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Abstract

A new method for unconstrained optimization problems is presented. It belongs
to the class of trust region method, in which the descent direction is sought by using
the trust region steps within the restricted subspace. Because this subspace can be
specified to include information about previous steps, the method is also related to
a supermemory descent method without performing multiple dimensional searches.
Trust region methods have attractive global convergence property. Supermemory
information has good scale independence property. Since the method possesses
the characteristics of both the trust region methods and the supermemory descent
methods, it is endowed with rapidly convergence. Numerical tests illustrate this
point.

1. Introduction

In unconstrained optimization the basic problem considered is

Min f(x) (1.1)

where f(x) : Rn → R is a real differentiable function. Many algorithms have been
proposed for solving (1.1). The supermemory descent method is one of them. Its main
idea is to combine a descent direction with the displacements generated by previous
iterations for obtaining a new search direction. the typical form of the method is shown
by Wolfe and Viazminsky[14]. That is, for the kth iteration, calculate αk, β

(i)
k , sk and

xk+1 from

f

(
xk + αkpk +

m∑

i=1

β
(i)
k sk−1

)
= min

α,β(i)
f

(
xk + αkpk +

m∑

i=1

β
(i)
k sk−1

)
,

sk = αkpk +
m∑

i=1

β
(i)
k sk−1, (1.2)

and
xk+1 = xk + sk.
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where pk is a basic search direction and m is the number of memory terms. For a
quadratic function with positive definite Hessian matrix, the iteration (1.2) with exact
line search has the finite step termination property. Choosing different pk, we obtain
different supermemory descent algorithm: supermemory gradient methods, superme-
mory quasi-Newton methods, etc. Numerical experience show that it is more rapidly
convergent than quasi-Newton methods, in general. the major weakness in this class
of methods is the computational labour required to perform the (m+1)-dimentional
search at each iteration. In order to overcome this defect, Sun[13] constructed a kind of
supermemory descent algorithm that does not require the multiple dimentional search.
But the method requires that the objective function possesses fairly strong quadratic
properties in the neighbourhood of the iterative points to ensure convergence.

On the other hand, trust region methods is an effective way to overcome the diffi-
culty caused by non-positive definite Hessian matrices in Newton’s method. The basic
idea is that the step is restricted by region of validity of the Taylor series. Given
xk ∈ Rn, consider the subproblem





Minimize ϕk(s) = fk + gT
k s +

1
2
sT Bks

Subject to ‖ s ‖2≤ ∆k

(1.3)

where Bk is an approximation to the Hessian matrix 52f(x) at xk and ∆k is the trust
radius. The iteration consists of solving (1.3), and then comparing the actual reduction
of the objective function

aredk = fk − f(xk + sk) (1.4)

to the reduction predicted by the quadratic model

predk = fk − ϕ(sk). (1.5)

If the reduction is satisfactory, then the step can be taken and a large trust region tried.
Otherwise the trust region is reduced and the minor iteration is repeated.

The motivation for the idea of this paper is to find a means whereby the potential of
a good quasi-Newton algorithm is exploited. The scheme suggested is one in which the
descent step is sought by using trust region steps within restricted subspace. Because
each subspace can be specified to include information about previous steps, the method
is also related to a supermemory descent method but avoids the need for performing
multiple dimensional searches. Information of this kind may be useful in providing
local geometry information. Trust region methods have attractive global convergence
property. Supermemory information has good scale independence property. Since
the method possesses the characteristics of both the trust region methods and the
supermemory descent methods, it is endowed with rapidly convergence. In Section
2 we specify the restricted trust region method. In Section 3 we discuss a rule for
constructing the subspace. In Section 4 the convergence of the method is proved. In
Section 5 numerical results are presented.



A Restricted Trust Region Method with Supermemory for Unconstrained Optimization 197

In this paper, the following notations are used: x∗ denotes a solution of the problem
(1.1). gk is the gradient of f(x) at xk. I denotes an unit matrix.

2. Trust Region Methods on a Subspace

In the standard trust region method, if the trust region steps are restricted within
a sequence of subapaces, the kth step is generated by solving the problem





Minimize ϕk(s) = fk + gT
k s +

1
2
sT Bks

Subjectto s ∈ Sk

‖ s ‖2≤ ∆k.

(2.1)

Assume that Zk is a n×m0 matrix such that ZT
k Zk = I and that the columns of Zk span

Sk. Then the subspace constraint can be satisfied by setting sk = Zksz. Substituting
this in (2.1) gives the problem





Minimize ψk(sz) = fk + gT
z sz +

1
2
sT
z Bzsz

Subject to ‖ sz ‖2≤ ∆k.
(2.2)

where gz = ZT
k gk, Bz = ZT

k BkZk and ‖ Zksz ‖2=‖ sz ‖2. If m0 ¿ n, the subproblem
(2.2) is a lower-dimensional version of the general trust region model (1.3). Obviously,
the trust region step can be obtained by solving (2.2) since sk = Zksz.

A trust region algorithm with restricted subspace is given below.
Algorithm 2.1.
Step 0 Let k be specified. Given ∆k > 0, xk ∈ Rn and a symmetric positive

definite matrix Bk.
Step 1 Calculate fk and gk. If the condition for termination is achieved, then

stop.
Step 2 Update Bk by using a formula satisfying the quasi-Newton condition.
Step 3 Construct the matrix Zk such that ZT

k Zk = I.
Step 4 Calculate gz = ZT

k gk, Bz = ZT
k BkZk.

Step 5 If ‖ B−1
z gz ‖2≤ ∆k, set sz = −B−1

z gz and go to Step 7.
Step 6 Solve the subproblem (2.2) and obtain sz.
Step 7 Calculate sk = Zksz, f(xk + sk) and τc = aredk

predk
.

Step 8 Set ∆k+1 = 1
4 ‖ s ‖2 if τc < 0.25; set ∆k+1 = 2∆k if τc > 0.75 and

‖ s ‖2= ∆k; otherwise set ∆k+1 = ∆k.
Step 9 If τc ≤ 0, set xk+1 = xk; else xk+1 = xk + sk.
Step 10 Set k = k + 1 and go to Step 1.

3. Choice of Subspace

The first reported use of the subproblem (2.1) appears to be due to Bulteau and
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Vial[1] who proposed a restricted trust region algorithm by constructing Sk using the
steepest descent direction and the quasi-Newton direction. On the other hand, Cullum
and Brayton[2] point out that an algorithm has the quadratic termination property if,
at each iteration, an exact line search is done and the direction of search is

dk = µHkgk +
∑

βjsj

where µ and βj are suitable constants. Thus it seems that the subspace should be
spanned by some basic descent direction and some linearly independent displacements
of xk to achieve fast asymptotic convergence. One of the basic descent direction is the
steepest descent direction −gk. The other usually depends on the positive definiteness
of Bk. Here Bk is constructed by the update OCSSR1 (Osborne and Sun[7]). That is,

Bk+1 = ωkBk +
(yk − ωkBksk)(yk − ωkBksk)T

(yk − ωkBksk)T sk
(3.1)

where ωk is a scaling factor, and it can be chosen automatically by satisfying Davidon’s[3]

criterion for an optimally conditioned Hessian estimate. Since Bk is always positive def-
inite, the direction

dk = −B−1
k gk (3.2)

is taken as a basic descent direction. A rule to compute the matrix Z is given below.
Algorithm 3.1. (an additional condition on Step 3 of Algorithm 2.1)
Step 3.1 Calculate the descent direction dk by (3.2).
Step 3.2 Select the sj1, sj2,...,sj(m0−2) from sk−1, sk−2,... so that -gk, dk, sj1,

sj2,...,sj(m0−2) are linearly independent.
Step 3.3 Using -gk, dk, sj1, sj2, ..., sj(m0−2) constructs m0 column vectors of Zk by

the Gram-Schmidt orthogonalization procedure.
Remark 3.2. If -gk and dk are linearly dependent, find the vectors sj1, sj2,...,

sj(m0−1) such that −gk, sj1, sj2, ..., sj(m0−1) are linearly independent. Using them con-
structs Zk by the Gram-Schmidt orthogonalization procedure.

Remark 3.3. If every sj , 1 ≤ j ≤ k − 1, is linearly dependent to the basic
descent direction -gk and dk, then m0 = 2 and Zk is constructed by the Gram-Schmidt
orthogonalization procedure of -gk and dk.

4. Convergence Analysis

The global convergence of the algorithm 2.1 is straightforward, as it can be derived
from Powell’s results[8,9].

Because ZkZ
T
k is the orthogonal projection from Rn to Sk and gk ∈ Sk, it is obvious

that ZkZ
T
k gk = gk which, in turn, implies that ‖ gz ‖2=‖ gk ‖2. From Powell [8], we

have that
fk − ψk(sk) ≥ fk − min

s∈spangk,‖s‖2≤∆k

ψk(s)

≥ 0.5 ‖ gk ‖2 min{∆k, ‖ gk ‖2 / ‖ Bk ‖2}.
(4.1)
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The global convergence of the algorithm 2.1 follows from the above inequality as long
as ‖ Bk ‖2 increases not faster than linearly (Powell [9]). Therefore, we can establish
directly the following result:

Theorem 4.1. Assume that f : Rn → R is bounded below, and that ∇f(x) is
uniformly continuous. Let {xk} be the sequence produced by the algorithm 2.1. If (4.1)
and the bounds ‖ Bk ‖2≤ c1 + c2k hold for all k, where c1 and c2 are constants, and if
none of the gradients gk(k = 1, 2, 3...) is zero, then

lim
k→∞

inf ‖ gk ‖2= 0

is obtained.
Osborne and Sun[7] prove the convergence of the matrices generates by the OCSSR1

update under some assumed conditions. That is

lim
k→∞

‖ Bk −∇2f(x∗) ‖2= 0.

Thus from Powell [8], we obtain directly the following conclusion:
Theorem 4.2. Assume that f(x) is twice continuously differentiable, and that

∇2f(x) is bounded and Lipschitz continuous. Let the sequence {xk} generated by the
algorithm 2.1 with the OCSSR1 update converges to x∗. If in every iteration,

| (yk − ωkBksk)T sk | ≥ c ‖ yk − ωkBksk ‖2‖ sk ‖2,

where c ∈ (0, 1), if the sequence sk is uniformly linearly independent, if the limit of the
sequence ωk is one, and if ∇2f(x∗) is positive definite, then the algorithm 2.1 with the
OCSSR1 update causes the sequence xk to converge superlinearly.

5. Numerical Results

The algorithm 2.1 was implemented with the OCSSR1 update. The resulting
method is denoted by TR-OCSSR1. It is compared with our implementations of the
following algorithm: DM-DOGLEG (Dennis-Mei’s double dogleg method[4]) and BV-
RTR (Bulteau-Vial’s redtricted trust region method[1]). The number of terms with
memory is decided by following creterion:

m =

{
3, 2 ≤ n ≤ 10,

4, n > 10.

The number of terms is not too critical, but there is some advantage in increasing it as
the dimension of the problem increases.

The algorithm described in More and Sorensen[6] was used to solve the subproblem
(2.2).

The test function are outlined as follows:
TF.1 Brown Badly Scaled x0=(1,1)
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TF.2 Beale x0=(1,1)
TF.3 Biggs x0=(1,2,1,1)
TF.4 Dixon x0=(-2,...,-2)
TF.5 Hilbert (n=4) x0=(-4,-2,-1.333,-1)

Hilbert (n=6) x0=(-4,-2,-1.333,-1,-0.8,-0.6667)
TF.6 Miele x0=(1,2,2,2)
TF.7 Extended Powell x0=(3,-1,0,1,...,3,-1,0,1)
TF.8 Power x0=(1,1,1,1)
TF.9 Extended Rosenbrock x0=(-1.2,1,...,-1.2,1)
TF.10 Trigonometric x0=( 1

n ,..., 1
n)

TF.11 Wood x0=(-3,-1,-3,-1)
TF.12 Nondia x0=(-1,...,-1)

where TF.1, TF.2, TF.7, TF.9, TF.10 and TF.11 appear in More, Garbow and Hill-
strom [5]; TF.3, TF.4 and TF.6 appear in Wolfe-Viazminsky [14]; TF.5 appears in
Schittkowski [11]; TF.8 appears in Spedicato [12]; TF.12 appears in Shanno [10].

Table 5.1.
Numerical Results for TR-OCSSR1

(x0 is standard initial point and ||g||2 < 10−8)

Test Function N CPU Nt Nf Ng f∗ ||g||2
TF.1 2 0.17′′ 15 20 16 0.11x10−28 0.66x10−8

TF.2 2 0.28′′ 18 22 19 0.38x10−25 0.16x10−11

TF.3 4 0.55′′ 26 32 27 0.83x10−17 0.54x10−8

TF.4 10 1.10′′ 37 41 38 0.33x10−18 0.72x10−9

TF.5 4 0.11′′ 7 10 8 0.17x10−29 0.14x10−15

6 0.16′′ 6 9 7 0.41x10−12 0.46x10−8

TF.6 4 0.88′′ 64 77 65 0.56x10−11 0.53x10−8

TF.7 4 0.77′′ 50 57 51 0.94x10−17 0.33x10−8

16 3.19′′ 50 57 51 0.38x10−16 0.65x10−8

64 77.22′′ 51 58 52 0.52x10−16 0.63x10−8

TF.8 20 2.20′′ 23 27 24 0.26x10−36 0.36x10−17

50 34.82′′ 44 49 45 0.20x10−18 0.40x10−8

TF.9 2 0.33′′ 23 33 24 0.49x10−25 0.89x10−11

50 18.84′′ 23 33 24 0.13x10−23 0.46x10−10

100 116.33′′ 23 33 24 0.36x10−23 0.79x10−10

TF.10 5 0.60′′ 28 38 29 0.21x10−17 0.15x10−8

10 2.36′′ 50 63 51 0.77x10−15 0.95x10−9

TF.11 4 0.71′′ 39 59 40 0.25x10−22 0.17x10−9

TF.12 20 5.11′′ 49 69 50 0.41x10−28 0.31x10−12

50 46.85′′ 57 73 58 0.10x10−20 0.13x10−8

100 288.30′′ 57 76 58 0.70x10−25 0.11x10−10
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Tests were carried out in double precision on an IBM PC/AT clone. The corre-
sponding machinc precision is of the order of 10−16.

Table 5.2.
(x0 is standard initial point and ||g||2 < 10−8)

Test Function N Algorithm
TR-ocssr 1 DM - dogleg BV - rtr

CPU Nt Nf CPU Nt Nf CPU Nt Nf

TF.1 2 0.17′′ 15 20 0.77′′ 42 77 0.22′′ 16 20
TF.2 2 0.28′′ 18 22 0.16′′ 14 18 0.16′′ 15 20
TF.3 4 0.55′′ 26 32 1.26′′ 79 83 0.66′′ 38 43
TF.4 10 1.10′′ 37 41 0.71′′ 27 36 0.71′′ 27 35
TF.5 4 0.11′′ 7 10 0.17′′ 9 12 0.11′′ ( 12

6 0.16′′ 6 9 0.22′′ 13 16 0.22′′ 13 15
TF.6 4 0.88′′ 64 73 0.88′′ 61 84 1.54′′ 99 132
TF.7 4 0.77′′ 50 57 0.60′′ 47 57 0.60′′ 44 52

16 3.19′′ 50 57 5.72′′ 135 151 7.75′′ 167 212
64 77.22′′ 51 58 — > 200 — — > 200 —

TF.8 20 2.20′′ 23 27 3.02′′ 33 47 1.76′′ 27 33
50 34.82′′ 44 49 — > 200 — 28.12′′ 60 68

TF.9 2 0.33′′ 23 33 0.27′′ 21 29 0.33′′ 19 28
50 18.84′′ 23 33 — > 200 — 90.08′′ 192 217
100 116.33′′ 23 33 — > 200 — — > 200 —

TF.10 5 0.60′′ 28 38 0.44′′ 23 28 0.39′′ 22 24
10 2.36′′ 50 63 0.88′′ 26 28 0.99′′ 26 28

TF.11 4 0.71′′ 39 59 0.83′′ 52 72 0.83′′ 55 73
TF.12 20 5.11′′ 49 69 13.40′′ 154 195 5.94′′ 90 109

50 46.85′′ 57 73 — > 200 — — > 200 —
100 288.30′′ 57 76 — > 200 — — > 200 —

The results of the numerical experiments are summarised in Tables 5.1 and 5.2.
Table 5.1 gives results obtained by the TR-OCSSR1 algorithm on some classical test
functions for a range of different dimensions of the parameter vector. Table 5.2 gives
the comparisons between TR-OCSSR1, DM-DOGLEG and DV-RTR. The basic data
reported for each method are the dimension of the objective function algument (n),
the CPU time (CPU), the number of iteration (Nt), the number of function evalutions
(Nf ), the number of gradient evaluations (Ng). If Nt > 200 the method is regarded as
having failed. The convergence criterion is

‖ g ‖2< 10−8.

Numerical tests show that the TR-OCSSR1 algorithm is very efficient and that it is
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suitable for medium-sized unconstrained optimization problems in comparison with
other similar methods[1,4].
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