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Abstract

This paper is devoted to study of an iterative procedure for domain decomposi-
tion method of second order elliptic problem with mixed boundary conditions (i.e.,
Dirichlet condition on a part of boundary and Neumann condition on the another
part of boundary). For the pure Dirichlet problem, Marini and Quarteroni [3], [4]

L
considered a similar approach, which is extended to more complex problem in this

paper.
1. Introduction

There has been a considerable number of recent developments in non-overlap do-
main decomposition techniques for second order elliptic problems. We refer especially
to Marini and Quarteroni (3], [4] and the references therein. One of motivations for
increasing interest in domain decomposition approach is to deal with different type
of equations in different parts of the physical domain, such as in the mathematical
modeling of elastic composite structures.

In this paper we study an iterative procedure for domain decomposition method
of a simple second order elliptic problem with mixed boundary conditions, i.e., Dirich-
let condition on a part of boundary and Neumann condition on the another part of
boundary. For the pure Dirichlet problems, Marini and Quarteroni [3], [4] considered
a similar approach, which is so called the D-N (Dirichlet-Neumann) alternative itera-
tion, while our iterative scheme is so called the N-D (Neumann-Dirichlet) alternative
iteration, which is appropriate to the mixed boundary value problems.

The outline of the paper is as follows. In Section 2, we introduce multidomain
formulation and iterative scheme for a simple second order elliptic problem with mixed
boundary conditions. In section 3, we present an harmonic extension lemma which is
important for the analysis of convergence of the iterative scheme. Finally in Section 4,
the convergence of the iterative scheme is proved, with different manner from one in
[3], [4] in order to appropriate the mixed boundary value problem.
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2. Domain Decomposition Method for Second Order Elliptic Problem
with Mixed Boundary Conditions

Let © be a polygonal domain in R? with boundary 9. Consider the following
boundary value problem:

—Au=f inQ u=0 only, u=0 ondQ\Ty, (2.1)

(c.f. Fig.1), where f € L%(Q), v denotes the outward normal unit vector to 952, J,u
denotes the outward normal derivative.

T r

931 Q,

Fig.1

We assume that € is partitioned into two non-overlap subdomains 2y and €23, i.e.,
Q=0,U0, 2:NQ =0, and we denote by I' the common boundary of 2; and Q. It
can be casily shown that the problem (2.1) is equivalent to the following split problems:

—Auy = fin Q, w3 =0on Ty, ,1u;3 =00n 8 \ (TUTy), d,1u; = —F2uz on I,
(2.2)

and
—Aug = f inQy, feus =0 90 \TI, up=u; onl, (2.3)

where uy = ulq, for k = 1,2, V¥ is the outward normal unit vector to 9§ (note that
v! = —1v? onT), and J rux (k = 1,2) is the outward normal derivative.
We now introduce an iterative procedure which is similar to that in (3], [4]. Let

(c.f.[1],[2])

1
A =+l < oo} (24)
where (52) (5,) . .
2 H(Sz) — p(Sy)\2 2
- MSz) = BN s ds, V2 2.
oy = (e [ f (B2 ) doads) (2.5)
and . . .
H™2(T') = (H2(T'))'-the duarity of the space H2(T). (2.6)

1
Let ¢° € H 2(I') be given. For n > 1 the sequence of functions u},uy are con-
structed by iterative scheme with solving the following problems:

—Au} = fin @1, u} =0 onlg, d1uf =0o0n 9 \ ('UT), dul = @ lonT,
(2.7)
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—Aul = fin Q2, Jeuy =00n O\, uy =uf on T (2.8)

L
where, for n > 1, g" € H 2(1') is given by
g" = —08,2uf +(1-0)g" ! onT. (2.9)

In (2.9), 6 is a (positive) relaxation parameter that will be determined in order to
ensure the convergence of the iterative scheme. Note that here the iterative scheme is
N-D (Neumann-Dirichlet) alternative iteration, while Marini-Quarteroni procedure in
[3], {4] is D-N (Dirichlet-Neumann) alternative iteration.

3. An Harmonic Extension Lemma

In order to study the convergence of the scheme, we first present scheme satisfied
by error functions. Let
el =up —ul, ey =us—uy, (3.1)

then from the iteration scheme (2.7)—(2.9), it can be seen that

—Ae} =0in Q, ef =0o0n Ty, d,1e] =0o0n 92\ (I'UTY),

det = —8uy —g" =4 tonT, (3.2)
—Ael =01in Oy, J,2e5 =090\, e =ef on T, (3.3)

and
Y = —00,2e% + (1 — O)yp" L. (3.4)

By the variational calculus, the equations (3.2) and (3.3) can be written in the varia-
tional formulas as follows:

to find e} € H} (1), such that
_1 1 (3.5)
Vel - Vudz = / Y -vds Vv € Hp ($h);
o r
to find e € H'(3) : €f = e} on I, such that
3.6
Vel -Vodr =0 Vv € HN(Q); (36)
121
and
Y™ = —00,2¢5 + (1 —0)y™ ! onT, (3.7)
where
Hi () ={ve H(Q1): v=0onTo}, (3.8)
HE () ={ve HY(Q2): v=0o0nT}. (3.9)

We now need a lemma, which is so called harmonic extension lemma. In what
follows ¢,c; and ¢y denote the generic constants, which may take different values in
different places.
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Lemma 3.1. Let 2 € R? be a domain with boundary 69, which is partitioned
into two non-overlap subdomain Q; and Qg with common boundary T' = 9 N 08

1 1
(c.f.Fig.1). Let ¢ € H 2(T') = (H2(I'))" be given, such that

/ ¢ds = 0. (3.10)
r

Assume that the functions Ni(¢) and Na(¢) are the solutions of the following problems
respectively:

—AN(¢) =0 in Qy, (3.11)
8,1 N1(¢) = 0 on 89 \ (T UTY), Ni(¢) =0 onTo, 1 N1(4) =¢ on T, o

and
-AN2(¢) =0 1n Qz, (9,,2N2(¢) =0 on 3Q2\F, 8,,2N2(¢)) = —-¢ onT. (3.12)
Then there ezist c1,ca = const. > 0 independent of ¢ € H_%(I‘), such that

ctN1 (D)1, < | N2(P)|1,0, < c2|Na(B)l1,0, Vo E H_%(I‘). (3.13)

Proof. (i) We first prove that |N1(¢)|1,0, is equivalent to [¢[| 1 p- Todo this, with
-1
use of the trace theorem (c.f. [2]), from (3.11) it can be seen that

M@, = [ YN©®) INi(gde = [ ¢- Ni@)ds < I9]_y IN(@)ly o
1} r 9 3>
< 6l_s N1 @)y g, < elldl_1 I @l

from which by Poincare inequality, we have

IN1()lr0 < Cll¢l|_% . (3.14)
Next, we have
/ ¢ - puds
o) = Sup LT ———. 3.15
Iel_ye =S gy (319
peH?2 () 2
1
For any given u € H2(T'), there exists w; € H(€Qy), such that
—Aw; =0 in 2y,
Lo mea (3.16)
wy =ponl, 8wy =0o0ndN \ (['UTly), wy =0on [y,
and by a priori estimate (c.f.[2]) of the solution of the problem (3.16), we have
lwillie < Cl|u||%’F~ (3.17)

So
/;¢>-uds = /9 VN (¢) - Vwidz < [N1(d)|1,0,|lwil1,0, < C|N1(¢)|1,m||#“% -
and then !

¢ - pds
/—F-——— <cNi(P)le, Ve E H%(F)- (3.18)
IluII%’F
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Thus
I61_3 1 < M@ (3.19)
Combining (3.14) and (3.19) implies that |N1(¢)|1,0, is equivalent to “¢”_l,[~
(ii) We now prove that |No(¢)|1,q, is eqivalent to ”¢”-%,I" To do this, fiom (3.12),

by the trace theorem (c.f.[2]) and Friedrichs inequality, it can be seen that for any given
= const.

M), = [ TN2(9) VNa(@)da = [ mablaNa(s) - V(Na(@) ~ E)da
Q2 Q

2

— [ &+ (Va(@) — €)ds <110l _y (o (Na(9) ~ )l
< clll_y IV2(9) — €l < ellBll_g {IN2(6) - €l

-

P!
([ (No() - ©)d) | (3.20)
Let & = ﬁ /Q2 Na(¢)dz in (3.20), then [Na(¢)[2 g, < c||q5|(m%,r|N2(¢>)|1,gz, from which

IN2(O)l1.0, < elldll_1 (3.21)
Next, by the similar way in (i), it can be seen that
161 < el (3.22)

Combining (3.21) and (3.22) implies that |Na(¢)|1,q, is equivalent to [[¢]| 1 . There-
=3

fore the Lemma is proved.
From the Lemma 3.1 we have
Lemma 3.2. There exist o, T = const. > 0, such that

Ilﬂl -2 ¢)1nz 21
= Sup {|N2(¢)|192’ peH (F)}, = Su p{————|N1 e ¢e H 2({‘)}. (3.23)

4. Convergence Analysis of Iterative Scheme

In order to prove the convergence of the iterative scheme (2.7)-(2.9), it is sufficient
to prove that
letlinan, llezllie, — 0, n— o0 (4.1)

for an appropriate parameter 8. To do this, we first rewrite the equations (3.2)-(3.4),
1
deleted the supscript n: for any given ¢ € H™2(I),

{ —Ael(’l,b) =0in Q],
e1(¥) =0 on [y, 8,1e1(¢) =0 on 8 \ ([ UT), d1e1(¥) =9 on T, (4.2)
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—Aey(v) = 0in Qg, (4.3)
O,2e5(¢) =0 on 9N\ T, e2(p) = e1(p) on I'. '
Let us introduce the following two operators 1"
1 1 1
T:H 2(I') > H 2(T), y€ H 2(T) - Ty = —0,2e2(¢p) on I, (4.4)
and . . |
Tp: H 2(I') —» H 2(I), vy € H 2(T') - Toyp = 0Ty + (1 — 0)9. (4.5)
Then it can be seen that
e1(¥) = Ni(¢), ea(p) = No(T). (4.6)
We have

Theorem 4.1. There exists a positive constant 0* € (0,1], such that
{ Vo € (0,0%),3K(0) < 1:
L _1
{len(To) 2 o, + lea(Tov) 3 92}2 < KO{let(¥)f g, + le2(¥)}3 92}2 vy e H2(T).

(4.7)
Proof. By the notations as above, it can be seen that
e1(Tow) = Oer (TY) + (1 — O)ex(¥), (4.8)
e2(Tprp) = Oea(TY) + (1 — O)e2(¥), (4.9)
and then
@Tlia, = [ Ve (To)Pde = Pler(TY)l g,
(=01, +201-0) [ Ter(TV) - Vei()ds.
ik (4.10)
From (4.2), (4.3) we have
Ve (Ty) - Ve (¢)dx = / d,1e1(Ty) - e1(¢)ds = / T - e1(yp)ds
1951
— - [[Bnea() - a()ds = —lea(v) 0
(4.11)

Thus
ley(Tyv)l g, = =0%|e (TY)|3 g, + (1 - 0)%le1(¥)|7q, — 20(1 — Nlex(¥)|F g, (4.12)
By the similar way, we have
lea(Tow) [ 0, = Olea(TV)[} o, + (1 — 0)2le2(¥) [} o, — 20(1 = O)|er(TY)|Tq,- (4.13)
From the Lemma 3.2, we have
ler (T 0, = INUTY) g, < glN2(TH) 0, = olea (@)} 0,

and
le2(¥)[3 g, = = [No(TY) , < TINU(TY) [}, = = 1ler(TV))3 g,
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from which, we have
Hea (), < ler(T) R g, < olea) g, (114
We now turn to estimate |ca(T9)]; o, From (4.2) and (4.3), we have
lea(T) 2 o, = /2‘) Veo(T) - Veao(Toh)dx = /F 8,265(T)ea(To)ds
- [ 1@o)e(Ti)ds == [ Vel(T(Ty)- VeiTv)ds
< el T@D e (TH) g, (1.15)
By the Lemma 3.2, we have
ler(T(TY) R g, = IN(T(TY) a0, < o|No(T(TY)) 3, = olea(TH) i, (4.16)
Combinig (4.14)—(4.16), it can be seen that
(4.17)

22(¥) 1,9,

le2(T9) 1,0, < Voler(T¥)he, <
Summarizing (4.12), (4.13), (4.14) and (4.17), it can be seen that

len(To) [} o, + le2(Tod) [ 0, < (1= 0)?ler(¥)f g,

1 .
+ {(1 —0)% + 2(1 to+ ;)9(9 -1 i) }l@z('@b)lf,nz
1+7 (418)
Let
* , 0< g% < 1’ 4.19
g T "
then for 0 < 6 < 67,
e (Tod)|2 o, + lea(Tot)]} 0, < K1O){Jer (W) 0, + le2(®)lF 0, ), (1:20)
where
0 < Ki(6) = (1 - 6)? (4.21)
Next let 1
65 = min {1, ———}, (4.22)
1+ 5’;}&
then it can be easily seen that
0r < 03 < 1, (4.23)
and for 67 < 6 < 03,
(1-60)2<(1 —0)2+2(1+a+ 1)0(9 S )
< 1+ 25
(4.24)

—1+0(3+2a+ )(0——~ ) = Ka(0) < 1,
" z+;
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from which we have that, for 67 < 6 < 63,

lex(To)[3 o, + le2(To) 3 g, < Ka(0){ler(¥)[; q, + le2(¥)2q,}- (4.25)

Combining (4.20) and (4.25), in order to complete the proof of the Theorem 4.1 it is
sufficient to take
6* = 6%, (4.26)
and
0 < K(6) = max(K;(0), K2(0)) < 1. (4.27)
We conclude this section with the following convergence result.
Theorem 4.2. For any given g° € H—%(F), the iterative scheme (2.7)—(2.9) is
convergence, as n — 0o, with parameter 6 € (0,60%), whered* is given by (4.26).
Proof. By the Theorem 4.1, for each n < 1, we have

et q, +lezlin, < KO){lef o, + 157 10} (4.28)
Then
let i, +letli o, < K™MO){lefiq, + €5} 0,} — 0, n — oo. (4.29)
By the Poincare inequality, since e} = 0 on Iy,
letltq, <cleflfq — 0, n— oo; (4.30)
from which, we have
letllypr < clletlle, — 0, n— co. (4.31)

By the Friedrichs inequality, since es =efonl

le 120, < c{le5 1, + (/Fe!;ds)z}

< c{les igz + H()?Hi F} — 0, n— oo. (4.32)
27
Combining (4.30) and (4.32) implies the convergence of the iterative scheme (2.7)—(2.9).
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