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Abstract

This paper considers the concave minimization problem with linear constraints,
proposes a technique which may avoid the unsuitable Karush-Kuhn-Tucker points,
then combines this technique with Frank-Wolfe method and simplex method to
form a pivoting method which can determine a strictly local minimizer of the
problem in a finite number of iterations. Basing on strictly local minimizers, a new
cutting plane method is proposed. Under some mild conditions, the new cutting
plane method is proved to be finitely terminated at an e-global minimizer of the
problem.

1. Introduction

This paper considers the following nonlinear programming problem
(NLP) min{f(z) |z € C },

where f(z) is a strictly concave function and C C R"™ is a convex polytope which will
be specified later. It’s well known that if (NLP) has a solution, then the minimum
value can be attained at a vertex of the constraint. Generally speaking, this problem
is NP-hard [1]. The ordinary descent methods usually generate a sequence of points
which converges to a Karush-Kuhn-Tucker point of (INLP) under some conditions.
Unfortunately, this Karush-Kuhn-Tucker point can not be guaranteed to be a local
minimizer even if it satisfies the second order necessary conditions.

The purpose of this paper is to propose a technigue for eliminating the unsuitable
Karush—Kuhn—Tucker points. By combining this technique with Frank-Wolfe method
and simplex method we form a descent method for (N LFP). Under some mild conditions
it is proved that, in a finite number of iterations, the method stops at a strictly local
minimizer of (NLP). This kind of result was first obtained in [2] for a special class
of problems they called concave knapsack problems. In their paper, they also gave
out a tight complexity lower bound for their method. Although the global minimizer
can not be guaranteed, the strictly local minimizer can provide good approximation
to the global solution of (NLP) and they are very useful in the branch—and—bound
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algorithms for the global optimization. Basing on the strictly local minimizer, we will
further present a new cutting plane method which can be viewed as a revised version
of Tuy’s cutting plane method [3].

The convergence of Tuy’s cutting plane method is still an open problem except we
add some extra conditions on the method itself [4], [5], [6]. The new cutting plane
method uses an € procedure and an alternative implicit vertex enumerating procedure
and is therefore finitely convergent without any extra assumptions.

The paper will be organized as follows. In section 2 we will introduce some assump-
tions and notations; describe the finitely convergent algorithm for the strictly local
minimizers and the corresponding convergence analysis. In section 3 we will present
a new cutting plane method for the e-global minimizer and its theoretical analysis.
Section 4 will be the conclusion section.

2. Finding The Strictly Local Minimizer
This section considers the following concave minimization problem
(P) min{ f(z) | = € R},

where f(z) is a strictly concave function, R = {z|Az = b,z > 0}, A € R™*", b€ R™.
Throughout of this section, we will make and use the following assumptions and
notations.
Assumption 1 f(x) us strictly concave and continuously differentiable.
Assumption 2 R is nonempty, bounded and rank(A) = m.
Notations: N = {1,2,---,n}, M ={1,2,---,m}, A = (a;jlt € M,j e N). f JC N,
L C M, then A = (a;|s € L,j € J), when J = N or L = M, we also simply set
A = AY or A7 = A For a given subset I C N with |I| = m, | * | designates the
cardinality of *, if A’ is invertible, then set T(I) = (A’)"'A and t(I) = (AT)~'b. If
t(I) > 0, then I is called a basis. Let I = N\I, T'(1) = (A")~' AT and T/ is the rth row

1 : . of of of
1 p — - — .
of T*(I). For a given basis [ and x € I;, let z = (z1,27), Vf(z) = (Bwl’ D25’ ,8$n)’
0 _ _
Vif(z) = (b?fll € I), vif(z) = (b;f[z € I). It’s clear that x; = t(I) — T (I)zy. If

we define f(z7) = f(t(I) — T!(I)x}, xj), then we have

vi(ep) = vif(@) - vif(@)T(1). (1)

This formula just designates what is usually called the reduced gradient of f(z). conv(x)
and vol(x) will represent the convex hull of * and the volume of * respectively. @ denotes
the empty set.

It can be seen that the above notations inherit that of the simplex method for linear
programming except the cost vector now is 57 f(x). The following algorithm is designed
for finding the strictly local minimizer of the problem (P).

Algorithm I

o Initilization

Given a vertex z¥ of R, let I be its corresponding basis, set k = 0.

Step 1. Calculate vf_(:c’lf) and Tj(l) .
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Step 2. Set Q—{ _f(—L) <0,j¢ i}.
J

Step 3. If Q = 0, then set y; = t(I),y; = 0 and go to Step 4. If Q # @, then pivot
according to Bland rules or any other anticycling rules and we get a new
basis I, return to Step 1 with (2%, I).

Step 4. If y # ¥, then set 2+ =y, k = k + 1 and return to Step 1 with (z*+1,1).
. k 0 o). T Of(ml}i)
If y = 2%, then set Q° = {]I_) el, —-4- = 0}.
ox;

Step 5. If Q0 = 0, stop. If Q% # @, set Sp = {i|zF>0,i=1,2,---,n}. If|Sk| = m,
then select any j € Q° as the variable index which will be brought into basis,
pivot and we get a new point y and a new basis /. Set £*T! =y and return
to Step 1 with (zF1,1).

Step 6. For cach i =1,2,---,n, solve

(PI) min{z;|z € R,V f(z )m— vf(r )

and

(PI') max{z|: (a*)z = v f(a*)a"}
by using simplex method until we find another y#ak Iffori=1,2,---,n,
all the solutions of (PI) and (PI') are equal to z*, then stop. Otherwise,
set z¥*1 =y and return to Step 1 with (z*+1,T).

Remark In the algorithm, step 1 to step 3 is exactly the simplex method applying
to

min{v f(z*)(z —2*) |z € R }. (2)
The function of other steps is to detect the strictly local minimizers.
Lemma 2.1 If y # z¥ in Step 4, then f(y) < f(z*).
Proof. By the definition of ¥, it’s clear that 7 f(z*)(y — 2¥) < 0. The strictly
concavity of f(x) implies

fy) < FEM) + 7 @)y = 2F) < f2h). (3)

Lemma 2.2 At the end of Stcp 6, we either find a vertex y of R which differs
from 2% and satisfies that 7 f(z%)y = v f(«")z* or we conclude that x* is the unique
solution of (2)

Proof. By the definition of (PI) and (1”I"), we need only to prove that any solution
of (PI) or (PI') is a vertex of R. Without loss of generality, let y be a vertex solution of
(PI). If y = «*, the conclusion is obvious. Now We suppose that y 7& ¥ and y is not a
vertex of R. Then we have y!,y? € R and y' # y? such that y = ay + (1 —a)y?, Whore
« € (0,1). Since z*F is a solution of (2), if max{y/f(z*)y', v f(z®)y?} > v f(z*)zF
then

ViR = i )ay' + (1 - @)y’] > vt = v fb)y,
which is a contradiction. So we have 7 f(zF)y! = 7 f(z*)y? = v f(«*)2*, and hence
y' and y? are feasible for (PI). But this is impossible since y is a vertex of { z | = €
R, 7 f(zF)z = v f(2*)z* } and y = ay! + (1 — a)y®. Therefore y must be a vertex of
R. The proof has been completed.

Lemma 2.3 If the algorithm I stops at 2*, then a
(P).

K is a strictly local minimazer of
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Proof. By the stopping rules in Step 5 and Step 6 we know that z* is the unique
solution of (2). Hence we have 7 f(z*)(z — 2*) > 0 for any = € R and = # z*. Now let

k

. by T — X

€= min ).
2€Ra#k { v )Hw — zF|| }

It’s clear that € > 0 since R is a polyhedron. From the continuous differentiability of

f(z) we conclude that there exists 6 > 0 such that: z # z* and ||z — z*|| < & imply

that

£(@) = £(*) = VS (@H) (@ - *)] < Sl - oH]l. (4)

Then it follows
F@) 2 f&) + V@)@ - 2%) = Slle = obl| 2 @) + Sllw - 2] > flah).

The proof has been completed.

Lemma 2.4 If Q° # 0 and |Si| = m, then for any j € Q°, we can implement the
pivot and get a new point y such that y # ¥ and 7 f(z*)y = 7 f(z*)zF.

Proof.It’s well known in linear programming.

Theorem 2.1 After a finite number of iterations, the algorithm stops at a strictly
local minimizer of (P).

Proof. By the algorithm and Lemma 2.1 to Lemma 2.4 we know that either the
algorithm stops at a strictly local minimum vertex z*, or we get another vertex x**1
such that f(zF*1) < f(2*). The conclusion follows from the finiteness of the vertices
of R. The proof has been completed.

Theorem 2.2 Let f(z) is a concave function of R™, then there exists a positive
number 1y such that, for any 7 € (0, 70], the vertex solution of

(Pr)  min{f(x)-7lz|* | z€R}

is also a solution of (P).
Proof. Let . be a vertex solution of (P;) and z* be a vertex solution of (P). Then
we have f(z*) < f(z,) and f(x;) — 7 || - ||2< f(z*) — 7 || «* ||*. Thus
0< flar) = fa®) < m(llar [P =) 2™ ). (5)

Let v = min{ f(v) — f(z")|v € V(R), f(v) > f(z*)}, where V(R) is the vertices set of
R, then v > 0 since R has only a finite number of vertices. By (5) we conclude that
flr:) = f(x*) when 7 is small enough. The proof has been completed.

Remark This theorem says the assumption of strict concavity of f(z) can be the-
orctically guaranteed by a small perturbation of f(x) if it is only concave.

3. Cutting Plane Method for The Global Minimizer
This section will discuss how to get a global minimizer of the following problem

(@) min{f(x)] =€ R},

where f(z) is a concave function and R = {z|Az < b}. We use this kind of formulation
is only for convenience. All the results obtained in this section can be extended to other
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formulations. Throughout of this section, we assume that R is nonempty and bounded
and of full dimension, —f(z) is a strongly convex function, i.e. there exist # € R” and
o1 > 0,09 > 0 such that

olz-2|P< ~f(z) <oz ]z—2 2. (6)

Definition 3.1 Given a hyperplane H, if RN H is a nonempty face of R, then H
15 called an affine face of R.

Definition 3.2 Let vy, vy, - - -,v41 be all the vertices of R, vy, vs, - - -, vy be adjacent
to vey1. Passing through vy, va,- -+, v,, we derive a hyperplane
6T(U1 = V1,02 — Vpi1, 0, Un — Upg1) (T — V1) = 1, )

where e € R"™ is the all ones vector. If this hyperplane is an affine face of
conv (v1,ve,---,v;) and it separates vy, from conv (vi,v2, -+ ,v), then this hyper-
plane is called a valid cutting plane for (viy1, R).

Remark i) It is possible in the algorithm proposed below that (7) is a hyperplane
that contains conv (vq,vg,- -+, v¢). In this case, the dimension of the problem can be de-
creased by one. So we will neglect this case in the forthcoming discussions. il) I vgyq is
non degenerate, then v;1; will have only n adjacent vertices vy, vs, - - - , Un and we can get
a cutting plane like (7) easily. This cutting plane will cut off conv (vs41,vy,vs, - ,Un)
completely from R and generate no new vertices. So we will only consider the case that
vt+1 is degenerate in the following.

Lemma 3.1 Let vi,v2,--+,v4 (g > n) be all the adjacent vertices of viy1, then the
- hyperplane passing through vi,vs, -+, v, is a valid cutting plane for (ve+1, R) if and
only if that

el (V1 — Vep1,V2 — Vi1, -,V — Vep1) (Vi — vepr) > 1 (8)

holds for alli=n+1,n+2,---,q.
Proof. Suppose that (8) holds for each i = n+1,n+2,--- »¢- Since vy, vg, - -, vg are

all the adjacent vertices of v;41, R — ve+1 must be contained in the convex polyhedral
cone forming by vy — vy41,v9 —vgy, - ,Ug — Ut41. Hence for any i =g+ 1,q+2,---,t,
there exist A\; > 0 such that

q
Vi — V41 = Z )\j(vj - ’Ut+1). (9)
Jj=1

q
If Z Aj <1, from (9) we have

—~
7 q

q
v; = Z )\jvj + (1 - Z Aj)vt+1 (10)
1=1

i=1
which implies that v; is not a vertex of R and thus contradicts with the assumption.

q
So it must be Z/\j > 1.
i=1
Now let d¥ = T (v; — Vt41,V2 — Vt41,° ", Up — Ug41)" L. From (8) and (9) we get

q q
dT(’Ui - 'UH-I) = Z/\de(Uj - ’Ut+1) > Z)\j > 1.
j=1 j=1
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By the linearity we conclude that

dT(;L' - 'Ut-l-l) > 1 (11)
holds for any = € conv(vy,va,---,v:). Notice that d"(z —vi41) = 1 separates vy 41 from
conv(vy,ve,- -+, v) and U1, V2, "¢, Up are located on it. So this hyperplane is a valid

cutting plane for (vey1, R).

On the other hand, if (7) is a valid cutting plane for (vi11, R), all the vertices of R
except vy41 must be on the same side of the hyperplane. Since d"(v; — ve41) = 1 holds
fori=1,2,---,n. We conclude that d” (v; — v¢+1) > 1 holds for i =n +1,---,q. The
proof has been completed.

Lemma 3.2 Let vi,v2,---,vq be all the adjacent vertices of vi1. For any
i=1,2,---,q, we find a; such that

foeg1 + oi(vi —viq1)) = f(ver1) — ¢, (12)

where € is a pre-specified positive number. Let
u; = Vppy1 + @i (Vi — V1) (13)
and w be any solution of the following linear inequality system
(w; —vp) T >1, i=1,2,---,q, (14)

then for any = € R satisfying f(z) < f(vit1) — €, we have x € {z|nT (z — vi11) > 1}

Proof. Suppose x € R, by the definition of u;’s we know that there exist non-
negative numbers )\; (i = 1,2,---,q) such that  — ve41 = Yt Ai(ui — vey1). From
the definition of 7 we may obtam that 77 (2 —vip1) = Dby Nl (Ui — Veg1) = Dogeq A
Therefore the conclusion is true if we can prove > ¢_; A; > 1. This has actually
been implied by the condition f(z) < f(vis1) —e. In fact, if 327 A < 1, then
=0 Nu; + (1 — %, A)veyr which is a convex combination of vey1 and uy’s.
Making use of concavity of f(z) we have

q
) > S Nif(u) + (1- ZA ) [ (wis1) > Floe) - (15)
i=1
which contradicts with the assumption. The proof is completed.
Lemma 3.3 Let vy, v, -+, viq1 be all the vertices of R, vi,va,---,vq be all the
adjacent vertices of vey1; TL(x — veq1) = 1, T3 (T — veg1) = 1, ,WE(:E —vp1) = 1,

where p < N(q,n) ( the number of all the possibilities for forming a valid cutting plane
for (viy1, R)), be all the valid cutting planes for (vey1, ), then we have

conv (v1,ve, -+, v) = {z|x € Rynl(x —vep) > 1, i=12,---,p}. (16)

Proof. Denote the right-hand side and the left-hand side of the equality as RH and
LH respectively. Then it’s clear that LH C RH from the definition of a valid cutting
plane for (vi41, R). If 2 ¢ LH and z ¢ R or if z = vy, then z ¢ RH.

Now we suppose that @ ¢ LH, z € R and = # v;41. Then it follows that z must
belong to the convex polyhedral cone forming by vy, ve, -+ -, vg and ve4q1. But z ¢ LH,so
the line passing through z and v;41 must have an intersection point, say y, with at least
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one affine face of conv(vy,va, - - -, v¢), say 7/ (z—vsy1) = 1. Hence there exists a € (0,1)
such that 2 = ay+ (1 — a)viy1. It follows 7! (x —wvyy1) = am! (y —vi1) = « < 1. This
concludes that z ¢ RH and therefore RH C LH. The proof has been completed.
Algorithm II
e Initialization
Given € > 0, L > 0, and a vertex 2° € R, let Ry = R, k = 1.

e kth iteration

1. If Ry = 0, then stop. Otherwise, find a strictly local minimizer z of f(z) on

Ry.
2. If f(z) < f(zF71), set 2% = z; otherwise, set z* = zF~1. Let v¥ 0%, .. ~,v§k
be all the adjacent vertices of z. For 1 =1,2,---,pg, find af such that
fz+af(vf = 2)) = f(a*) — e (17)
Let
uf =z + of(f - 2). (18)
3. Solve the following linear inequality system
(LISk)  (uf =2)Tw>1, i=1,2,-,p}.
Suppose 7* be one of its vertex solutions. Let
Sk = {ij(uf —2)T7* =1, i=1,2,-- m}, (19)
Wy = conv(z,vF,i € Sy). (20)
4. If vol (Wy) > 1, then set
Riy1 = {z|x € Ry, @) (z — 2) > 1} (21)
and goto step k + 1. )
If vol (Wg) < £, then find all the valid cutting planes for (z, Ry), say
7l(x—2) =1,7i(x — 2) = 1,~~-,7r,7,;k(a: —z)=1.
Set B B
Ripy ={zlz € Rpy,ni(z —2)>1, i=1,2,---,my} (22)

and go to step k + 1.

Remark The efficient vertex listing methods can be found in [7] [8] and [9]. The
volume of W}, can be calculated easily since Wy = conv(z,vF,i € Si). We can also
choose Wy, as a simplex forming by z and some other n vertices in Sk.

Theorem 3.1 After a finite number of iterations, the algorithm II terminates at
an €- global minimizer or a global minimizer of (Q).

Proof. Since the volume of R is finite, the inequality vol (W}) > 1 can hold only

for a finite number of k. If at some iterate k we have Ry = (. Then we get an e-global
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minimizer of (Q). For otherwise, there exists an integer kg such that k > ky implies

that
€

According to the algorithm II and Lemma 3.3 we know that each iteration after ko
deletes one vertex of Ry, without inventing any new vertex. Since the number of the

vertices of Ry, is finite. We can terminate the algorithm in a finite number of iterations
and get a global minimizer of (Q). The proof has been completed.

vol (Wy) (23)

4. Conclusions

It is noted that the convergence of Tuy’s cutting plane method is still an open
problem, see [5] {6] for example. There are several convergent conditions are proposed
for Tuy’s method. These conditions are assumed usually on the algorithm itself, for
instance, to assume the distance between the cut vertex and the corresponding cutting
plane is uniformly greater than a positive constant [4]. There are also many modi-
fications for Tuy’s method. One of them is the facial cut method which needs more
information about the newly generated polyhedron. The new cutting plane method
relaxes the limitation on the convergence condition and uses only the basic information
in each iteration. It is also evident that the techniques here can be applied to other
global or integer optimization problems where the cutting plane methods can be used.
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