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Abstract

A new sixth-order Runge-Kutta type method is developed for the numerical
integration of the radial Schrödinger equation and of the coupled differential equa-
tions of the Schrödinger type. The formula developed contains certain free pa-
rameters which allows it to be fitted automatically to exponential functions. We
give a comparative error analysis with other sixth order exponentially fitted meth-
ods. The theoretical and numerical results indicate that the new method is more
accurate than the other exponentially fitted methods.

1. Introduction

In recent years the Schrödinger equation has been the subject of great activity, the
aim is to achieve a fast and reliable algorithm that generates a numerical solution.

1.1. Radial Schrödinger equation
The one dimensional or radial Schrödinger equation has the form:

y′′(x) = [l(l + 1)/x2 + V (x) − k2]y(x) . (1)

where one boundary condition is y(0) = 0 with the other boundary condition be-
ing specified at x = ∞. Equations of this type occur very frequently in theoretical
physics[5], and there is a real need to be able to solve them both efficiently and reliably
by numerical methods. In (??) the function W (x) = l(l + 1)/x2 + V (x) is denoted as
the effective potential, for which W (x) → 0 as x → ∞, and k2 is a real number denoting
the energy. The boundary conditions are:

y(0) = 0 (2)

and a second boundary condition, for large values of x, determined by physical con-
siderations.

Boundary value methods based on either collocation or finite differences are not
very popular for the solution of (??) due to the fact that the problem is posed on an
infinite interval. Initial value methods, such as shooting, need to take into account
the fact that | y′(x) | is very large near x = 0. So, it is very inappropriate to use

∗ Received May 30, 1994.



Exponential Fitted Methods for the Numerical Solution of the Schrödinger Equation 121

standard library packages for the numerical solution of (??). Also Runge-Kutta and
Runge-Kutta-Nyström methods have been proved inefficient for the numerical solution
of the Schrödinger equation (see [9] for details).

One of the most popular method for the solution of (??) is the Numerov’s method.
This method is only of order four, but in practice it has been found to have a superior
performance to higher order four-step method. The reason for this, as proved in [9], is
that the Numerov method has the same phase-lag order with the four-step methods but
it has a larger interval of periodicity. So, the investigation of linear multistep methods
is not a fruitful way to deriving efficient high order methods.

An alternative approach to deriving higher order methods for (??) was given by Cash
and Raptis[1]. In [1] a sixth order Runge-Kutta type method with a large interval of
periodicity was derived. This method has a phase-lag of order six (while the Numerov’s
method has phase-lag of order four) and an interval of periodicity much more larger
than the method of Numerov.

Another alternative approach for developing efficient methods for the solution of
(??) is to use exponential fitting. This approach is appropriate because for large x
the solution of (??) is periodic. Raptis and Allison[6] have derived a Numerov type
exponentially fitted method. Numerical results presented in [6] indicate that these
fitted methods are much more efficient than Numerov’s method for the solution of
(??). Many authors have investigated the idea of exponential fitting, since Raptis and
Allison. Perhaps the most significant work in this general area was that of Ixaru and
Rizea[3]. They showed that for the resonance problem defined by (??) it is generally
more efficient to derive methods which exactly integrate functions of the form:

{1, x, x2, . . . , xp, exp(±wx), x exp(±wx), . . . , xm exp(±wx)} (3)

than to use classical exponential fitting methods. A powerful low order method of this
type was developed by Raptis[7]. Also Simos[10] has derived a four-step method of this
type which gives much more accurate results compared with other four-step methods.
Simos[11] has derive a family of four-step methods which gives more efficient results
than other four-step methods. Also Raptis and Cash[8] have derived an exponential
fitted method and Cash, Raptis and Simos[2] have derived a method fitted to (??) with
m = 1 and p = 3.

The purpose of this paper is to derive Runge-Kutta type methods fitted to (??)
and in particular to derive a method with m = 3. We give a comparative error analysis
with other sixth order exponentially fitted methods. The theoretical and numerical
results indicate that the new method is more accurate than the other exponentially
fitted methods.

1.2. Coupled differential equations

The close-coupled equations may be written

[
d2

dR2
+ k2

i − li(li + 1)

R2
− Vii]yij =

∑

k=1

N
k 6=iVikykj (4)

for 1 ≤ i ≤ N, 1 ≤ j ≤ N and where V and Y are matrices.
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We restrict our attention to the case in which all channels are open so that the
boundary conditions are

yij = 0 at R = 0 (5)

yij ∼ kiRjli(kiR)δij +

(

ki

kj

)1/2

RijkiRnli(kiR) (6)

where jl(x) and nl(x) are the spherical Bessel and Neumann functions respec-
tively. For boundary condition (??) and its derivation see [16].

If the matrix elements Vij have no singularities of order two or higher at the origin,
then for small R the solutions of (??) that satisfy (??) are given by

wij = aijR
lq+1 (7)

where a is a matrix of constants. The solutions thus obtained will not, in general,
satisfy the asymptotic boundary condition (??). Thus N linearly independent solutions
of (??) must be found and a suitable linear combination of them matched to the correct
asymptotic form.

The criterion for linearly independent solutions of this equation is that the phase
shifts must themselves be markedly different and independent as noted by
Buckingham[14]. We make the assumption that if the rows of a are linearly inde-
pendent then the respective asymptotic forms will also be linearly independent. Thus
the solutions yij may be expanded as

yij =
N
∑

k=1

wikckj (8)

or in the matrix form
y = w.c (9)

The solutions y may be matched to the boundary conditions at two values of r large
enough so that the terms Vij are negligible. Then, defining a matrix R′ and diagonal
matrices MR,NR by

R′
ij =

(

ki

kj

)1/2

Rij

MR
ij = δijkiRjli(kiR)

NR
ij = δijkiRnli(kiR) (10)

the asymptotic condition (??) may be written

y ∼ M + N.R′ . (11)

Following Barnes et. al.[15], and writing

w = M.A + N.B, (12)
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where the matrices A and B are found by matching the numerical solution of (??) to
(??) for two values of r, say r1 and r2, large enough so that in equation (??) the term
of the centrifugal potential to be neglected, we obtain the relations

c = A−1

R′ = B.A−1 (13)

which lead directly to the formation of the R matrix.

2. The New Method

Consider the method:

yn+1 − ayn + yn−1 = h2[b0(y
′′
n+1 + y′′n−1) + b1(y

′′
n+1/2 + y′′n−1/2) + γy′′n] (14)

where, for example, y′′n+1 = f(xn+1)yn+1 with xn+1 = xn + h and f(xn+1) = [l(l +
1)/x2

n+1 + V (xn+1) − k2].
We require that the method (??) should be exact for any linear combination of the

functions:
{exp(±vx), x exp(±vx), x2 exp(±vx), x3 exp(±vx)} (15)

In this case the method which will be obtained will integrates the exponential functions
(??) with the maximum value of m = 3 compared with the previous exponential fitted
methods (for which the maximum value of m was 2). To construct a method of the
form (??) which integrates exactly the functions (??), we require that the method (??)
integrates exactly:

{exp(±v0x), exp(±v1x), exp(±v2x), exp(±v3x) (16)

and then put v0 = v1 = v2 = v3 = v. In this case equations (??) and (??) are
equivalent (see [9] for details).

Demanding that (??) integrates exactly (??), we obtain the system of equations for
b0, b1 and γ :

a + 2w2
j b0 cosh(wj) + 2w2

j b1 cosh(wj/2) + γw2
j = 2cosh(wj), (17)

where wj = vjh, j = 0, 1, 2.
Solving for a, b0, b1 and γ and then setting v0 = v1 = v2 = v3 = v we obtain:

a = (24w3Z1 − 9w4Z2 + w5Z6)/D

b0 = {12wZ3 − w2[cosh(3/2w) − 25 cosh(w/2)] − w3Z4 − 24Z5}/D
b1 = {−8w2[cosh(2w) + 5] − 24[1 − cosh(2w)]}/D (18)

γ = {wZ1 + w2[45 cosh(3/2w) − cosh(5/2w) + 100 cosh(w/2)] − w3Z6 − 24wZ7/D

where D = −24w3Z3 − 9w4Z5 −w5Z4, Z1 = [3 sinh(3/2w)− sinh(5/2w)− 4 sinh(w/2)],
Z2 = 5cosh(3/2w) − cosh(5/2w) − 4 cosh(w/2), Z3 = sinh(3/2w) − 3 sinh(w/2),
Z4 = sinh(3/2w) + 3 sinh(w/2), Z5 = cosh(3/2w) − cosh(w/2), Z6 = 9 sinh(3/2w) −
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sinh(5/2w)
− 34 sinh(w/2), Z7 = cosh(5/2w) + 3 cosh(3/2w) − 4 cosh(w/2) and w = v h.

In order to use method (??) in practice we need to find computable approximations
to the terms y′′n+1/2, y′′n−1/2, where we still require the method to be exact for any linear

combination of the functions (??). Following the approach of Cash and Raptis we look
for approximations of the form:

yn+1/2 + yn−1/2 = A1(yn+1 + yn−1) + A2yn + h2[A3(y
′′
n+1 + y′′n−1) + A4y

′′
n]

yn−1/2 = B1(yn+1 + yn−2) + B2(yn + yn−1) + h2[B3(y
′′
n+1 + y′′n−2) +

B4(y
′′
n + y′′n−1)] (19)

where the constants A1, A2, A3, A4, B1, B2, B3 and B4 are to be determined. In or-
der for these approximations to be exact for (??) we obtain the following systems of
equations:

2 cosh(wj/2) = 2A1 cosh(wj) + A2 + 2w2
j A3 cosh(wj) + w2

j A4

1/2 = B1 cosh(3wj/2) + B2 cosh(wj/2) + w2
j B3 cosh(3wj/2) +

w2
j B4 cosh(wj/2) (20)

Solving for A1, A2, A3, A4, B1, B2, B3 and B4, and then setting v0 = 0 and
v1 = v2 = v3 = v we obtain:

A1 = {12wZ3 − w2[5 cosh(3/2w) + 19 cosh(w/2)] − w3Z4 + 24Z5}/(2X)

A2 = {12wZ1 − w2[15 cosh(3/2w) + 5 cosh(5/2w) + 124 cosh(w/2)] −
w3Z6 + 24Z7)/(2X)

A3 = (wZ4 − 3Z5)/(2X) (21)

A4 = {wZ6 + 3[5 cosh(3/2w) − cosh(5/2w) − 4 cosh(w/2)]}/(2X)

with Z1, Z3, Z4, Z5, Z6 and Z7 are given by (??) and X = −8w2[cosh(2w) + 5]
− 24[1 − cosh(2w)],

B1 = {72w[sinh(3/2w) − sinh(5/2w) − 2 sinh(w/2)] + 2w2[125 cosh(3/2

w) − 19 cosh(5/2w) − 10 cosh(w/2)] + 6w3[11 sinh(3/2w) − sinh(5/2w)

−4 sinh(w/2)] − 48[cosh(3/2w) + cosh(5/2w) − 2 cosh(w/2)]}/(2Y )

B2 = {72w[sinh(7/2w) − 2 sinh(5/2w) + 3 sinh(w/2)] − 6w2[58 cosh(5/2w)

+5 cosh(7/2w) + 225 cosh(w/2)] + 18w3[4 sinh(5/2w) − sinh(7/2w)

−21 sinh(w/2)] + 144[2 cosh(5/2w) + cosh(7/2w) − 3 cosh(w/2)]}/(2Y ) (22)

B3 = {−6w[11 sinh(3/2w) − sinh(5/2w) − 4 sinh(w/2)] + 6[9 cosh(3/2w)

+ cosh(5/2w) − 10 cosh(w/2)]}/(2Y )

B4 = {−18w[4 sinh(5/2w) − sinh(7/2w) − 21 sinh(w/2)] − 6[14 cosh(5/2w) −
5 cosh(7/2w) − 9 cosh(w/2)]}/(2Y )

where Y = −72w[sinh(3w/2) − 3 sinh(5w/2) + sinh(7w/2) + 5 sinh(w/2)] − 2w2

− 6w3[11 sinh(3w/2) + 11 sinh(5w/2)− 3 sinh(7w/2)− 67 sinh(w/2)] + 48[cosh(3w/2)−
5 cosh(5w/2) − 3 cosh(7w/2) + 7 cosh(w/2)].



Exponential Fitted Methods for the Numerical Solution of the Schrödinger Equation 125

The above formulae are subject to heavy cancellations for small values of w = v h.
In this case it is much more convenient to use the below mentioned series expansions
for the coefficients of the method.

a = 2 + w8/120960

b0 = 1/60 − w2/1890 + w4/51840 − 113w6/159667200 + 8419w8/348713164800

b1 = 4/15 + 2w2/945 + 11w4/90720 − w6/246400 + 61601w8/348713164800

γ = 13/30 − w2/315 − 17w4/60480 − 1879w6/79833600 + 2339w8/11623772160

A1 = 3/32 − 43w2/16128 − 895w4/16257024 + 4532287w6/450644705280

−8052029677w8/11810496435978240

A2 = 29/16 + 43w2/8064 + 895w4/8128512 − 4532287w6/225322352640

−1669677271w8/11810496435978240

A3 = −1/384 + 43w2/193536 − 11779w4/975421440 + 552169w6/1081547292672

−11922163069w8/708629786158694400

A4 = 31/192 + 215w2/96768 + 38629w4/487710720 + 16565w6/540773646336

−18994511981w8/354314893079347200 (23)

B1 = 37/128 − 699w2/7168 + 46825w4/2408448 − 198006703w6/66762178560

+658552202023w8/1749703175700480

B2 = 27/128 + 699w2/7168 − 46825w4/2408448 + 198006703w6/66762178560

−836286943207w8/1749703175700480

B3 = −9/512 + 233w2/28672 − 322199w4/144506880 + 76153487w6/160229228544

−9147016782389w8/104982190542028800

B4 = −171/512 + 2563w2/28672 − 2487301w4/144506880

+42196991w6/14566293504 − 47396848578511w8/104982190542028800

So the final scheme is:

yn+1 − ayn + yn−1 = h2[b0(y
′′
n+1 + y′′n−1) + b1(y

′′
n+1/2 + y′′n−1/2) + γy′′n] (24)

with yn+1/2 and yn−1/2 given by:

yn+1/2 + yn−1/2 = A1(yn+1 + yn−1) + A2yn + h2[A3(y
′′
n+1 + y′′n−1) + A4y

′′
n]

yn−1/2 = B1(yn+1 + yn−2) + B2(yn + yn−1) + h2[B3(y
′′
n+1 + y′′n−2) +

B4(y
′′
n + y′′n−1)] (25)

where the coefficinets of the schems given by (??), (??), (??) or (??).
The local truncation error of the new method (??) - (??), with the coefficients

given by (??), (??) and (??), is given by:

L.T.E. =
h8

120960
[−v8y + 4v6y(ii) − 6v4y(iv) + 4v2y(vi) − y(viii)] . (26)



126 T.E. SIMOS

For comparison purposes in Table 1 we list the properties of the two-step exponen-
tially fitted method introduced in this paper, together with the corresponding properties
of the two-step exponentially fitted methods presented previously in the literature.

Table 1. Properties of the two-step exponentially-fitted methods.
The quantities m and p are defined by (3). A.O. is the algebraic order of the method.

∗ = hybrid two-step method

Method A. O. Integrated Exponential Functions

Numerov’s method 4 1, x, x2, x3, x4, x5

Derived by Raptis and Allison [6] 4 m=0, p=3

Derived by Ixaru and Rizea [3] 4 m=1, p=1

Derived by Raptis [7] 4 m=2, p=0

Derived by Raptis and Cash [8]* 6 m=0, p=5

Derived by Cash, Raptis and Simos [2]* 6 m=1, p=3

Present method* 6 m=3 p=0

The new method is of algebraic order six, i.e. it has the same algebraic order
with the other hybrid methods listed in Table 1. However, the new method integrate
exactly more functions of the form (??) than the previous developed hybrid exponential
fitted methods. The crucial concern when solving the Schrödinger equation is that
the numerical method should integrate exactly the functions (??) with m as large as
possible, as shown by [3] and [9].

3. Comparative Error Analysis

To compare the two known sixth order exponentially fitted methods (of Raptis and
Cash[8] and Cash, Raptis and Simos[2]) with the new one we make a comparative error
analysis.

This is done as follows. First we consider the one-dimensional Schrödinger equation:

y′′ = f(x)y, f(x) = V (x) − E, x ∈ [a, b], y(a) = y0, y′(a) = y′0 (27)

with a real, nonsingular potential V (x). E denotes the energy.
We write f(x) of eq. (??) in a form in which the energy dependence is conveniently

separated. We thus define g(x) = V (x) − Vc, where Vc is the constant approximation
of the potential. We also define as fc = Vc − E. So, we have:

f(x) = g(x) + fc (28)

where g(x) depends on the potential and its constant approximation and fc embeds the
energy dependence. We also express the derivatives y(ii), y(iv), y(vi) and y(viii) which are
in the local truncation error expression in terms of the equation to be solved, i.e.
y′′ = fy. We take into account the fact that g(n) = V (n) for any nth order derivative
with respect to x. So for instance we have:

y(ii) = fcy + gy,

y(iv) = f2
c y + 2fcgy + [(V (2) + g2) + 2V ′y′]
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etc. Finally we introduce these formulae into the local truncation errors terms to
obtain expressions in powers of fc. The asymptotic expansions of these expressions are:

L.T.E
Raptis and Cash

= −h8/120960f3
c gy

L.T.E
Cash, Raptis and Simos

= −h8/120960{f2
c [(g2 + 9V (2))y + 2V ′y′}

L.T.ENew method = −h8/120960{fc[(12V
(4) + 16gV (2) + 12V (2))y + 8V (3)y′]}

From these asymptotic expansions it is obvious that the new method is much more
accurate than the others especially in cases of high energy, i.e. fc to be a big number.
Because in these cases the local truncation error (L.T.E) of the method of Raptis
and Cash increases as the third power of fc and the L.T.E. of the method of Cash,
Raptis and Simos increases as the second power of fc, while the L.T.E of the new
method increases linearly with fc.

We note that for the problems consider in this paper, i.e. the scattering problems
of the Schrödinger equation, fc is a big number (because we have high energies) and
for the cases of the most well known potentials V (4) and V (3) are usually small.

4. Numerical Illustrations

In this section we present some numerical results to illustrate the performance of
our method. We consider the numerical integration of the Schrödinger equation.

4.1. Radial Schrödinger equation
Consider the radial Schrödinger equation

y′′(x) = (V (x) − E)y(x) (29)

in the well-known case where the potential V (x) is the Woods-Saxon potential

W (x) = V (x) = u0/(1 + z) − u0z/[a(1 + z)2] (30)

with z = exp[(x − X0)/a], u0 = −50, a = 0.6 and X0 = 7.0. In order to solve this
problem numerically we need to approximate the true (infinite) interval of integration
[0,∞) by a finite interval. For the purpose of our numerical illustration we take the
domain of integration as 0 ≤ x ≤ 15. We consider (??) in a rather large domain of
energies i.e. [1, 1000]. The problem we consider is the so-called resonance problem.

4.1.1. The Resonance Problem
In the case of positive energies E = k2 the potential dies away faster than the term

l(l + 1)/x2; equation (??) effectively reduces to

y′′(x) + (k2 − l(l + 1)/x2)y(x) = 0, (31)

for x greater than some value X.
The above equation has linearly independent solutions kxjl(kx) and kxnl(kx),

where jl(kx), nl(kx) are the spherical Bessel and Neumann functions respectively.
Thus the solution of equation (??) has the asymptotic form (when x → 0)

y(x) ≃ Akxjl(kx) − Bnl(kx)

≃ AC[sin(kx − πl/2) + tan δl cos(kx − πl/2)] , (32)
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where δl is the phase shift which may be calculated from the formula

tanδl =
y(x2)S(x1) − y(x1)S(x2)

y(x1)C(x2) − y(x2)C(x1)
(33)

for x1 and x2 distinct points on the asymptotic region with S(x) = kxjl(kx) and
C(x) = kxnl(kx).

Since the problem is treated as an initial-value problem, one needs y0 and y1 before
starting a two-step method. From the initial condition, y0 = 0, we show that, for
values of x close to the origin, the solution behaves as y(x) = cxl+1. With these
starting values we evaluate at some point of the asymptotic region the phase shift δl

and the normalization factor C from the above relations.
For positive energies one has the so-called resonance problem. This problem consists

either of finding the phase shift δ(E) or finding those E, for E ∈ [1, 1000], at which
δ equals π/2. We actually solve the latter problem, known as “the resonance problem”

when the positive eigenenergies lie under the potential barrier.

The boundary conditions for this problem are:

y(0) = 0,

y(x) = cos(
√

Ex) for large x (34)

The domain of numerical integration is [0, 15].

Table 2. Deviations of the computed positive eigenvalues from the exact ones in 10−6

units, for the methods I-V

Exact eigenenergies h Method I Method II Method III Method IV Method V

53.588872 1/16 228323 313 11 1 0

1/32 14059 28 5 0 0

1/64 870 1 0 0 0

163.215341 1/16 633 117 5 0

1/32 476488 55 12 1 0

1/64 29378 3 2 0 0

341.495874 1/16 1284 2542 37 0

1/32 115 85 2 0

1/64 435752 8 5 1 0

989.701916 1/16 2228 681 2

1/32 304 2428 55 0

1/64 21 115 7 0

In our numerical illustration we find the positive eigenenergies or resonances by the
five methods:
Method I: Numerov’s method
Method II: Derived by Raptis[7]

Method III: Derived by Raptis and Cash[8]

Method IV: Derived by Cash, Raptis and Simos[2]

Method V: Proposed in this paper.
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The numerical results obtained for the five methods were compared to the true
solution to the Woods-Saxon potential resonance problem. This true solution were
obtained corrected to six decimal places using the analytic solution. Table 2 shows
the absolute errors of the eigenenergies in 10−6 units for different choices of constant
stepsize, which are shown in column 2. The empty areas indicate that the corresponding
absolute errors are larger than 1.

The performance of the different methods is dependent on the choice of the fitting
parameter v. For the purpose of obtaining our numerical results it is appropriate to
choose v in the way suggested by Ixaru and Rizea[3]. That is, we choose:

v =

{

(−50 + E)1/2 for x ∈ [0, 6.5]

(−E)1/2 for x ∈ (6.5, 15]

For a discussion of the reasons for choosing the values 50 and 6.5 and the extent to
which the results obtained depend on these values see [3, pp.25].

4.1.2. Another potential

In Table 3 we present some results obtained with another potential in (??). This
potential is

V (x) = VWoods−Saxon + C/x + l(l + 1)/x2 (35)

where VWoods−Saxonis the Woods-Saxon potential (??). For the purpose of our numer-
ical experiments we use the same parameters as in [3], i.e. C = 20, l = 2.

Table 3. Deviations of the computed positive eigenvalues from the exact ones in 10−6

units, for the methods I-V

Exact eigenenergies h Method I Method II Method III Method IV Method V

61.482588 1/16 253692 1265 275 11 0

1/32 15621 108 105 5 0

1/64 967 4 72 0 0

173.075711 1/16 5200 2925 115 3

1/32 618815 327 300 35 0

1/64 38361 18 48 0 0

352.682070 1/16 9171 63500 856 8

1/32 885 2125 117 0

1/64 573357 64 125 7 0

1002.768393 1/16 545667 80927 12

1/32 3377 60700 813 1

1/64 263 2875 17 0

Since V (x) is singular at the origin, we use the special strategy of [3]. We start
the forward integration from a point ǫ > 0 and the initial values y(ǫ) and y(ǫ + h) for
the integration scheme are obtained by a perturbative method[12]. As in [3] we use the
value ǫ = 1/4 for our numerical tests.

It is appropriate to choose v in the way suggested by Ixaru and Rizea[3]. That is
we choose:
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v =



















[V (a1) + V (ǫ)]/2, for x ∈ [ǫ, a1]
V (a1)/2, for x ∈ (a1, a2]
V (a3), for x ∈ (a2, a3]
V (15), for x ∈ (a3, 15]

where a1 is taken so that V (a1) = V (ǫ)/2, a2 is approximately the first mode of V (x),
and a3 = 6.25 is the point where V (x) is approximately half of its minimum negative
value.

4.2. Error estimation-Local error
When integrating first order systems of initial value ordinary differential equations

several methods have been proposed for the estimation of the local truncation error
(see for example [18]).

Denoting the solution obtained using the new sixth algebraic order exponential fitted
method by yH

n+1 and the solution obtained using the lower order (fourth algebraic order)
exponential fitted method proposed by Raptis [7] by yL

n+1 we obtain an estimate of the
local truncation error in yL

n+1 which is

LTE =| yH
n+1 − yL

n+1 | (36)

under the assumption that h is sufficiently small so that the local error in yH
n+1 can be

neglected compared with that in yL
n+1.

Thus the step-control procedure is

If LTE < ACC/100, hn+1 = 2hn

If ACC > LTE > ACC/100, hn+1 = hn

If LTE > ACC, hn+1 = hn/2 and repeat the step

where ACC is a local error requested.
It is important to note that the local error estimate always is in the lower order

solution. Thus, although we actually controlling an estimate of the local error in the
lower order solution yL

n it is the higher order solution yH
n which we accept at each point.

In coupled differential equations, it is obvious, that we can use the same technique,
but now the local truncation error is given by

LTE = max1<i,j<N‖yH
i,j − yL

i,j‖ . (37)

4.3. Close coupled equations
Rotational excitation of a diatomic molecule by neutral particle impact is one prob-

lem in theoretical physics that may be described in terms of coupled differential equa-
tions. Denoting the entrance channel by the quantum numbers (j,l), the exit channels
by (j′, l′), and the total angular momentum by J = j + l = j′ + l′, we obtain

[
d2

dR2
+ k2

j′j −
l′(l′ + 1)

R2
]yJjl

j′l′ (R) =
2µ

h̄2

∑

jn

∑

ln

< j′l′;J | V | j′′l′′;J > yJjl
j′′l′′(R) (38)
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where

kj′j =
2µ

h̄2 [E +
h̄2

2I
{j(j + 1) − j′(j′ + 1)}] , (39)

E is the kinetic energy of the incident particle in the center-of-mass system, I is the
moment of inertia of the rotator, and µ is the reduced mass of the system.

The potential V may be expanded as V (R, k̂j′j .k̂jj) = V0(R)P0(k̂j′j .k̂jj)

+ V2(R)P2(k̂j′j.k̂jj), where k̂j′j is a unit vector parallel to the wave vector kjj.
The coupling matrix element can then be written

< j′l′;J | V | j′′l′′;J >= δj′j′′δl′l′′V0(R) + f2(j
′l′, j′′l′′;J)V2(R) (40)

where the f2 coefficients can be evaluated from formulas given by Bernstein et al.[13].
The boundary conditions are

yJjl
j′l′ (R) = 0 at R = 0 (41)

yJjl
j′l′ (R) ∼ δjj′δll′ exp[−i(kjjR − 1/2lπ)] −

(

ki

kj

)1/2

SJ(jl; j′l′) exp[i(kj′jR − 1/2l′π)] (42)

where the scattering S matrix is related to the R matrix of (??) by the relation

S = (I + iR)(I − iR)−1 . (43)

Table 4. Real time of computation (in seconds) to calculate | S |2 for the three
variable-step methods. ACC = 10−6. hmax is the maximum stepsize

Method N hmax Real time of computation (in seconds)

Iterative Numerov [16] 4 0.014 3.25

9 0.014 23.51

16 0.014 99.15

Raptis and Cash [8] 4 0.056 1.00

9 0.056 5.35

16 0.056 24.53

New method 4 0.112 0.72

9 0.112 3.20

16 0.112 14.35

A program has been written to solve this problem and has been used to calculate
cross sections for rotational excibition of molecular hydrogen by impact of various heavy
particles. This program has a subroutine that deals exclusively with the step-by-step
integration from the initial value to matching points. This program is also based on an
analogous program which has been written for the numerical applications of [16].

As noted by several authors (see for example [16]), a good check on the calculation is
furnished by inspection of the symmetry of the calculated R matrix, which guarantees
the unitarity of the S matrix. We note that this check gives no information about the
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Table 5. Comparison of | S |2 calculated by the three methods

Values of j and l

j ′ l ′ 0 6 2 4 2 6 2 8 4 2 4 4 4 6 4 8 4 10

0 6 0.4353 0.1538 0.1244 0.2045 0.0153 0.0122 0.0128 0.0151 0.0266
0 6 0.4351 0.1544 0.1249 0.2049 0.0154 0.0122 0.0128 0.0151 0.0266
0 6 0.4350 0.1546 0.1250 0.2050 0.0155 0.0123 0.0128 0.0150 0.0267

2 4 0.1538 0.3768 0.0974 0.0301 0.2317 0.0823 0.0189 0.0071 0.0019
2 4 0.1544 0.3768 0.0970 0.0300 0.2317 0.0824 0.0187 0.0070 0.0019
2 4 0.1546 0.3769 0.0967 0.0299 0.2318 0.0824 0.0188 0.0069 0.0020

2 6 0.1244 0.0974 0.4737 0.0561 0.0156 0.0208 0.0910 0.1103 0.0107
2 6 0.1248 0.0970 0.4738 0.0560 0.0157 0.0207 0.0911 0.1104 0.0106
2 6 0.1250 0.0967 0.4738 0.0559 0.0158 0.0207 0.0911 0.1105 0.0106

2 8 0.2044 0.0300 0.0561 0.3780 0.0014 0.0012 0.0030 0.0241 0.3017
2 8 0.2049 0.0300 0.0559 0.3782 0.0014 0.0012 0.0029 0.0242 0.3012
2 8 0.2050 0.0299 0.0559 0.3782 0.0014 0.0012 0.0029 0.0244 0.3014

4 2 0.0153 0.2317 0.0156 0.0014 0.6513 0.0759 0.0080 0.0007 0.0001
4 2 0.0154 0.2316 0.0157 0.0014 0.6512 0.0758 0.0081 0.0007 0.0001
4 2 0.0155 0.2318 0.0158 0.0014 0.6512 0.0757 0.0082 0.0007 0.0001

4 4 0.0122 0.0823 0.0208 0.0012 0.0759 0.7001 0.1017 0.0058 0.0001
4 4 0.0122 0.0824 0.0207 0.0012 0.0758 0.7000 0.1016 0.0058 0.0001
4 4 0.0123 0.0824 0.0207 0.0012 0.0757 0.6999 0.1015 0.0059 0.0001

4 6 0.0128 0.0189 0.0910 0.0030 0.0080 0.1016 0.7039 0.0602 0.0006
4 6 0.0128 0.0187 0.0911 0.0029 0.0081 0.1016 0.7038 0.0603 0.0007
4 6 0.0128 0.0188 0.0911 0.0029 0.0082 0.1015 0.7038 0.0604 0.0007

4 8 0.0152 0.0071 0.1102 0.0241 0.0007 0.0058 0.0602 0.7668 0.0099
4 8 0.0151 0.0070 0.1104 0.0242 0.0007 0.0062 0.0603 0.7667 0.0100
4 8 0.0150 0.0069 0.1105 0.0244 0.0007 0.0065 0.0604 0.7666 0.0100

4 10 0.0266 0.0019 0.0107 0.3016 0.0001 0.0001 0.0006 0.0099 0.6485
4 10 0.0265 0.0019 0.0106 0.3012 0.0001 0.0001 0.0007 0.0100 0.6479
4 10 0.0266 0.0020 0.0106 0.3014 0.0001 0.0001 0.0007 0.0100 0.6475

convergence of the R matrix but shows only that the numerical errors are not swamping
the required solutions.

For numerical purposes we choose the S matrix which is calculated using the fol-
lowing parameters

2µ

h̄2 = 1000.0,
µ

I
= 2.351, E = 1.1,

V0(R) =
1

R12
− 2

1

R6
, V2(R) = 0.2283V0(R).

We take J = 6 and consider excitation of the rotator from j = 0 state to levels up
to j′ = 2, 4 and 6 giving rise to sets of four, nine and sixteen coupled differential
equations, respectively. Following the procedure obtained by Bernstein[17] we assumed
the potential infinite for values of R less than some R0. The wavefunctions will then
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Table 6. Accurate values of | S |2 calculated by method proposed in [1] with stepsize
equal to 0.001

Values of j and l

j ′ l ′ 0 6 2 4 2 6 2 8 4 2 4 4 4 6 4 8 4 10

0 6 0.4349 0.1548 0.1251 0.2051 0.0158 0.0123 0.0128 0.0150 0.0268
2 4 0.1548 0.3770 0.0968 0.0300 0.2318 0.0825 0.0188 0.0068 0.0019
2 6 0.1251 0.0968 0.4739 0.0559 0.0158 0.0207 0.0912 0.1108 0.0108
2 8 0.2051 0.0300 0.0559 0.3783 0.0014 0.0012 0.0028 0.0245 0.3015
4 2 0.0158 0.2318 0.0158 0.0014 0.6511 0.0757 0.0082 0.0007 0.0001
4 4 0.0123 0.0825 0.0207 0.0012 0.0757 0.6998 0.1016 0.0059 0.0001
4 6 0.0128 0.0188 0.0912 0.0028 0.0082 0.1016 0.7037 0.0604 0.0008
4 8 0.0150 0.0068 0.1108 0.0245 0.0007 0.0059 0.0604 0.7666 0.0101
4 10 0.0268 0.0019 0.0108 0.3015 0.0001 0.0001 0.0008 0.0101 0.6482

be zero in this region and effectively the boundary condition (??) may be written as

yJjl
j′l′ (R0) = 0 . (44)

Using a single channel phase shift program with the same potential and parameters
corresponding to the smallest wavenumber we found that succesive values of the phase
shift had converged to whithin 0.0001 around R = 6.2. We make the assumption that,
for coupled equations, the R matrix elements will have converged by the same radial
distance, a situation that has been verified in practice (the same assumption has been
made in [16]).

For the exponentially-fitted methods we choose vj′j = kj′j . So, for the coupled
differential equations we shall have wj′j = vj′jh.

In Table 4 we present the real time of computation required by the Iterative Nu-
merov method (proposed by Allison[16]), the variable-step method (proposed by Raptis
and Cash[8]) and the new variable-step method (proposed in the previous section) to
calculate the square of the modulus of the S matrix for sets of 4, 9 and 16 coupled
differential equations. In Table 5 we present the matrix | S |2 for N = 9 and for the
above mentioned methods.

For comparison purposes in the Table 6 we present the accurate values of the ele-
ments of the | S |2 calculate by the method proposed in [1] with stepsize 0.001.

5. Conclusions

It can be seen from the theoretical and numerical results that the new method is
considerably more accurate than the other numerical methods we have considered in
both cases of radial Schrödinger equation and a set of coupled differential equations of
the Schrödinger type.

All computations were carried out on the VAX/VMS 6000/410 of the Agricultural
University of Athens using double precision arithmetic (16 significant digits accuracy).
Acknowledgements. The author wishes to thank the anonymous referee for his
careful reading of the manuscript and his fruitful comments and suggestions.
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