy weak L*-solution. Fur-
thermore, some numerical experiments on the Cauchy problem for the advection
equation and the Riemann problem for the 2D Burgers equation are given and the
relatively satisfied result is obtained.

1. Convergence of A Class of Uniformly Second Order Accurate
Difference Schemes

In this section, we consider the Cauchy problem for nonlinear hyperbolic scalar
conservation laws with two space variables:

Ou + 0. f(u) + d,g(u) =0, u(t,z,y) € R,t € (0,T),(x,y) € R?, (1.1)

n(O,x,y) = ug(;r,y), (:L"y) € R27 (12)

where f and g: R — R are Lipschitz continuous functions and the initial data ug is a
bounded function with compact support.

Let At, Az, Ay be the time, z-space and y-space increments of the discretization
respectively. The mesh ratios, A, = At/Axz, A\, = At/Ay, will be kept constants.
Ay “'?4-%‘]' = Uy Uiy A+uzj+% = Ui T U

In [2], the authors have discussed a class of high order accurate schemes constructed
from E scheme by the flux limiters. The scheme is in the form (n € N)

n
,7"

n+l _ . n 7 n oo <
U = Ui — /\IA“*’fi,Ll LT AyA+.(1i L1 t,J € Z, (1.3)
. RV »J 2
1 1
n — h(un R u. 4+ = n )
fi+%,j w1 TP Ly M T %50
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1 1
n =l("- — noy _gn .jeZ 1.4
i+l Yait1 T T b "”J+2si,j+%)’ Wi €2 (14)
where
|A+UZ+ ]l
= oU(t7 5 A4} 3 O(——2")
l+ ¢( ' ) + ’l+%,] ( Clhal
|A+u:‘_lj|
n 1 n n PA
— St YA 9(————)
Tt A i+%,j) Tingi U crhen
[Ayu” ]+§
2 A
= t Aiu™
1J+2 = ) + = ( cah®? )
[A+u ; 1'
= w Ay 0(— 2 neN,i,jc Z, 1.5
,J+2 ¢( 2) + i,j-—% C2h°‘2 ) 2V ( )
A+u_ 1. A+un 1
tn ) — 1_57] n :] §
i+5.9  Agu® LR | T ALun
2 + i+%,j 2 * ,J+%
w" -1 w" g neN,i,9€ Z
A T IO HJ
i+, ij+i
1 Ir] <1
0(7') = , b>0
bh Ir| > 1

0<afF <1, ¢ >0, fork=1,2

h(u,v), I(u,v) are the numerical flux functions of any two three-point E-schemes. ¢!, ¢?
are flux limiters.
We list two results of the authors in [2] which will be needed in this paper.
Lemma 1.1. [2] Suppose that the condition

¢t (r)

0<¢*(r) <p, ¢%0)=0, 0<—2<1, fork=1,2, (1.6)
r
holds true and Az, Ay satisfy the condition
1
Ao max{lhal, ]} + Ay mae{liol, 1]} < 54—, (17)

where hg = Oh(u,v)/0v, hy = Oh(u,v)/du, ly = dl(u,v)/dv, l; = Ol(u,v)/Ou. Then
the scheme (1.3)~(1.5) can be of the form (n € N)

upt! = uf RO L Al | =Dy Ayl 4B G Agut G —F" At
i+ 21.7 Z+2y] 7"‘27.1 27] 17]""2 tLJt5 LTy LI—g
where
CT‘IQZO,DT’l.zO,E” 120, F* | >0, ¢j€Z, (1.8)
1+5.J i+5,] 4,J+3 L,i+3
Cn 1 +Dn 1 +ETI. '*'Fn 1 Sl 'L,JEZ. (1.9)
i+35.3 =35 ,J+2 .ij—3

Lemma 1.2. [2] If the function ¢F(k = 1,2) satisfies ¢*(x) = akz + af, where
a¥ >0,ad5 >0, dk+ ak =1, for k = 1,2 , then the scheme (1.3)—(1.5) is uniformly
second order accurate in space.
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Substitute the formula (1.5) by

| |Ayu” 5 — Ayu®

i+ i3 i+

p:+2,] - A+u?+2’191( clhaxz )02( 202h012 : )’
[Apu” l,J| |A+“n_l’j - A+U?+l7j|

qzn+2,3 - A+ul_§,]91( clh"‘l2 )02( 2c2h"‘2 : >’
|Ayu” 4| |A4ul; s = Apul ]

TZH% - A*“ZH%OI( dllZL’Z’:— ) )92( dayhP2 =2 )
|A+u:j—l] |A+ul, 17 Ayu ,j+i|

vk = A*“Z;—%gl( T )ee( P =) (1.10)

where . { 1 Ir| <1 () = { 1 Ir| <1 ,

bh lr| > 1 0 Ir| > 1

b>0, ¢j,c2,d1,d2 >0, 0< a,fB1 <1, 1< g, By < 2.

From Lemma 1.2, it is easy to know that the scheme (1.3), (1.4), (1.10) is also
uniformly second order accurate in space, since the item 6, in (1.10) doesn’t exert any
influence on accuracy of the scheme.

We consider approximate solutions u": Ry x R?* — R to problem (1.1), (1.2) which
are piecewise constant, i.e.

3

} .
Wltyey) =l for L€ ltatu), w€le 1o 1), VEW, pyp). (L1
For n =0, v?.(i,j € Z) is defined from the initial data uy by
0,
1 LYol ..
ud . = / 2 / *2 ug(z,y)dzdy, t,j€Z. (1.12)
T hghy Jo Sy

Loy 1
To prove the convergence of SQCheme2(1.3), (1.4), (1.10), the following two lemmas
are critical.
Lemma 1.3. The scheme (1.3), (1.4), (1.10) s stable in L°°-norm, i.e., there exists
a constant C > 0 independent of h, h, and hy such that
[u?;| <C, n€N, ,j€Z (1.13)
provided that A, and Ay satisfy the condition

1
Ao max{[hol, 1]} + Ay max{llol, I} < 5 (1.14)
Proof. Set
1 r>1 0 r>1
p1(r)y=14 r 0<r<1, Pa(r)=4¢ 1—7r 0<r<i, (1.15)
0 r<0 1 r<0

obviously the functions ¢,(r) and ¢2(r) satisfy
¢1(r) + ¢a(r) = 1. (1.16)
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We introduce the notation

IRt
gt = /(u'-’% »J-i"” ull; + L ) (1.17)
Y+ l) 1,41 2 10 %y 9 't'x.l"f‘% ) !
2 ,,7J+5 2
where -
I—,)n = & (‘tn )pn (jn . (1)1 ( ] )qn
FE 3. P o1 — ¢ n R
ity 5 i T R A it
- - i+§,j
P (’l (/n )T_n gn . ij ( 1 ) g"
. - 3 T I} LR - iy S -
7_]+l) 114 hJ+5 1,J+% t 1 ity
Lits
I'nrthermore.we denote
" 4 n / =1 T
N = Al f oA ) ANALTT Ayt ), (1.18)
+iya 5. INE & Lj+s

thus the scheme (L3), (1.1), (1.10) can be rewritten as follows:

]

n-1 n Fn —-n n ¢
(18 + = “i,j — /\7A+fl+l)J - /\ Aa_(] [ + ]\:fj (11())

Since the function ¢ satisfies 0 < ¢y (r)/r < 1.0 < <;’)1('r') <1, ¢1(0) = 0 and the
condition (1.14) holds truesimilarly discussing as Lemma 1, we know that the scheme
(1.3). (1.4), (1.10) can be of the following form

W' =yt O A - D", A
t +év] + +;a] i— l) + l_'l).j
+ E" Apa - f"" 1Ayu™ | 4+ KT (1.20)
1J+2 75J+2 WJ— 9 '/__
where C™ |, D*  JE™ |, F" satisfy (1.8) and (1.9).
1 3
+2a] z §yJ "]+Z ».1
In order to estimate the term K7, we set
Bzyj = /\ |A4 f l . A+ fn l C:?J = /\;t/lA+gfL‘ 1~ A+(] l
APR i+ Bty i+
thus
|['” < B+ O (1.21)

First, we analyze the term B7;. FL()m (1.4) and (1.17). the following inequality can
be deduced (M = A, /2111<1\{|ho| |h||})

B} <]\1{|p -p" |+ |q —q |+|P ,l 1l —q g |} (1.22)
Z#J +27 ‘i‘z, 2,,} 15,7 77 17— 7

B

I
&

B
<

N(;ti('ing (1.16) and the definition of 8, we get

Agu = Agut |

‘ _ r+35,7 +5,)
p" P < Coi@(f’,l 3 )Agu” 4 _92( 2 2 )
t+35.J it Qn’l " 45,7 i35, caho2

S —
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where Cy is a positive constant independent of h, hy and hy,.
We deduce from (1.15) and the definition of function 8,:

7 =T
[
i+5.) t+ 355 ‘
0 t" 5 >lor |Aju” 5 —Apd" | > eh™
45,7 i+5.J 50
ColA u T ANR /i 0<t" 5 <1&ALu" 5 —Apu” < ¢yh™?
< + R +- ER LI 4
‘_Z"" 1—}-2 i 1+2,] H—Q._} I+E-] 194
Coldu o | o, <O&lALu - At | < ehe (12
t+35.J t+5,) 5. i+ 5.
We further remark that the term Aju™ 3 and the term A+u must have the
L+ \J "‘~i
2 P)

different symbol if ¢ , < 0, thus |Aju” 5 —Ajut |Liftr <.
+)J +2x "‘Z i+ )aJ i+ )1]
Taking the above incquality into account,we get from (1.24) |p" p I 2 | < Coeah™2.
5 (B ., N
Similarly for the other terins of By, thus we deduce from (l )‘)) that f-ll(l(‘ exists a

constant Co 0, independent of A, Ill and hy such that B < () /1“'3, neN,i,j€e 2.

For the term C7.., we can similarly dlscuss and obt,am the similar result: C*, <
e J i,

(73/7;‘3'—’, neN,ijez, Qf is a positive constant independent of b, b, and hy,.
Thus, from (1.21) we know that there exists a constant C' > 0 independent of b, h,
and h, such that

’1\11 < “C'h min( (Q,/Jz) neN, 7.1 e/ (]25)

Now we can prove the uniformly bounded property of the scheme (1.3), (1.4), (1.10).
From (1.20) and (1.25), we can get

i <(1-c"y D", B - F Ol l+('" el D Juiy
’+2’.7 LRV} V) 2 1,j— 2 =557

+En 1‘“!1|—l‘+}?n | L7‘~1|+Ch'mm(02ﬁ 2)

1w
2

Taking the supremum and by induction, we find

sup |u;;| < sup ]u |+ Cnp™inle22) e N
ijes 4,jE€Z

Because of n.h < T and 1 < ag, B2 < 2, the result follows.
Lemma 1.4. Suppose that the condition (1.14) holds true, then there exist constants
My, My > 0, independent of h, hy and h, such that

= S MR, ne N Z (1.26)
i+30 ity
l(]:L]_Jrl — H < MRPY, neNyijeZ, (1.27)
Jt5 5
where b = h(ulygoul), o =Hudyy, uiy), ne N, je Z.
z+2,J ) +2

Proof. We only need prove the inequality (1.26). The proof of (1.27) is similar.
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Let Mo = 1/2max{|ho|, |h1]}, so the formula (1.4) and (1.10) deduce

|A+.u:"+§j| ]A+u’_ilj\
oo < Mollae s 0 (2w jagun ) 0 (——2T )]
vt 7i+%,j|— "U +u/i+%».jl( Ciho )+ Tl i Ciho )l]
(1.28)

Finally Lemma 1.3, the definition of function 6y and the fact 0 < a; < 1 yield

the following inequality |f’; . —h" | | < Mk, where M) > 0, a constant which is
: j

it+35.J 15,
independent of h, hy, and h,,.

This completes the proof.

On the basis of the uniform L>®-estimate (1.13) and the inequality (1.27), (1.28),
using Theorem 4.3 of Coquel-Le Floch [1], we can easily obtain the convergence of
scheme (1.3), (1.4), (1.10). The conclusion is summarized in the following theorem.

Theorem 1.1. Consider the family of approximate solutions {uf}rso constructed
by the scheme (1.3), (1.4), (1.10) and (1.11), (1.12). Assume

2/3<ay <1, 2/3<pB <L (1.29)
Supposc u is the unique entropy weak L™ -solution to problem (1.1), (1.2). Then under
the condition (1.14) and the CFL stability condition
Aesuplf ] < 3 Aysuplyw)] < 5. (1.30)
the approzimate solutions u”* converge in the L' strong topology to the unique entropy
solution w, as h — 0.

We can use the Runge-Kutta method adapted to nonlinear hyperbolic equations by
Shu-Osher [3] ete.to improve the order of accuracy in time of the scheme (1.3), (1.4),
(1.10), so a class of schemes with uniformly high order accuracy both in space and time
be obtained. The previous property of convergence has been proven to be preserved
under the definite CFL condition by Coquel Le-Floch [4].

For example:

on

“Lj = U:"j — A;T;A+fi+%yj(u”) —_ )\yA+gi,j+% (u") .
| ° ~ _ neN i,jeZ
up Pt =1/2ul; L2000 — AeDsf, 1 (U7) = AyAyg, (™)),
| | | e o (1.31)

where 'fi+l 09,y L are given by (1.4), (1.10). It is easy to verify that the scheme (1.31)
207 Tty

is uniformly sccond order accurate both in space and time. If the condition (1.14),
(1.29) and the CFL stability condition (1.30) hold true, then the family of approximate
solutions constructed by the scheme (1.31) converges to the unique entropy L°-solution.

The previous scheme and convergence result can be easily extended to the case of an
equation with more space dimensions, since the theory of Coquel Le-Floch is applicable
for an equation with an arbitrary number of space variables.

2. Numerical Tests

We select the Cauchy problem for 2D linear advection equation and the Riemann
problem for 2D Burgers equation to test the new uniformly second order accurate
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scheme introduced in section 1.
Example 1: Consider the 2D linear advection equation
we + (a(y)u)y + (B(x)u)y =0 (2.1)
with
a(y) =—(y —yo)w, Bz)=(z - z0)w (2.2)
The exect solution of (2.1), (2.2) consists in the rotation of the initial values round
(20, y0) with the angular velocity w. We will present one numerical test. As initial value
we choose a cone. The problem has been used by C.D. Munz[5] etc. to test numerical
schemes. We choose the angular velocity w to be 1 and ¢ = 20, yo = 20. The region
of computation is [0,40] x [0,40]. At time ¢ = 2m the initial value has carried out
one full rotation and returned to its initial position. The approximation of the initial
value on our grid is shown in Fig. 1. We present numerical calculations on the scheme
(1.31), where the functions h and [ are both chosen as the numerical flux of the first
order upwind scheme. Select the time step h = 0.01. Fig.2 shows the numerical result
obtained after one full rotation corresponding to 628 time steps.
Fig.2 indicates the shape of the cone is well preserved,the top of the conc is not
clipped and the numerical dissipation is weak. The result of the cone shows the uniform
high order accurate property of the scheme (1.31).

max = 4.0 max = 3.37

min = 0.0 min = —0.02

. Fig. 2. The i >sult of the cone
Fig. 1. The initial value of a cone ig. 2. The numerical r(bu_“ ot the cone
after one full rotation

Example 2: We solve a Riemann problem for the 2D Burgers equation

u? 2

U

of the type
Uy z>0, y>0
U2 z<0, y>0

u(zx,y,0) =
( »y ) u3 r<0, y<0

U4 x>0, y<0

Depending on the orders of the uls, there are eight essentially different solution
types. See [6] for details. We used scheme (1.31) with 30 x 30 grid points for two
cases. We choose Case 1. u; = —0.2, up = —1.0, ug = 0.5, u4=0.8 and choose Case
2. uy = —1.0, us = —0.2, ug = 0.8, u4=0.5. The numerical fluxes h,l are the same
as Example 1. Fig.3-4 show the approximations of the initial values on our grid.The
numerical results of two cases at ¢ = 1.0 are displayed in Fig.5-6 respectively. We
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observe that the scheme has good resolution for above two cases.

Fig. 3. The initial value of case 1 Fig. 4. The initial value of case 2

N
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. The numerical result of case 1, Fig. 6. The numerical result of case 2,
at £ = 1.0 at t =1.0
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