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(Mathematical Institute, Žitná 25, CZ-11567, Prague 1, Czech Republic)

Abstract

We examine a simple averaging formula for the gradient of linear finite elements

in Rd whose interpolation order in the Lq-norm is O(h2) for d < 2q and nonuniform

triangulations. For elliptic problems in R2 we derive an interior superconvergence

for the averaged gradient over quasiuniform triangulations. Local error estimates

up to a regular part of the boundary and the effect of numerical integration are

also investigated.

1. Introduction

Consider a model elliptic boundary value problem

−
d

∑

i,j=1

∂

∂xi

(

aij
∂u

∂xj

)

= f, in Ω, u = 0, on ∂Ω, 1.1

where Ω ⊂ Rd, d = 1, 2, 3, is a bounded polyhedral domain with a Lipschitz boundary,

f ∈ L2(Ω), aij are Lipschitz-continuous functions and the matrix A = (aij) is symmetric

and uniformly positive definite with respect to x ∈ Ω .

It is known that the finite element method applied to (1.1) may produce some

superconvergence phenomena even if the used meshes are nonuniform[5,8,9,10,12]. In

a recent paper [6], an interior error estimate for the recovered gradient of Galerkin

piecewise linear approximations has been proposed in the case d = 2. This result,

however, has required a high global regularity of the solution of the boundary value

problem. In the present paper we derive other error estimates over some subdomains

for problems of low regularity. We employ some results of [9, 13] together with a series

of modified lemmas of our recent paper [6].

∗ Received November 9, 1994.
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In Section 2 we establish an optimal interior error estimate on subdomains in L2-

norm, whereas Section 3 is devoted to an error estimate in the so-called discrete interior

L2-norm. The effect of numerical integration is treated in Section 4 on a simple example.

We present local error estimates up to a regular part of the boundary in Section 5, 6

and 7, in the continuous and discrete L2-norm, respectively.

Throughout the paper C,C ′, ... are generic positive constants and ‖ · ‖ is the Eu-

clidean norm. The symbol W k
q (Ω) stands for the Sobolev space equipped with the

standard norm ‖ · ‖k,q,Ω and seminorm | · |k,q,Ω. In particular, we write

‖ · ‖k,Ω = ‖ · ‖k,2,Ω, | · |k,Ω = | · |k,2,Ω,

and (., .)0,Ω is the scalar product in L2(Ω). The subspace of W 1
2 (Ω) whose functions

have vanishing traces is denoted by ◦ → W 1
2 (Ω). The weak solution u ∈ ◦ → W 1

2 (Ω) of

(1.1) is defined by the relation

a(u, v) = (f, v)0,Ω ∀v ∈ ◦ → W 1
2 (Ω), 1.2

where

a(u, v) =

∫

Ω

∑

i,j

aij
∂u

∂xi

∂v

∂xj
dx.

Let

Vh = {vh ∈ C(Ω) | vh|K ∈ P1(K) ∀K ∈ Th},

where Th is a triangulation (decomposition) of Ω into closed simplexes in the standard

sense and P1(K) is the space of linear polynomials over K. Let V 0
h = Vh ∩◦ → W 1

2 (Ω).

A finite element approximation of (1.1) reads: Find uh ∈ V 0
h such that

a(uh, vh) = (f, vh)0,Ω, ∀vh ∈ V 0
h .1.3

Moreover, let πh : C(Ω) → Vh be the usual linear interpolation operator such that

πhv(Z) = v(Z), ∀Z ∈ Nh,

where Nh is the set of nodes of Th.

Recall that a family of triangulations F = {Th}h→0 is said to be regular (strongly

regular) if there exists a constant κ > 0 such that for any K ∈ Th and any Th ∈ F

there exists a ball B ⊂ K with radius ρK such that κhK ≤ ρK (κh ≤ ρK), where

hK = diam K and h = maxK hK .

We briefly recall the definition of the weighted averaged gradient introduced in

details in [6]. For Z ∈ Nh denote by ℓi = ℓi(Z) that straight line which passes through

Z and is parallel with the axis xi.
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Now if v ∈ C(Ω) and i ∈ {1, ..., d} we set

(Ghv(Z))i = αiv(Ai) − (αi + βi)v(Z) + βiv(Bi), for Z ∈ Nh,

where

αi =
bi

ai(bi − ai)
, βi =

ai

bi(ai − bi)
, ai = (Ai−Z)i, bi = (Bi−Z)i, i = 1, ..., d,

and where (.)i stands for the i-th component. Define

U = U(Z) =
⋃

K ∈ ThK ∩ Z 6= ∅K.

Let Ai, Bi ∈ ℓi ∩ U for Z ∈ Nh ∩ Ω, Ai ∈ ∂U for Z ∈ ∂Ω and let

C|ai| ≤ |bi| ≤ C|ai|

with C > C > 1. In the case that such points Ai and Bi do not exist, we refer to [6]

for the definition of (Ghv(Z))i.

We introduce a continuous piecewise linear function (still denoted by Ghv) which

is uniquely determined by the values at nodes. Hence, from now on

Ghv ∈ (Vh)d, ∀v ∈ C(Ω).

2. Optimal Interior Error Estimates in the L
2-Norm

Definition 2.1. The Dirichlet problem (1.1) is said to be γ-regular (0 < γ ≤ 1), if

its weak solution u belongs to W 1+γ
2 (Ω) for any f ∈ L2(Ω) and if

‖u‖1+γ,Ω ≤ C‖f‖0,Ω.2.1

Example 2.2. Let Ω ⊂ R2 be a bounded domain with a Lipschitz boundary ∂Ω,

which consists of a finite number of smooth arcs Γj of class W 2
∞. In corner points,

let the tangents generate interior angles ωj ∈ (0, π]. If the coefficients aij belong to

W 1
∞(Ω) then the problem (1.1) is 1-regular (see [7] also for d ≥ 2).

Example 2.3. Let aij = δij (Kronecker’s delta) and let Ω be a nonconvex polygonal

domain. Then the problem (1.1) is γ-regular with some γ ∈ (0, 1)[4].

Lemma 2.4. Assume that the Dirichlet problem (1.1) is γ-regular and the family

F of triangulations is regular. Then

‖u − uh‖0,Ω ≤ Ch2γ |u|1+γ,Ω.2.2
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Proof. Let us consider the following adjoint problem: Find w ∈ ◦ → W 1
2 (Ω), such

that

a(w, v) = (u − uh, v)0,Ω, ∀v ∈ ◦ → W 1
2 (Ω).2.3

By assumption and (2.1), we have w ∈ W 1+γ
2 (Ω) and

‖w‖1+γ,Ω ≤ c‖u − uh‖0,Ω.

Inserting v = u − uh into (2.3), we obtain by (1.2) and (1.3)

‖u − uh‖
2
0,Ω = a(u − uh, w) = a(u − uh, w − πhw)2.4 ≤ C|u − uh|1,Ω|w − πhw|1,Ω.

By interpolation theory in Sobolev spaces with fractional derivatives[2,3] and the

well-known Céa’s lemma we have

|w−πhw|1,Ω ≤ Chγ |w|1+γ,Ω ≤ Chγ‖u−uh‖0,Ω, 2.5|u−uh|1,Ω ≤ C|u−πhu|1,Ω ≤ Chγ |u|1+γ,Ω.2.6

Substituting (2.5) and (2.6) into (2.4), we arrive at

‖u − uh‖
2
0,Ω ≤ Ch2γ |u|1+γ,Ω‖u − uh‖0,Ω

and the lemma is proved.

Definition 2.5. Let d = 2. We say that the family F of triangulations satisfies

the assumption (A1) in Ω∗, if

it is generated in a subdomain Ω∗ ⊂ Ω by a smooth distortion (W 2
∞−diffeomorphism) of the reference uniform or

Recall that[9] in chevron triangulations the slope (+1) of diagonals of one row is

followed by the slope (−1) in the next row.

Lemma 2.6. Assume that the family F of triangulations satisfies (A1) in Ω∗,

Ω1 ⊂⊂ Ω2 ⊂⊂ Ω∗ ⊂ Ω and u|Ω2
∈ W 3

2 (Ω2). Then for h small enough there exists

C(Ω1) > 0 such that

|uh − πhu|21,Ω1
≤ C(Ω1)(h

4‖u‖2
3,Ω2

+ h2|uh − πhu|21,Ω2
+ ‖uh − πhu‖2

0,Ω2
).

The proof is essentially the same as that of [13, Lemmas 3.5 and 3.6] combined with

the proof of [9, Lemma 5.3].

Lemma 2.7. Let the assumptions of Lemma 2.6 be fulfilled. Moreover, let u ∈

W 1+γ
2 (Ω) for some γ ∈ (0, 1]. Then

|uh − πhu|21,Ω1
≤ C(Ω1)(h

4‖u‖2
3,Ω2

+ h2+2γ |u|21+γ,Ω + ‖u − uh‖
2
0,Ω2

).

Proof. By Céa’s lemma we have

|u − uh|1,Ω ≤ C|u − πhu|1,Ω.
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Using the interpolation theory, we may write

|uh − πhu|1,Ω2
≤ |u − uh|1,Ω + |u − πhu|1,Ω ≤ 2.7 ≤ (1 + C)|u − πhu|1,Ω ≤ C̃hγ |u|1+γ,Ω.

Next, we have

‖uh − πhu‖0,Ω2
≤ ‖u − uh‖0,Ω2

+ ‖u − πhu‖0,Ω ≤ 2.8 ≤ ‖u − uh‖0,Ω2
+ Ch1+γ |u|1+γ,Ω.

Combining Lemma 2.6 with (2.7) and (2.8), we obtain Lemma 2.7.

Proposition 2.8. Let Ω0 ⊂⊂ Ω1 ⊂ Ω be d-dimensional subdomains, q ∈ (d/2,∞),

q ≥ 1 and let F be a strongly regular family of decompositions of Ω. Then there exists

a constant C > 0 such that

‖ grad v − Ghv‖0,q,Ω0
≤ Ch2|v|3,q,Ω1

holds for any v ∈ W 3
q (Ω1) and sufficiently small h.

The proof is a slight modification of that of Theorem 3.8 in [6], where the norms

and seminorms over the domain Ω are replaced by those over subdomains Ω0 and Ω1,

respectively.

Lemma 2.9. Let F be a strongly regular family of decompositions of Ω ⊂ Rd and

let Ω0 ⊂⊂ Ω1 ⊂ Ω. Then there exists a constant C such that

‖Ghvh‖0,Ω0
≤ C‖ grad vh‖0,Ω1

∀vh ∈ Vh

holds for sufficiently small h.

The proof is a slight modification of that of Lemma 5.1 in [6].

Lemma 2.10. Let d = 2, q ∈ (2,∞) and let the family F satisfy (A1) in Ω∗. Let

Ω0 ⊂⊂ Ω1 ⊂⊂ Ω∗ ⊂ Ω and v ∈ W 3
q (Ω1). Then

‖Ghv − Ghπhv‖0,q,Ω0
≤ Ch2‖v‖3,q,Ω1

holds for sufficiently small h.

The proof is based on the same argument as that of Proposition 2.8 and on Lemma

5.2 from [6].

Theorem 2.11. Let d = 2, q ∈ (2,∞) and let the family F satisfy (A1) in Ω∗. Let

Ω0 ⊂⊂ Ω1 ⊂⊂ Ω2 ⊂⊂ Ω∗ ⊂ Ω, u|Ω1
∈ W 3

q (Ω1), u|Ω2
∈ W 3

2 (Ω2) and let the Dirichlet

problem (1.1) be γ-regular. Then

‖ grad u − Ghuh‖0,Ω0
≤ C(Ω1)h

2γ(‖u‖3,q,Ω1
+ ‖u‖3,Ω2

+ |u|1+γ,Ω)

holds for sufficiently small h.
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Proof. We have

‖ grad u−Ghuh‖0,Ω0
≤ ‖ grad u−Ghu‖0,Ω0

+‖Ghu−Ghπhu‖0,Ω0
+2.9+‖Gh(πhu−uh)‖0,Ω0

≡ J1+J2+J3.

Proposition 2.8 yields that

J1 ≤ C1h
2|u|3,q,Ω1

.2.10

From Lemma 2.10 we obtain that

J2 ≤ C2h
2‖u‖3,q,Ω1

.2.11

Since the family F of triangulations is strongly regular (see [6, (5.13)]), we may apply

Lemma 2.9 to estimate J3 so that

J3 ≤ C3|uh − πhu|1,Ω1
.2.12

Using Lemmas 2.7 and 2.4, we may write

|uh−πhu|1,Ω1
≤ C(Ω1)(h

2‖u‖3,Ω2
+h1+γ |u|1+γ,Ω+‖u−uh‖0,Ω2

)2.13 ≤ C4(Ω1)(h
2‖u‖3,Ω2

+h1+γ |u|1+γ,Ω+h2γ |u|1+γ,Ω)

Inserting the estimates (2.10)-(2.13) into (2.9), we obtain the estimate as required.

Theorem 2.12. Let Ω0 ⊂⊂ Ω1 ⊂ Ω be d-dimensional domains, q ∈ (d
2 ,∞), q ≥ 1

and let F be strongly regular family of decompositions of Ω. Then

‖ grad v − Ghv‖1,q,Ω0
≤ Ch|v|3,q,Ω1

holds for sufficiently small h.

Proof. Recall that

‖w − πhw‖1,q,K ≤ ChK |w|2,q,K ∀K ∈ Th ∀w ∈ W 2
q (K).

From here we deduce that

‖ grad v − Lhv‖1,q,Ω0
≤ Ch|v|3,q,Ω1

, 2.14

where (Lhv)i = πh(∂iv), i = 1, ..., d. Using the standard inverse inequality (see [1,

Theorem 17.2]) and [6, (3.26)], we obtain for h sufficiently small

‖Lhv − Ghv‖1,q,Ω0
≤ Ch|v|3,q,Ω1

.2.15

The theorem then follows from the triangle inequality, (2.14) and (2.15).

3. Optimal Interior Error Estimates in a Discrete L
2-Norm

In the present section we consider two-dimensional problems (d = 2) only. Let us

define a discrete Lq-norm of vectors F (Z) defined at nodes Z. For

F = {F (Z)}Z∈Nh∩Ω0
, Ω0 ⊂ Ω, q ≥ 1,
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we set

|||F |||q,Ω0
= h2/q

(

∑

Z∈Nh∩Ω0

‖F (Z)‖q
)1/q

.

One can easily verify the triangle inequality

|||F + G|||q,Ω0
≤ |||F |||q,Ω0

+ |||G|||q,Ω0
,

using the Minkowski inequality.

Remark 3.1. From the Hölder inequality, we obtain that

|||F |||2,Ω0
≤ C(Ω0)|||F |||q,Ω0

, ∀q > 2,

if the family F is strongly regular.

Lemma 3.2. Let q ∈ (2,∞), Ω0 ⊂⊂ Ω1 ⊂⊂ Ω∗ ⊂ Ω, v ∈ W 3
q (Ω1) and let the

family F satisfy (A1) in Ω∗. Then

||| grad v − Gh(πhv)|||q,Ω0
≤ Ch2‖v‖3,q,Ω1

3.1

holds for sufficiently small h.

Proof. Let us consider an arbitrary Z ∈ Nh ∩ Ω0. By [6, Lemmas 3.6 and 5.2] we

have

‖( grad v−Gh(πhv))(Z)‖ ≤ ‖( grad v−Ghv)(Z)‖+‖Gh(v−πhv)(Z)‖ ≤ Ch2−2/q‖v‖3,q,U(Z).

Then for sufficiently small h we may write

||| grad v−Gh(πhv)|||qq,Ω0
= h2

∑

Z∈Nh∩Ω0

‖( grad v−Gh(πhv))(Z)‖q ≤ ≤ Ch2h2q−2
∑

Z∈Nh∩Ω0

‖v‖q
3,q,U(Z) ≤ 3Ch2q‖v‖q

3,q,

and the estimate (3.1) follows.

Lemma 3.3. Assume that the family F satisfies (A1) in Ω∗, aij ∈ W 1
∞(Ω), u ∈

W 3
2 (Ω2) and that the Dirichlet problem (1.1) is γ-regular. Let Ω0 ⊂⊂ Ω2 ⊂⊂ Ω∗ ⊂ Ω

and q ∈ (2,∞). Then

|||Gh(uh − πhu)|||2,Ω0
≤ C(Ω1)h

2γ(‖u‖3,Ω2
+ |u|1+γ,Ω)3.2

holds for sufficiently small h.

Proof. In the proof of Lemma 5.1 of [6] (see (5.9) there), we established the following

estimate

|(Ghvh(Z))i| ≤ |vh|1,∞,δi(Z), ∀vh ∈ Vh, ∀Z ∈ Nh ∩ Ω,

where δi(Z) = {K ∈ Th | meas1((ZAi ∪ZBi) ∩K) > 0}. Since the family of triangula-

tions is strongly regular,

|vh|1,∞,K ≤ Ch−1|vh|1,K ∀K ∈ Th.
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If E(Z, i) denotes that triangle, where the seminorm attains its maximum over δi(Z),

we may write

|(Ghvh(Z))i| ≤ Ch−1|vh|1,E(Z,i).

There exists a subdomain Ω1 such that Ω0 ⊂⊂ Ω1 ⊂⊂ Ω2. Then we have

|||Ghvh|||
2
2,Ω0

= h2
∑

Z∈Nh∩Ω0

2
∑

i=1

|(Ghvh(Z))i|
2 ≤ C

∑

Z,i

|vh|
2
1,E(Z,i) ≤ 6C|vh|

2
1,Ω1

, 3.3

for sufficiently small h. Substituting vh = uh − πhu, we obtain

|||Gh(uh − πhu)|||2,Ω0
≤ C|uh − πhu|1,Ω1

.

By Lemmas 2.7 and 2.4, we have

|uh−πhu|1,Ω1
≤ C(Ω1)(h

2‖u‖3,Ω2
+h1+γ |u|1+γ,Ω+h2γ |u|1+γ,Ω) ≤ ≤ C(Ω1)h

2γ(‖u‖3,Ω2
+|u|1+γ,Ω).

Consequently,

|||Gh(uh − πhu)|||2,Ω0
≤ C(Ω1)h

2γ(‖u‖3,Ω2
+ |u|1+γ,Ω).

Theorem 3.4. Let the assumptions of Theorem 2.11 be fulfilled. Then

||| grad u − Ghuh|||2,Ω0
≤ C(Ω0,Ω1)h

2γ(‖u‖3,q,Ω1
+ ‖u‖3,Ω2

+ |u|1+γ,Ω)

holds for sufficiently small h.

Proof. Since the family F is strongly regular, we can use Remark 3.1 and Lemma

3.2 to get the estimate

||| grad u − Gh(πhu)|||2,Ω0
≤ C(Ω0)h

2‖u‖3,q,Ω1
.

Then using the triangle inequality and Lemma 3.3, we arrive at the result, as required.

4. Effect of Numerical Integration

The Galerkin approximation uh has been defined under the assumption that all

integrations in the inner products are performed exactly. In practice they will in fact

be performed numerically using quadrature formulae.

We present here an example of numerical integration and derive its effect to error

estimates of the averaged gradient.

Lemma 4.1. Let d = 2, A = (aij), aij ∈ W 2
∞(Ω), f ∈ W 2

2 (Ω) and define

ah(w, v) =
2

∑

i,j=1

∫

Ω
(πhaij)

∂w

∂xi

∂v

∂xj
dx.4.1
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Let u∗
h ∈ V 0

h satisfy

ah(u∗
h, vh) = (πhf, vh)0,Ω ∀vh ∈ V 0

h .4.2

Then

|uh − u∗
h|1,Ω ≤ Ch2(|f |2,Ω + |A|2,∞,Ω‖u‖1,Ω).4.3

For the proof see [13, Corollary of Lemma 3.7].

Theorem 4.2. Let the assumptions of Theorem 2.11 be fulfilled. Moreover, let

aij ∈ W 2
∞(Ω), f ∈ W 2

2 (Ω) and define u∗
h by means of (4.1) and (4.2). Then

‖ grad u−Ghu∗
h‖0,Ω0

≤ C(Ω0,Ω1)h
2γ(|f |2,Ω+|A|2,∞,Ω‖u‖1,Ω+4.4+‖u‖3,q,Ω1

+‖u‖3,Ω2
+|u|1+γ,Ω)

holds for sufficiently small h.

Proof. By the triangle inequality

‖ grad u − Ghu∗
h‖0,Ω0

≤ ‖ grad u − Ghuh‖0,Ω0
+ ‖Ghuh − Ghu∗

h‖0,Ω0
≡ I1 + I2.

For the first term we use the estimate of Theorem 2.11. The second term can be

estimated on the basis of Lemma 2.9 and Lemma 4.1 as follows

‖Gh(uh − u∗
h)‖0,Ω0

≤ C|uh − u∗
h|1,Ω1

≤ Ch2(|f |2,Ω + |A|2,∞,Ω‖u‖1,Ω).

Combining these two estimates, we arrive at (4.4), as required.

Theorem 4.3. Let the assumptions of Theorem 4.2 be satisfied. Then

||| grad u−Ghu∗
h|||2,Ω0

≤ C(Ω0,Ω1)h
2γ(|f |2,Ω+|A|2,∞,Ω‖u‖1,Ω+‖u‖3,q,Ω1

+‖u‖3,Ω2
+|u|1+γ,Ω)

holds for sufficiently small h.

Proof. We have

||| grad u − Ghu∗
h|||2,Ω0

≤ ||| grad u − Ghuh|||2,Ω0
+ |||Gh(u − u∗

h)|||2,Ω0
.

Using (3.3), we may write

|||Gh(uh − u∗
h)|||2,Ω0

≤ C|uh − u∗
h|1,Ω

and the rest of the proof is the same as previously, i.e., it follows from Lemma 4.1 and

Theorem 3.4.

5. Local Error Estimates up to the Boundary

We shall study the local behaviour of the error grad u − Ghuh in subdomains Ω0

adjacent to the boundary ∂Ω, assuming that the solution u belongs to W 3
q (Ω1) for
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a subdomain Ω1 containing Ω0. Such a case may occur, if the part ∂Ω1 ∩ ∂Ω, the

coefficients aij and the right-hand side f are smooth enough (see Remark 5.4 below).

Definition 5.1. Let d ≥ 2. For integer j and k we write Ωj < Ωk, if there exist

two open domains Gj and Gk which are not contained in Ω (see Figure 1), Gj ⊂⊂ Gk,

Ωj = Gj ∩ Ω and Ωk = Gk ∩ Ω.

Figure 1

Lemma 5.2. Assume that d = 2 and Ω1 < Ω2 ⊂ Ω∗. Let the family F satisfy (A1)

in Ω∗ and

∂Ω2∩∂Ω corresponds to a part of a coordinate line X = const orY = const in the reference uniform triangulations

Moreover, let aij ∈ W 1
∞, i, j = 1, 2, and the solution u ∈ W 3

2 (Ω2). Then there exists a

constant C(Ω1) > 0 such that

|uh − πhu|21,Ω1
≤ C(Ω1)(h

4‖u‖2
3,Ω2

+ h2|uh − πhu|21,Ω2
+ ‖uh − πhu‖2

0,Ω2
)

holds for sufficiently small h.

The proof is essentially the same as that of [13, Lemmas 3.5 and 3.6] in combination

with the proof of [9, Lemma 5.3].

Remark 5.3. The assumption (A2) can be weakened by assuming that ∂Ω2 ∩ ∂Ω

may correspond to a part of the “diagonal” straight line X±Y = const in the reference

square grid of (A1).

Remark 5.4. Some sufficient conditions for the local regularity of the solution in a

neighbourhood of the boundary (i.e., for u ∈ W 3
2 (Ωk) ) are given in [11, p. 221]. They

include, for instance, f ∈ W 1
2 (Ωk), aij ∈ C(1),1(Ωk), ∂Ω ∩ Gk is described by a function

from C(4),1.

Lemma 5.5. Let the assumptions of Lemma 5.2 be satisfied and let u ∈ W 1+γ
2 (Ω)

for some γ ∈ (0, 1]. Then

|uh − πhu|21,Ω1
≤ C(Ω1)(h

4‖u‖2
3,Ω2

+ h2+2γ |u|21+γ,Ω + ‖u − uh‖
2
0,Ω2

).
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The proof is the same as that of Lemma 2.7.

Proposition 5.6. Let Ω0 < Ω1, d ≥ 2, q ∈ (d
2 ,∞), v ∈ W 3

q (Ω1) and let F be a

strongly regular family of triangulations. Then

‖ grad v − Ghv‖0,q,Ω0
≤ Ch2|v|3,q,Ω1

holds for h small enough.

The proof is a slight modification of that of [6, Theorem 3.8], where the norms and

seminorms over Ω are replaced by those over subdomains Ω0 and Ω1, respectively.

Lemma 5.7. Let Ω0 < Ω1, d ≥ 2 and let F be a strongly regular family of

triangulations. Then

‖Ghvh‖0,Ω0
≤ C‖ grad vh‖0,Ω1

∀vh ∈ Vh

holds for h small enough.

The proof is a slight modification of that of [6, Lemma 5.1].

Lemma 5.8. Assume that Ω0 < Ω1 < Ω∗, d = 2, q ∈ (2,∞), v ∈ W 3
q (Ω1) and let

the family F satisfy (A1) in Ω∗ and (A2). Moreover, let

for Z ∈ Nh∩∂Ω the points Bi be chosen on the boundary∂KC of the triangle KC (of Figure 2), such that 5.1{K ∈

Then

‖Ghv − Ghπhv‖0,Ω0
≤ Ch3/2‖v‖3,q,Ω1

holds for h small enough.

Figure 2
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Proof. For any Z ∈ Nh ∩ ∂Ω ∩ ∂Ω1 and any i = 1, 2 one can prove the following

estimate

|(Gh(v−πhv))i(Z)| = |αi(v(Ai)−πhv(Ai))+βi(v(Bi)−πhv(Bi))| ≤ Ch(|v|2,∞,U+|v|3,q,U), 5.2

where U = Ui(Z) denotes the union of the triangles K ∈ Th for which int(ZBi)∩K 6= ∅

(the proof can be found in [5], for an analogous proof see [6, Lemma 5.2]).

Let us define the following (closed) strips

Ωb =
⋃

K∩∂Ω∩∂Ω0 6=∅

K, Ωc =
⋃

K∩Ωb 6=∅

K.

Then we obviously have

meas Ωb ≤ C(Ω0)h.

From (5.2) and [6, Lemma 5.2] we deduce

‖(Gh(v−πhv))i‖0,∞,Ωb
≤ max

Z∈Nh∩Ωb

|(Gh(v−πh))i(Z)| = = |(Gh(v−πhv))i(Z
∗)| ≤ Ch(|v|2,∞,Ωc

+‖v‖3,q,Ωc
),

where Z∗ is the node at which the minimum is attained. Consequently,

‖(Gh(v−πh))i‖
2
0,Ωb

≤ meas Ωb‖(Gh(v−πhv))i‖
2
0,∞,Ωb

5.3 ≤ C(Ω0)h
3(|v|2,∞,Ωc

+‖v‖3,q,Ωc
)2.

Arguing as in the proof of Lemma 2.10, we obtain

‖(Gh(v − πhv))i‖
2
0,Ω0\Ωb

≤ Ch4‖v‖2
3,q,Ω1

5.4

for h small enough. Thus we arrive at the estimate

‖(Gh(v − πhv)i‖
2
0,Ω0

≤ C̃h3(|v|22,∞,Ωc
+ ‖v‖2

3,q,Ω1
) ≤ Ch3‖v‖2

3,q,Ω1
,

using also the continuous embedding W 3
q (Ω1) →֒ W 2

∞(Ω1).

Theorem 5.9. Assume that d = 2, Ω0 < Ω1 < Ω2 < Ω∗, q ∈ (2,∞), the family

F of triangulations satisfies (A1) in Ω∗ and (A2), the solution u|Ω1
∈ W 3

q (Ω1), u|Ω2
∈

W 3
2 (Ω2), the Dirichlet problem (1.1) is γ-regular and that (5.1) holds. Then

‖ grad u − Ghuh‖0,Ω0
≤ C(Ω1)h

β(‖u‖3,q,Ω1
+ ‖u‖3,Ω2

+ |u|1+γ,Ω)

where β = min{2γ, 3
2}, holds for sufficiently small h.

The proof is the same as that of Theorem 2.11, with the only exception: instead of

(2.11) we use the estimate

‖Ghu − Ghπhu‖0,Ω0
≤ Ch3/2‖u‖3,q,Ω1

,
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based on Lemma 5.8. We employ the triangle inequality, Proposition 5.6, Lemmas 5.8,

5.7, 5.5 and 2.4.

Theorem 5.10. Let the assumptions of Theorem 5.9 be fulfilled. Moreover, let

aij ∈ W 2
∞(Ω), f ∈ W 2

2 (Ω) and let u∗
h be defined by means of (4.1) and (4.2). Then

‖ grad u−Ghu∗
h‖0,Ω0

≤ C(Ω0,Ω1)h
β(‖u‖3,q,Ω1

+‖u‖3,Ω2
+|u|1+γ,Ω++|f |2,Ω+|A|2,∞,Ω‖u‖1,Ω)

holds for h small enough.

The proof follows from the triangle inequality, Theorem 5.9, Lemma 5.7 and Lemma

4.1.

6. Local Error Estimates up to the Boundary in Some Particular

Cases

We easily realize that the loss of accuracy (if γ > 3/4) in the previous section is

caused by the estimate (5.2) for the boundary nodes Z ∈ Nh∩∂Ω. There are situations,

however, when the loss of accuracy can be removed, at least for some component of the

recovered gradient. We present one such a favourable case in what follows.

Lemma 6.1. Let d ≥ 2, q ∈ (d
2 ,∞), Ω0 < Ω1, v ∈ W 3

q (Ω1), let F be regular

and let the points Ai, Bi coincide for some i ∈ {1, ..., d} with the nodes of Th for all

Z ∈ Nh ∩ Ω0h, where

Ω0h =
⋃

K ∈ ThK ∩ Ω0 6= ∅K.

Then for all Z ∈ Nh ∩ Ω0h and h sufficiently small, we have

|∂iv(Z) − (Ghπhv(Z))i| ≤ C(h(Z))2−d/q|v|3,q,δi(Z),

where

h(Z) = max
Z∩K 6=∅,K∈Th

hK .

Proof. We slightly modify the proof of [6, Lemma 3.6]. Namely, in (3.13) and (3.14)

of [6] we replace p(Z), p(Ai), p(Bi) by πhp(Z), πhp(Ai), πhp(Bi), so that

(Ghπhp(Z))i = ∂ip(Z) ∀p ∈ P2.

In the rest of the proof we replace (Ghv(Z))i by (Ghπhv(Z))i and realize that

δi(Z) =
⋃

{K ∈ Th | meas1((ZAi ∪ ZBi) ∩ K) > 0} ⊂ Ω1

for all Z ∈ Ω0h, if h is small enough.
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Lemma 6.2. Let d = 2, q ∈ (2,∞), Ω0 < Ω1 < Ω∗, v ∈ W 3
q (Ω1), let F satisfy

(A1) in Ω∗, (A2) and let the points Ai, Bi coincide for some i ∈ {1, 2} with the nodes

of Th for all Z ∈ Nh ∩ ∂Ω0h ∩ ∂Ω. Then

|∂iv(Z) − (Ghπhv(Z)))i| ≤ C(h(Z))2−2/q‖v‖3,q,δi(Z)

holds for Z ∈ Nh ∩ Ω0h.

Proof. If Z ∈ Nh ∩ ∂Ω0h ∩ ∂Ω, we use the same argument as that in the proof of

Lemma 6.1.

If Z ∈ Nh ∩ (Ω0h \ (∂Ω0h ∩ ∂Ω)), we may use [6, Lemmas 3.6 and 5.2] to obtain

|∂iv(Z)−(Ghπhv(Z))i| ≤ |∂iv(Z)−(Ghv(Z))i|+|(Ghv(Z)−Ghπhv(Z))i| ≤ ≤ C(h(Z))2−2/q(|v|3,q,δi(Z)+‖v‖3,q,δi(Z)).

Proposition 6.3. (i) Let the assumptions of Lemma 6.1 be fulfilled and let F be

strongly regular. Then for sufficiently small h

‖∂iv − (Ghπhv)i‖0,q,Ω0
≤ Ch2|v|3,q,Ω1

.

(ii) If the assumptions of Lemma 6.2 are satisfied then

‖∂iv − (Ghπhv)i‖0,q,Ω0
≤ Ch2‖v‖3,q,Ω1

holds for h small enough.

The proof is parallel to that of [6, Theorem 3.8]. Instead of Lemma 3.6 there we

use Lemma 6.1 or Lemma 6.2 and replace grad by ∂i and (Ghv)i by (Ghπhv)i.

Theorem 6.4. Assume that d = 2, q ∈ (2,∞), Ω0 < Ω1 < Ω2 < Ω∗, the family

F satisfies (A1) in Ω∗, (A2) and Ai, Bi concide for some i ∈ {1, 2} with the nodes of

Th for all Z ∈ Nh ∩ ∂Ω1 ∩ ∂Ω, the solution u|Ω1
∈ W 3

q (Ω1), u|Ω2
∈ W 3

2 (Ω2) and the

Dirichlet problem (1.1) is γ-regular. Then

‖∂iu − (Ghuh)i‖0,Ω0
≤ C(Ω0,Ω1)h

2γ(‖u‖3,Ω2
+ ‖u‖3,q,Ω1

+ ‖f‖0,Ω)

holds for h sufficiently small.

Proof. We have

‖∂iu − (Ghuh)i‖0,Ω0
≤ ‖∂iu − (Ghπhu)i‖0,Ω0

+ ‖(Ghπhu − Ghuh)i‖0,Ω0
≡ I1 + I2.6.1

Proposition 6.3 (ii) yields that

I1 ≤ Ch2‖v‖3,q,Ω1
.6.2

Since F is strongly regular, we deduce from Lemma 5.7 that

I2 ≤ C|uh − πhu|1,Ω1
6.3
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if h is small. Making use of Lemma 5.5 and Lemma 2.4, we may write

|uh−πhu|1,Ω1
≤ C̃(Ω1)(h

2‖u‖3,Ω2
+h1+γ |u|1+γ,Ω+‖u−uh‖0,Ω2

) ≤ 6.4 ≤ C(Ω1)h
2γ(‖u‖3,Ω2

+|u|1+γ,Ω).

Combining (6.1)-(6.4), we arrive the required estimate.

7. Local Error Estimates up to the Boundary in a Discrete L
2-Norm

We shall consider domains Ω0 < Ω1 and the set

Ω∗
0 = Ω0 ∪ (∂Ω0 ∩ ∂Ω).

For F = {F (Z)}Z∈Nh∩Ω∗

0
define the discrete norm (cf. Section 3)

|||F |||q,Ω∗

0
= h2/q

(

∑

Z∈Nh∩Ω∗

0

‖F (Z)‖q
)1/q

, q ≥ 1.

Any such vector can be decomposed as follows

F = F b + F int, 7.1

where

F b(Z) = { 0 for Z ∈ Ω0 F (Z)for Z ∈ ∂Ω0 ∩ ∂Ω , F int(Z) = {F (Z)for Z ∈ Ω0 0for Z ∈ ∂Ω0 ∩ ∂Ω .

Lemma 7.1. Let d = 2, Ω0 < Ω1 ⊂ Ω∗, q ∈ (2,∞), v ∈ W 3
q (Ω1), let the family F

satisfy (A1) in Ω∗, (A2) and let (5.1) hold. Then

||| grad v − Ghπhv|||2,Ω∗

0
≤ C(Ω0)h

3/2‖v‖3,q,Ω1

holds for sufficiently small h.

Proof. If Z ∈ Nh ∩ ∂Ω0 ∩ ∂Ω, we make use of [6, Lemma 3.6] and (5.2) to obtain

‖ grad v(Z)−Ghπhv(Z)‖ ≤ ‖ grad v(Z)−Ghv(Z)‖+‖Ghv(Z)−Ghπhv(Z)‖ ≤ ≤ C̃h(|v|2,∞,U(Z)+‖v‖3,q,U(Z)) ≤ C̃h(

Then

|||( grad v−Ghπhv)b|||2,Ω∗

0
≤ Ch

(

∑

Z∈Nh∩∂Ω∩∂Ω0

h2‖v‖2
3,q,Ω1

)1/2
≤ 7.2 ≤ Ch(Ch−1)1/2h‖v‖3,q,Ω1

= C ′h3/2‖v‖3,q,Ω1
,

since the number of nodes in ∂Ω0 ∩ ∂Ω is bounded by Ch−1.

If Z ∈ Nh ∩ Ω0, we argue as in the proof of Lemma 3.2 using [6, Lemmas 3.6 and

5.2], to get

|||( grad v − Ghπhv)int|||2,Ω∗

0
≤ Ch2‖v‖3,q,Ω1

.7.3
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By (7.1), the triangle inequality, (7.2) and (7.3), we deduce the estimate, as required.

Lemma 7.2. Assume that d = 2, Ω0 < Ω2 < Ω∗, q ∈ (2,∞), u ∈ W 3
2 (Ω2),

aij ∈ W 1
∞(Ω2), the Dirichlet problem (1.1) is regular and the family F satisfies (A1) in

Ω∗ and (A2). Then

|||Gh(uh − πhu)|||2,Ω∗

0
≤ Ch2γ(‖u‖3,Ω2

+ |u|1+γ,Ω)

holds for sufficiently small h.

Proof. Arguing as in the proof of Lemma 3.3 (cf. (3.3)), we derive the estimate

|||Ghvh|||2,Ω∗

0
≤ C|vh|1,Ω1

for sufficiently small h, where Ω1 is any subdomain such that Ω0 < Ω1 < Ω2.

Substituting vh = uh − πhu and using Lemmas 5.5 and 2.4, we obtain

|||Ghvh|||2,Ω∗

0
≤ C|uh−πhu|1,Ω1

≤ C(h2‖u‖3,Ω2
+h2γ |u|1+γ,Ω) ≤ ≤ Ch2γ(‖u‖3,Ω2

+|u|1+γ,Ω).

Theorem 7.3. Assume that d = 2, Ω0 < Ω1 < Ω2 < Ω∗, q ∈ (2,∞), the solution

u|Ω2
∈ W 3

2 (Ω2), u|Ω1
∈ W 3

q (Ω1), aij ∈ W 1
∞(Ω), the family F satisfies (A1) in Ω∗, (A2)

and the Dirichlet problem (1.1) is γ-regular. Moreover, let (5.1) be fulfilled. Then

||| grad u − Ghuh|||2,Ω∗

0
≤ Chβ(‖u‖3,Ω2

+ ‖u‖3,q,Ω1
+ |u|1+γ,Ω)

holds for sufficiently small h, where β = min{3
2 , 2γ}.

The proof follows immediately from the triangle inequality, Lemmas 7.1 and 7.2.

Finally let us consider some particular cases, enabling us to remove the loss of

accuracy, as in Section 6.

Lemma 7.4. (i) If d = 2 and the assumptions of Lemma 6.1 are satisfied then for

sufficiently small h

|||∂iv − (Ghπhv)i|||q,Ω∗

0
≤ Ch2|v|3,q,Ω1

.

(ii) If the assumptions of Lemma 6.2 are satisfied then for sufficiently small h

|||∂iv − (Ghπhv)i|||q,Ω∗

0
≤ Ch2‖v‖3,q,Ω1

.

The proof follows from Lemmas 6.1 and 6.2, respectively.

Theorem 7.5. Let the assumptions of Theorem 6.4 be fulfilled. Then

|||∂iu − (Ghuh)i|||2,Ω∗

0
≤ Ch2γ(‖u‖3,Ω2

+ ‖u‖3,q,Ω1
+ |u|1+γ,Ω)

holds for sufficiently small h.

The proof follows from the triangle inequality, Lemma 7.4 (ii) and Lemma 7.2.
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