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Abstract

The multigrid algorithm in [13] is developed for solving nonlinear parabolic

equations arising from the finite element discretization. The computational cost

of the algorithm is approximate O(NkN) where Nk is the dimension of the finite

element space and N is the number of time steps.

1. Introduction

The finite element methods for solving nonlinear parabolic problems are studied by

many authors, such as Douglas and Dupont[5], Wheeler[4], Luskin[3], etc. They proposed

various ways of computing the problems and proved the optimal order convergence rates

of the methods, such as the linearized methods, the predictor-corrector methods, the

extrapolation methods, the alternating direction methods and the iterative methods[2],

etc. The multigrid methods for solving parabolic problems are studied by some authors,

such as Hachbusch[14,15], Bank and Dupont[12], Brandt and Greenwald[16] as well as

Yu[13]. But these methods are given mainly for linear parabolic equations. For nonlinear

parabolic problems Hachbusch and Brandt in [14], [15], [16] gave the multigrid methods

by using the integral differential equation and the frozen-τ technique.

In this paper we present a multigrid procedure for two-dimension nonlinear parabolic

problems. The method is an extension of our earlier algorithm in [13] for linear parabolic

problems. The iterative methods for solving the system of nonlinear algebraic equations

are avoided because the unknown function Un+θ
k in the nonlinear coefficient a(x,Un+θ

k )

and the right term f(x, t, Un+θ
k ) in the system of nonlinear algebraic equations is re-

placed by IkU
n+θ
k−1 in the multigrid procedure, where Ik denotes an intergrid transfer

operator, θ a weighted function and Un+θ
k−1 the solutions of the equation in the (k-1)th

level. We analyze the convergence of our algorithm and the computational cost of N
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time steps. The asymptotically computational cost is O(NNk) where Nk is the dimen-

sion of the discrete finite element space and N is the number of time steps. In addition,

the methods can be applied to more general nonlinear parabolic problems.

The paper is organized as follows. In Section 2, we give the basic assumptions and

properties by using of the finite element discretizing a nonlinear parabolic equation.

In Section 3 we extend the time-dependent fully multigrid algorithm in [13] to the

nonlinear parabolic equation. In Section 4 we analyze the convergence of the algorithm

and in Section 5 we consider the computational cost and the development.

2. Notations and Preliminaries

We consider nonlinear parabolic initial value problems as follows:

{ ∂u∂t = ∇(a(x, u)∇u)+f(x, t, u), (x, t) ∈ Ω × [0, T ], u(x, t) = 0, (x, t) ∈ ∂Ω × [0, T ], u(x, 0) = u0(x), x ∈ Ω, 2.1

where Ω ⊂ R2 is a convex polygonal domain, ∇ is a gradient operator on x = (x1, x2)

directions. Assume that the nonlinear coefficient a(x, p) satisfies the condition: there

are constants K0, K1 > 0 such that

0 < K0 ≤ a(x, u) ≤ K1, ∀(x, p) ∈ Ω̄ ×R1.2.2

a(x, p) and f(x, t, p) hold uniformly Lipschitz condition with respect to p, i.e., there is

a constant L > 0 such that

|a(x, p1)−a(x, p2)| ≤ L|p1−p2|, ∀(x, p) ∈ Ω̄×R1, |f(x, t, p1)−f(x, t, p2)| ≤ L|p1−p2|, ∀(x, t, p) ∈ Ω̄×[0, T ]×R1.2.3

Further assume that for any t ∈ [0, T ], f(x, t, 0) ∈ L2(Ω). Thus by (2.3), we have

|f(x, t, v(x, t))| ≤ |f(x, t, 0)| + L|v(x, t)| ∈ L2(Ω), ∀v(x, t) ∈ L2(Ω).

The variational form of problem (2.1) is : Find a continuously differentiable mapping

u(t) = u(x, t) : [0, T ] → H1
0 (Ω) such that

{ ( ∂u∂t, v) + a(u;u, v) = (f(u), v), (u(x, 0), v) = (u0(x), v), ∀v ∈ H1
0 (Ω).2.4

where a(u;u, v) =
∫

Ω a(x, u)∇u∇vdx, (f(u), v) =
∫

Ω f(x, t, u)vdx.

Under the assumptions (2.3) and (2.4), a solution of the variational problem (2.4)

such that ‖∇u‖L∞(L∞) < +∞, if it exists, must be unique where ‖∇u‖L∞(L∞) is defined

by

‖∇u‖L∞(L∞) = ‖‖∇u‖L∞(Ω)‖L∞[0,T ].

In the following we assume that a solution of the problem (2.4) exists and is unique.

And the solution is smooth enough for the finite element analysis.

Let Γ be a mesh partition of the domain Ω (the triangulation or quadrilateral

partition) which satisfies the partition quasi-uniformity conditions [17]. Since Ω is a
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convex polygonal domain, we can make the partition satisfy that Ω = ∪τ∈Γτ . Let M ⊂

H1
0 (Ω) be the finite element space of the piecewise linear interpolation or the quadratic

interpolation corresponding to the mesh partition. Then the inverse inequality in M

holds, i.e., there exists a constant c0 > 0 such that

‖ϕ‖H1
0
≤ c0h

−1‖ϕ‖L2 ,∀ϕ ∈ M, 2.5

where h denotes the maximum value in the element edge sizes of the mesh partition Γ

of the domain Ω.

Let Π be an interpolation operator from H1
0 ∩H

2(Ω) onto M. Then Π satisfies the

approximation property: for ∀u ∈ H2(Ω),

‖u− Πu‖L2 + h‖u− Πu‖H1 ≤ ch2‖u‖H2 , 2.6

where Hp(Ω) denotes the Sobolev space of p order whose norm is defined by ‖ϕ‖Hp .

p = 0, Hp = L2(Ω).

Let △t > 0 be a time step size, tn = n△t, J̄ = {0, 1, 2, · · ·N}, N = [ T
△t ]. Assume

that the solution u of (2.4) be smooth enough with respect to t so that the differential

quotient ∂u
∂t may be replaced by the difference quotient. Set tn+θ = 1

2 (1+θ)tn+1+ 1
2(1−

θ)tn, U
n = U(x, tn), U

n+θ = 1
2(1 + θ)Un+1 + 1

2(1 − θ)Un, f(Un+θ) = f(x, tn+θ, U
n+θ),

θ ∈ [0, 1]. Then we have the finite element method for solving the variational problem

(2.4): Find {U j}Nj=1 : J̄ → Mk such that

{ (Un+1 − Un△t, v)+a(Un+θ;Un+θ, v) = (f(Un+θ), v), ∀v ∈ Mk, (u(x, 0), v) = (u0(x), v).2.7

(2.7) is the Crank-Nicolson scheme when θ = 0. (2.7) is the fully implicit scheme when

θ = 1. Obviously, (2.7) for any θ ∈ [0, 1] is a system of nonlinear algebraic equations at

each time step tj = j△t. By using of the Brower’s fixed point theorem, we can prove

that a solution of (2.7) exists. By using of the prior error estimate of the approximate

solution, we can prove that the solution of (2.7) is unique[15].

3. Time-Dependent Fully Multigrid Method

We now give the mesh partitions of the domain Ω (the triangulation or quadrilateral

partition) level after level. Let Γ1 be an initial mesh partition of the domain Ω which

satisfies the quasi-uniformity conditions and Ω = ∪τ∈Γ1τ . And Γk (k ≥ 1) is a partition

obtained by connecting the midpoints of edges of elements in Γk−1. Then Γk satisfies

the quasi-uniformity condition, Ω = ∪τ∈Γk
τ and hk = 1

2hk−1 where hk = maxτ∈Γk
hτ .

Let Mk(k ≥ 1) be a finite element space of the piecewise linear interpolation or

the quadratic interpolation associated with the partitions Γk (k ≥ 1). Then Mk−1 ⊂

Mk ⊂ H1
0 (Ω).

Let Ik be an intergrid transfer operator, Ik : Mk−1 → Mk. Ik is defined as the

piecewise linear interpolation or the average of values of the neighboring nodal points.



366 X.J. YU

Since Mk−1 ⊂ Mk, Ik is a natural inclusion operator, i.e., Ikv = v for ∀v ∈ Mk−1.

Let Itk be the conjugate operator of Ik or the restriction operator, Itk : Mk → Mk−1,

which satisfies

(Itkuk, vk−1) = (uk, Ikvk−1), ∀uk ∈ Mk, vk−1 ∈ Mk−1.3.1

By the nested property of the finite element space, there exists a matrix Bk = [bij ]Nk−1×Nk

represented by the basis functions of the space Mk−1 under the basis function of the

space Mk such that Ik = BT
k , Itk = B

[13]
k .

The intergrid transfer operator in the above definition has the properties as follows:

i) |Ikv‖L2 = ‖v‖L2 ,∀v ∈ Mk−1, ii) |∇(Ikv)‖L2 ≤ ‖∇v‖L2 , ∀v ∈ Mk−1, 3.2

where (3.2) holds by the definition of Ik.

The multigrid method for solving the system of nonlinear algebraic equations (2.7)

first makes the nonlinear terms in (2.7) linearization, i.e., a(x, Un+θ) is replaced by

a(x, IkU
n+θ
k−1 ) and f(x, t, Un+θ) is replaced by f(x, t, IkU

n+θ
k−1 ). If the solutions Un+1

k−1

and Unk−1 on the (k-1)th level as well as Unk on the k’th level are known, then we obtain

a system of linearized algebraic equations:

{ (Un+1
k − Unk△t, v)+a(IkU

n+θ
k−1 ;Un+θ

k , v) = (f(IkU
n+θ
k−1 ), v), (u(x, 0), v) = (u0(x), v), ∀v ∈ Mk.3.3

By (2.2)and (2.3) assumptions, we can prove that a solution of (3.3) exists. In

Section 4, we will prove that the solution is unique. And the error order is O(△t+ h2
k)

when θ 6= 0 and O(△t2 + h2
k) when θ = 0.

Let {ψki }
Nk

i=1 and {ψk−1
i }

Nk−1

i=1 be the basis functions of Mk and Mk−1, respectively.

Then Un+1
k−1 =

∑Nk−1

i=1 αn+1
i ψk−1

i and Un+1
k =

∑Nk

i=1 α
n+1
i ψki . By the definition of Ik, we

know that IkU
n+1
k−1 =

∑Nk

i=1 β
n+1
i ψki where

βn+1
k = {βn+1

1 , βn+1
2 , · · · , βn+1

Nk
}T = BT

k α
n+1
k−1 , α

n+1
k−1 = {αn+1

1 , αn+1
2 , · · · , αn+1

Nk−1
}T .

Set

a) Ck = [(ψki , ψ
k
j )]Nk×Nk

, b)Ank (α) = [(a(Ik(

Nk−1
∑

i=1

αn+1
i ψk−1

i ))∇ψki ,∇ψ
k
j )]Nk×Nk

= [a(
Nk
∑

i=1

βn+1
i ψki ;ψ

k
i , ψ

k
i )]Nk

then (3.3) can be written in the vector-matrix form as:

(Ck + 12(1 + θ)△tAnk(α))αn+1
k = △tFnk (α) + Ckα

n
k − 12(1 − θ)△tAnk(α)αnk .3.5

In the following we will give the time-dependent k’th level algorithm for solving the

system of linear algebraic equations (3.5). Assume that the solutions Un+1
k−1 and Unk−1

on the (k-1)th level and Unk on the k’th level are known. Then an initial approximate

value of the solution at (n+1)th step time on the k’th level is taken as:

Un+1
k,0 = Unk + Ik(U

n+1
k−1 − Unk−1) (αn+1

k,0 = αnk +BT
k (αn+1

k−1 − αnk−1)).3.6
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1) Pre-smoothing: performing ν1 time smoothing iterations on the k level:

Un+1
k,ν1

= Sν1k U
n+1
k,0 (αn+1

k,ν1
= Sν1k α

n+1
k,0 )3.7

where Sk is a smoothing iterative operator, such as the Jacobi iteration, the Gauss-

Seidel iteration and the preconditioned conjugate gradient iteration. The iterative

methods are discussed later.

2) Coarse grid correction: the coarse grid equation is that ∀v ∈ Mk−1,

(Ûn+1
k−1 − Unk−1△t, v)+a(U

n+θ
k−1 ; Ûn+θ

k−1 , v) = (f(Un+θ
k−1 ), v)+[(f(IkU

n+θ
k−1 ), Ikv)−(Un+1

k,ν1
− Unk△t, Ikv)−a(IkU

n+1
k−1 ; 12(1+θ

where Ûn+θ
k−1 = 12(1 + θ)Ûn+1

k−1 + 12(1 − θ)Unk−1. (3.8) is written in the vector-matrix

form as:

(Ck−1+12(1+θ)△tÂnk−1(α))α̂n+1
k−1 = △tF̂nk−1(α)+Ck−1α

n
k−1−12(1−θ)△tÂnk−1(α)αnk−1+B

T
k [△tFnk (α)+Ck(α

n+1
k,ν1

−αnk)

where

Ûn+1
k−1 =

Nk−1
∑

i=1

α̂n+1
i ψk−1

i , Ânk−1(α) = [a(

Nk−1
∑

i=1

αn+θ
i ψk−1

i ;ψk−1
i , ψk−1

j )], F̂nk−1(α) = {(f(

Nk−1
∑

i=1

αn+θ
i ψk−1

i ), ψk−1
i )}TNk−1

.

Let Ûn+1
k−1,p be a solution of (3.8) obtained by using p time iterations and Ûn+1

k−1,0 =

Un+1
k−1 as the initial approximate value. Then the corrective value Un+1

k,ν1+1 of the iterative

solution of (3.7) on the (k-1)th level is defined as

Un+1
k,ν1+1 = Un+1

k,ν1
+ Ik(Û

n+1
k−1,p − Un+1

k−1 )(αn+1
k,ν1+1 = αn+1

k,ν1
+BT

k (α̂n+1
k−1,p − αn+1

k−1)).3.9

3) Post-smoothing: performing ν2 time smoothing iterations on the k’th level:

Un+1
k,ν1+ν2+1 = Sν2k U

n+1
k,ν1+1 (αn+1

k,ν1+ν2+1 = Sν2k α
n+1
k,ν1+1).3.10

Thus we obtain a approximate solution value of the equation (3.3) at (n+1)th step

time on the k level as follows:

Un+1
k = Un+1

k,ν1+ν2+1 (αn+1
k = αn+1

k,ν1+ν2+1).

The multigrid scheme is defined as a recursive process for the level k. If we carry out

the multigrid operation for each time step n, we get a time-dependent fully multigrid

method. Obviously, the above multigrid procedure for solving the nonlinear parabolic

equation (2.1) can be extended to the circumstances of the variable time step size.

We now consider to determine the initial approximate values of solutions in the

above multigrid procedure. Because the k’th level algorithm depends on the solution

values Un+1
k−1 , Unk−1 and Unk , therefore the fully multigrid iterative procedure depends

on the solution values U0
k for k = 1, 2, · · · and Un1 for n = 1, 2, · · · , N .

The approximate solutions U0
k (k = 1, 2, · · ·) are determined by the following scheme.

U0
1 = Ū0

1 is obtained by exactly solving the following equation (3.11). U0
k for k > 1
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is obtained by using IkU
0
k−1 as an initial approximate value to carry out the multigrid

iterations for the equation (3.11). The exact solution Ū0
k (k = 1, 2, · · ·) satisfies the

equation:

(Ū0
k , v) + a(u0; Ū

0
k , v) = (f(u0(x)), v), ∀v ∈ Mk.3.11

(3.11) is written in the vector-matrix form as

(Ck +Ak(α))α0
k = Fk3.12

where Ck definition is same as the above. Ak(α) = [a(u0(x);ψ
k
i , ψ

k
j )] and Fk =

{(f(u0(x)), ψ
k
j )}

T
Nk

.

Note that (3.11) or (3.12) is a discrete elliptic equation, therefore the convergence

of the multigrid algorithm can be found in the Bank and Dupont [12].

The solution values Un1 (n = 1, 2, · · · , N) according to the different θ values will be

considered in the following two situations in order to preserve the accuracy of values of

the approximate solutions.

1) When θ 6= 0, Un+1
1 is obtained by solving the following linear equation:

(Un+1
1 − Un1 △t, v) + a(Un1 ;Un+θ

1 , v) = (f(Un1 ), v), ∀v ∈ M1, 3.13

for n = 0, 1, 2, · · · , N − 1.

2) When θ = 0, U1
1 is obtained by applying the predictor and twice corrector

methods. Let U∗
1 be a solution of the following predictor equation,

(U∗
1 − U0

1△t, v) + a(U0
1 ; (U∗

1 + U0
1 )/2, v) = (f(U0

1 ), v), ∀v ∈ M1.3.14

Set U
∗ 1

2
1 = (U∗

1 + U0
1 )/2. Let U∗∗

1 be a solution of the following corrector equation,

(U∗∗
1 − U0

1△t, v) + a(U
∗ 1

2
1 ; (U∗∗

1 + U0
1 )/2, v) = (f(U

∗ 1
2

1 ), v), ∀v ∈ M1.3.15

Set U
∗∗ 1

2
1 = (U∗∗

1 + U0
1 )/2. Then U1

1 is obtained by the equation:

(U1
1 − U0

1△t, v) + a(U
∗∗ 1

2
1 ;U

1
2
1 , v) = (f(U

∗∗ 1
2

1 ), v), ∀v ∈ M1.3.16

The solution Un+1
1 (n = 1, 2, · · · , N−1) is obtained by applying the modified Crank-

Nicolson method.

(Un+1
1 − Un1 △t, v) + a(EUn1 ;U

n+ 1
2

1 , v) = (f(EUn1 ), v), ∀v ∈ M1, 3.17

where EUn1 = 3
2U

n
1 − 1

2U
n−1
1 .

The above exact solutions of the equations (3.13)-(3.17) can by replaced by the

approximate solutions, which are obtained by the smoothing iterative method defined
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in (3.7). The convergence, see [1], [2]. Therefore, the multigrid scheme is described by

the diagram as:

| | | | | |
– solving exactly ©——×——×——×——×——×— n = 2

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

© – smoothing iteration ©——×——×——×——×——×— n = 1
∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

× – multigrid iteration ——×——×——×——×——×— n = 0

k = 1 2 3 4 5 6 · · ·

Now we will give some considerations for the smoothing iterative scheme (3.7).

Set Ãnk (α) = Ck + 1
2(1 + θ)Ank(α) = D̃n

k (α) − L̃nk(α) − Ũnk (α) where D̃n
k (α) =

diag(Ãnk (α)), L̃nk(α) and Ũnk (α) are the strictly upper triangle and lower triangle matrix,

respectively. F̃nk (α) = △tFnk (α)+Ckα
n
k −

1
2(1−θ)△tAnk(α)αnk . Then the equation (3.4)

can be written in the form as:

Ãnk(α)αn+1
k = F̃nk (α).3.18

Set Ãk(α) = Ck +Ak(α) where Ak(α) = [(∇ψki ,∇ψ
k
i )]. Then Ãk(α) and Ak(α) are

independent of time t. The smoothing iteration (3.7) can be chosen as:

1) The Jacobi iterative method: for i = 1, 2, · · · , ν

αn+1
k,i = D̃n −1

k (α)(L̃nk (α)+Ũnk (α))αn+1
k,i−1+D̃

n −1
k (α)F̃nk (α) = (I−D̃n −1

k (α)Ãnk (α))αn+1
k,i−1+D̃

n −1
k (α)F̃nk (α).3.19

Usually, we do not use (3.19) to perform the smoothing iterative computation in the

multigrid scheme. We use the modified form of (3.19). Let 0 < λ1 ≤ λ2 ≤ · · · ≤ ΛNk

be the eigenvalues of Ak(α) and {χi}
Nk

i=1 ⊂ Mk be orthogonal eigenfunctions of Ak(α).

By the assumption (2.2), we have

λiK0(χi, χi) = K0(Ak(α)χi, χi) ≤ (Ank (α)χi, χi) ≤ K1(Ak(α)χi, χi) = K1λi(χi, χi).

The modified Jacobi iterative method is that

αn+1
k,i = (I − 11 +

1

2
(1 + θ)△tΛNk

K1Ã
n
k(α))αn+1

k,i−1 + 11 +
1

2
(1 + θ)△tΛNk

K1F̃
n
k (α).3.20

The smoothing iterative matrix is that Sk = I − 11 + 1
2(1 + θ)△tΛNk

K1Ã
n
k(α) and the

convergence radius satisfies that

ρ(Sk) ≤ 1−1 +
1

2
(1 + θ)△tΛNk

K01 +
1

2
(1 + θ)△tΛNk

K1 = (1−K0K1)(1+1
1

2
(1 + θ)△tΛNk

K1)
−1.

Note that ΛNk
≤ ch−2

k . Hence if we choose △t ∼ O(h2
k), the convergence radius of the

modified Jacobi iterative method has

ρ(Sνk ) ≤ (1 −K0K1).3.21
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2) The Gauss-Seidel iterative method: for i = 1, 2, · · · , ν

αn+1
k,i = αn+1

k,i +(I−L̃nk(α))−1D̃n −1
k (α)(F̃nk (α)−Ãnk (α)αn+1

k,i−1) = (I−(I−L̃nk(α))−1D̃n −1
k (α)Ãnk (α))αn+1

k,i−1 +(I−L̃nk(α

Analogous to the Jacobi iteration, we consider the modified form of (3.22):

αn+1
k,i = (I−τ(I−L̃nk(α))−1D̃n −1

k (α)Ãnk (α))αn+1
k,i−1+τ(I−L̃nk(α))−1D̃n −1

k (α)F̃nk (α).3.23

Obviously, when τ = 1, (3.23) is same as (3.22). The smoothing iterative matrix of

(3.23) is that Sk = I − τ(I − L̃nk(α))−1D̃n −1
k (α)Ãnk (α). By Missirlis and Evans [6], we

know that the convergence radius of Sk is that

ρ(Sk) = τ0ξ̄
22 = ξ̄22 − ξ̄2

where τ0 = 2
2−ξ̄2

, ξ̄ = ρ(I − D̃n −1
k (α)Ãnk (α)) ≤ ρ(I −

Ãn
k
(α)

1+ 1
2
(1+θ)△tΛnk

K1
). Hence by

(3.21), we obtain the convergence radius of the modified Gauss-Seidel iterative method

as follows

ρ(Sνk ) ≤ (1 −
K0

K1
)2ν2 − (1 −

K0

K1
)2ν ≤ (1 −K0K1)

2ν , 3.24

here we assume that △t ∼ O(h2
k).

3) The preconditioned conjugate gradient iterative method: we use the matrix

Ãk(α) as preconditioner. Set

i.)x0 = αn+1
k,0 , ii.)q0 = s0 = F̃nk (α) − Ãnk(α)αn+1

k,0 , 3.25

then the preconditioned conjugate gradient method for solving the equation (3.18) is

that

a.)xi+1 = xi+αisi, αi = (Ã−1
k (α)qi, qi)e(si, Ã

n
k(α)si)e, b.)qi+1 = qi+αiÃ

n
k (α)si, c.)si+1 = Ã−1

k qi+βisi, βi = (Ã−1
k (α)

where (·, ·)e denotes the Euclidean inner product. Set

αn+1
k,ν = xν .

Then by [7-9], the convergence radius of the iterative method satisfies that

ρ(Sνk ) ≤ 2Qν3.27

where Q = 1−(ψ0/ψ1)
1
2

1+(ψ0/ψ1)
1
2

and ψ0, ψ1 satisfy that ψ0 ≤ a(x,u(x,t))
a(x,u0(x)) ≤ ψ1.

4. Convergence Analysis

Let φ(t) be a mapping, φ(t) : [0, t] → Hs(Ω). Defining the Lp[0, T ] norm of φ(t) as

‖φ(t)‖Lp(Hs) = ‖‖φ(t)‖Hs(Ω)‖Lp[o,T ].
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Let u be the solution of (2.1) which satisfies

u ∈ L∞(H3), ∂u∂t ∈ L2(H1)∩L∞(H2), ∂2u∂t2 ∈ L∞(H1), ∂3u∂t3 ∈ L2(L2)∩L1(H1).4.1

Then under the assumptive conditions (2.2) and (2.3), the finite element solution of

(2.7) has the following error estimation of the convergence[3−5].

Lemma 1. Let u be the solution of (2.4). Ũnk (n ≥ 1) and Ũ0
k are the solutions

(2.7) and (3.12), respectively. Then for θ ∈ [0, 1], there are the constants c∗, τ0 > 0

independent of hk, {Ũ
n
k } and △t such that △t ≤ τ0, we have

‖u(tn)− Ũnk ‖L2 + hk‖u(tn)− Ũnk ‖H1
0
≤ { c∗(h2

k +△t2), θ = 0, c∗(h2
k +△t), θ 6= 0.4.2

In the following we will prove that the finite element solution of the discrete equation

(3.3) still has the error estimation (4.2).

Lemma 2. Assume that we have obtained the finite element solutions Ūn+1
k−1 , Ūnk−1

on the k-1 level and Ūnk on the k level. And Ūn+1
k is the finite element solution of

(3.3). Ũn+1
k is the finite element solution of (2.7) on the k level. Then for θ ∈ [0, 1],

△t ∼ O(h2
k), there are the constants c∗, τ0 > 0 independent of hk, {Ũ

n
k }, {Ū

n
k } and △t

such that △t ≤ τ0, we have

‖Ũnk − Ūnk ‖L2 + hk‖Ũ
n
k − Ūnk ‖H1

0
≤ { c∗(h2

k + △t2), θ = 0, c∗(h2
k + △t), θ 6= 0.4.3

Proof. Set ξnk = Ũnk − Ūnk . Then (2.7) subtracting (3.3), we have the equality:

(ξn+1
k − ξnk△t, v)+a(IkŪ

n+θ
k−1 , ξ

n+θ
k , v) = a(IkŪ

n+θ
k−1 −Ũ

n+θ
k , Ũn+θ

k , v)+(f(Ũn+θ
k )−f(IkŪ

n+θ
k ), v), ∀v ∈ Mk.4.4

Since

12△t(ξn+1
k − ξnk , ξ

n+1
k + ξnk ) = 1△t(ξn+1

k − ξnk , ξ
n+θ
k ) − θ2△t(ξn+1

k − ξnk , ξ
n+1
k − ξnk ),

hence by assumptions (2.2), (2.3) and (4.1), taking v = ξn+θ
k in (4.4), we obtain

12△t(‖ξn+1
k ‖2

L2−‖ξnk ‖
2
L2)+K0‖∇ξ

n+θ
k ‖L2 = 12△t(ξn+1

k −ξnk , ξ
n+1
k +ξnk )+K0‖∇ξ

n+θ
k ‖L2 ≤ 1△t(ξn+1

k −ξnk , ξ
n+θ
k )+a(IkŪ

where the function u is the solution of (2.4) and the constant c depends on L and

‖∇u‖L∞(L∞). Taking ǫ = K0
c+K1

and adding K0
2 ‖ξn+θ

k ‖2
L2 in two sides of the inequality

(4.5), we have

1△t(‖ξn+1
k ‖2

L2−‖ξnk ‖
2
L2)+K0‖ξ

n+θ
k ‖H1

0
≤ c{‖ξn+θ

k ‖2
L2+‖u−Ũn+θ

k ‖2
L2+‖IkŪ

n+θ
k−1−Ũ

n+θ
k ‖2

L2}

where the constant c depends on K0,K1, L and ‖∇u‖L∞(L∞). The above inequality

sums up for n. Since Ū0
k and Ũ0

k are the solution of (3.12), hence ξ0k = 0. By the

discrete Gronwell inequality, we get

(1−c△t)‖ξnk ‖
2
L2+K0△t

n−1
∑

i=0

‖ξi+1
k ‖2

H1
0
≤ c△t{

n−1
∑

i=0

‖u−Ũ i+θk ‖2
L2+

n−1
∑

i=0

‖IkŪ
i+θ
k−1−Ũ

i+θ
k ‖2

L2}.
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Thus when 1 − c△t ≥ ν0 > 0, i.e., △t ≤ 1−ν0
c = τ0, we have

‖ξnk ‖
2
L2+△t

n−1
∑

i=0

‖ξi+1
k ‖2

H1
0
≤ c△t{

n−1
∑

i=0

‖u−Ũ i+θk ‖2
L2+

n−1
∑

i=0

‖IkŪ
i+θ
k−1−Ũ

i+θ
k ‖2

L2} ≤ c△t{
n−1
∑

i=0

‖u−Ũ i+θk ‖2
L2+

n−1
∑

i=0

‖u−Πk−1u

here Πk−1 is a interpolation operator from u ∈ H1
0 ∩H2(Ω) onto Mk−1. Therefore by

(4.2), (2.6), i) of (3.2) and hk = 1
2hk−1, we obtain

‖ξnk ‖
2
L2+△t

n−1
∑

i=0

‖ξi+1
k ‖2

H1
0
≤ R2

k+c△t
n−1
∑

i=0

‖Πk−1u−Ū
i+θ
k−1‖

2
L2 ≤ R2

k+c△t
n−1
∑

i=0

‖u−Ū i+θk−1‖
2
L24.6

where Rk = { c ∗ (h2
k + △t2), θ = 0,

c∗(h2
k + △t), θ 6= 0. The finite element solution Un1 (n = 0, 1, 2, · · ·, N − 1) defined in

(3.13)-(3.17) satisfy that

‖u− Ūn1 ‖L2 ≤ R1,

(see [1], [3], [4]). Hence by (4.6), we can prove that for j ≤ k − 1,

‖u− Ūnj ‖L2 ≤ Rj.

Thus by hk = 1
2hk−1 and (4.6), we obtain

‖ξnk ‖
2
L2 + △t

n−1
∑

i=0

‖ξi+1
k ‖2

H1
0
≤ R2

k +R2
k−1 ≤ R2

k.4.7

Note that the assumption △t ∼ O(h2
k), we know that (4.3) holds.

Applying Lemma 1, Lemma 2 and the triangle inequality, we obtain the convergence

of the finite element solution of the equation (3.3) as follows.

Theorem 1. Let u be the solution of (2.4) and satisfy the assumptive conditions

(2.2), (2.3) and (4.1). Let Ūnk (n ≥ 2) be the solution of (3.3) and Ūn1 , Ū
0
k be the solutions

of (3.13)-(3.17) and (3.12), respectively. Then for θ ∈ [0, 1] and △t ∼ O(h2
k), there are

the constants c∗, τ0 > 0 independent of hk, {Ū
n
k } and △t such that △t ≤ τ0, we have

‖u(tn)− Ūnk ‖L2 + hk‖u(tn)− Ūnk ‖H1
0
≤ { c∗(h2

k +△t2), θ = 0, c∗(h2
k +△t), θ 6= 0.4.8

In the following we consider the convergence of the k level iterative solutions defined

by (3.6)-(3.10). We first consider the error arising from the k-1 level correction. Let

Ūn+1
k−1 be the exact solution of the equation (3.3) on the k-1 level and Ûn+1

k−1 be the

solution of the equation (3.8). Then

(Ûn+1
k−1 − Ūnk−1△t, v)+a(Ū

n+θ
k−1 ; Ûn+θ

k−1 −Ū
n+θ
k−1 , v) = (f(Ūn+θ

k−1 )−f(Ik−1Ū
n+θ
k−2 ), v) +a(Ūn+θ

k−1 −Ik−1Ū
n+θ
k−2 ; Ūn+θ

k−1 , v)+(Ūn+1
k−

Taking v = Ûn+1
k−1 − Ūn+1

k−1 , by (2.2), (2.3), (4.1) and ǫ inequality, we obtain

‖Ûn+1
k−1 −Ū

n+1
k−1 ‖

2
L2+12(1+θ)K0△t‖∇(Ûn+1

k−1 −Ū
n+1
k−1 )‖2

L2 ≤ (Ûn+1
k−1 −Ū

n+1
k−1 , Û

n+1
k−1 −Ū

n+1
k−1 ) +△ta(Ūn+θ

k−1 ; Ûn+1
k−1 −Ū

n+1
k−1 , Û
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where the constant c in (4.9) depends on K1, L and ‖∇u‖L∞(L∞). Applying i.), ii.) of

(3.2) and taking ε = 1
2 , we have

‖Ûn+1
k−1 −Ū

n+1
k−1 ‖

2
L2+12(1+θ)K0△t‖∇(Ûn+1

k−1 −Ū
n+1
k−1 )‖2

L2 ≤ c△t[‖Ūn+θ
k−1 −Ik−1Ū

n+θ
k−2 ‖

2
L2+‖∇(u−Ūn+θ

k−1 )‖2
L2 ]+c[‖Ū

n+1
k −U

where the second term is the error of the smoothing iterative solution. By i.) of (3.2)

and theorem 1, we have

‖Ūn+θ
k−1 −Ik−1Ū

n+θ
k−2 ‖

2
L2△t+‖∇(u−Ūn+θ

k−1 )‖2
L2△t ≤ ‖u−Ik−1Ū

n+θ
k−2 ‖

2
L2△t+‖u−Ūn+θ

k−1 ‖
2
H1

0
△t ≤ ‖u−Πk−1u‖

2
L2△t+‖Πk−1

where Πk−1 is an interpolation operator from H1
0 ∩ H2(Ω) onto Mk−1. Note that

△t ∼ h2
k, we obtain

‖Ûn+1
k−1 −Ū

n+1
k−1 ‖

2
L2+△t‖∇(Ûn+1

k−1 −Ū
n+1
k−1 )‖2

L2 ≤ R2
k−1+c[‖Ū

n+1
k −Un+1

k,ν1
‖2
L2+△t‖∇(Ūn+1

k −Un+1
k,ν1

)‖2
L2 ].

Thus we have

Lemma 3. Assume that u satisfy the assumptive conditions (2.2), (2.3) and (4.1).

Let Ūn+1
k−1 be the solution of (3.3) on the (k-1)th level and Ûn+1

k−1 be the solutions of (3.8).

Then when θ ∈ [0, 1], △t ∼ O(h2
k), we have

‖Ûn+1
k−1 −Ū

n+1
k−1 ‖L2+hk‖Û

n+1
k−1 −Ū

n+1
k−1 ‖H1

0
≤ Rk−1+c[‖Ū

n+1
k −Un+1

k,ν1
‖L2+△t‖∇(Ūn+1

k −Un+1
k,ν1

‖L2 ]
1
2 , 4.10

where Rk−1 = { c ∗ (h2
k−1 + △t2), θ = 0,

c∗(h2
k−1 + △t), θ 6= 0. The constants c∗, c depend on K0, K1, L, ‖∇u‖L∞(L∞).

Let Ûn+1
k−1,p is an approximate solution of the equation (3.8) obtained by p time

smoothing iterations. By using of the Euclidean norm, there exists a constant 0 < γ < 1

such that

‖
˜

Â
n, 1

2
k (α)(α̂n+1

k−1 − αn+1
k−1,p)‖e ≤ γp‖

˜
Â
n, 1

2
k−1(α)(α̂n+1

k−1 − αn+1
k−1)‖e4.11

where
˜

Â
n, 1

2
k (α) = Ck−1+

1
2(1+θ)△tÂnk−1(α). By (2.2), (4.11) can be written equivalently

in the form as:

‖Ûn+1
k−1 −Û

n+1
k−1,p‖

2
L2+12(1+θ)△tK0‖∇(Ûn+1

k−1 −Û
n+1
k−1,p)‖

2
L2≤ γp[‖Ûn+1

k−1 −Ū
n+1
k−1 ‖

2
L2+12(1+θ)△tK1‖∇(Ûn+1

k−1 −Ū
n+1
k−1 )‖2

L2 ].4.12

Therefore, the error of the coarse corrective solution of (3.7) satisfies the inequality

that

‖Ūn+1
k −Un+1

k,ν1+1‖
2
L2+12(1+θ)△tK0‖∇(Ūn+1

k −Un+1
k,ν1+1)‖

2
L2 ≤ ‖Ūn+1

k −Un+1
k,ν1

‖2
L2+‖Ik(Û

n+1
k−1,p−Ū

n+1
k−1 )‖2

L2 +12(1+θ)△

where Rk−1 = { c∗ (h2
k−1 + △t2), θ = 0,

c∗(h2
k−1 + △t), θ 6= 0, I1 = ‖Ūn+1

k − Un+1
k,ν1

‖2
L2 + 12(1 + θ)△tK0 ‖∇(Ūn+1

k − Un+1
k,ν1

)‖2
L2 .

The inequality (4.13) shows that the error of the coarse corrective solution is

bounded by the error of the smoothing iterative solution of (3.3) adding the error

of the finite element solution of (3.8).
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We now consider the solution error of the smoothing iterative scheme (3.7). The

smoothing iterative methods (3.20), (3.23) and (3.26) by using of the Euclidean norm

have the error estimation:

‖Ã
n, 1

2
k (α)(ᾱn+1

k − αn+1
k,ν1

)‖e ≤ ρ(Sν1k )‖Ã
n, 1

2
k (α)(ᾱn+1

k − αn+1
k,0 )‖e4.14

where ρ(Sν1k ) satisfies inequalities (3.21), (2.24) and (3.27). Similar to (4.12), (4.14)

can be written in the form:

‖Ūn+1
k −Un+1

k,ν1
‖2
L2+12(1+θ)△tK0‖∇(Ūn+1

k −Un+1
k,ν1

)‖2
L2 ≤ ρ(Sν1k )[‖Ūn+1

k −Un+1
k,0 ‖2

L2+12(1+θ)△tK1‖∇(Ūn+1
k −Un+1

k,0 )‖

Thus by (4.13) and (4.15), the k’th level algorithm defined in (3.6)-(3.10) has the

result:

Theorem 2. Let Ūn+1
k be the exact solution of (3.3) and Ūn+1

k,ν1+ν2+1 be the iterative

solution of the k’th level algorithm for (3.3). If there exists a constant 0 < γ < 1 such

that (4.11) or (4.12) holds for the (k-1)th level, then when ν1 + ν2 is large enough, we

have

‖Ūn+1
k −Un+1

k,ν1+ν2+1‖
2
L2+12(1+θ)K0△t‖∇(Ūn+1

k −Un+1
k,ν1+ν2+1)‖

2
L2≤ γR2

k−1+γ[‖Ū
n+1
k −Un+1

k,0 ‖2
L2+12(1+θ)K0△t‖∇(Ūn+1

k −Un+1
k,0 )4

Proof. by (4.15), we have

‖Ūn+1
k −Un+1

k,ν1+ν2+1‖
2
L2+12(1+θ)K0△t‖∇(Ūn+1

k −Un+1
k,ν1+ν2+1)‖

2
L2 ≤ ρ(Sν2k )[‖Ūn+1

k −Un+1
k,ν1+1‖

2
L2 +12(1+θ)K1△t‖∇(

By (4.13), we get

‖Ūn+1
k −Un+1

k,ν1+ν2+1‖
2
L2+12(1+θ)K0△t‖∇(Ūn+1

k −Un+1
k,ν1+ν2+1)‖

2
L2 ≤ ρ(Sν2k )[cI1+(1+γp)R2

k−1] ≤ cρ(Sν1+ν2
k )[‖Ūn+1

k −U

here Rk−1 is the error of the finite element solution of the equation (3.8). Hence if

γ ≤ max{cρ(Sν1+ν2
k ), (1 + γp)ρ(Sν2k )} < 1, then (4.16) holds.

Theorem 3. Let u be the solution of (2.4) and satisfy the assumptive conditions

(2.2), (2.3) and (4.1). Let Unk,ν1+ν2+1 be the k’th level iterative solution of (3.6)-(3.10).

Then there are the constants c∗, τ0 > 0 independent of hk and △t such that if △t ∼

O(h2
k) and △t ≤ τ0, we have

‖u(tn+1) − Un+1
k,ν1+ν2+1‖L2 + hk‖u(tn+1) − Un+1

k,ν1+ν2+1‖H1
0
≤ Rk.4.17

Proof. By (3.2), (2.5) and the triangle inequality, we have

‖Ūn+1
k −Un+1

k,0 ‖2
L2+12(1+θ)K0△t‖∇(Ūn+1

k −Un+1
k,0 )‖2

L2 = ‖Ūn+1
k −Ūnk−Ik(Ū

n+1
k−1 −Ū

n
k−1)‖

2
L2+12(1+θ)K0△t ·‖∇(Ūnk

By theorem 1, we obtain

‖Ūn+1
k − Un+1

k,0 ‖2
L2 + 12(1 + θ)K0△t‖∇(Ūn+1

k − Un+1
k,0 )‖2

L2 ≤ R2
k.4.19
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In virtue of (4.16), (4.19) and theorem 1 as well as hk = 1
2hk−1, we get

‖u(tn+1)−U
n+1
k,ν1+ν2+1‖L2+hk‖u(tn+1)−U

n+1
k,ν1+ν2+1‖H1

0
≤ ‖u−Ūn+1

k ‖L2+hk‖u−Ū
n+1
k ‖H1

0
+‖Ūn+1

k −Un+1
k,ν1+ν2+1‖L2+h

In the following we analyze the convergence of the multigrid scheme. By the as-

sumptive conditions (2.2), (2.3) and (4.1), the solutions Un1 (n = 1, 2, · · · , N) of the

equations (3.13)-(3.17) satisfy the error estimation[2−3]:

‖u(tn) − Un1 ‖L2 + h1‖u(tn) − Un1 ‖H1
0
≤ R1.4.20

Hence by (4.18), (4.19), (2.3) and (2.5), we have

‖Ūn+1
k −Un+1

k,0 ‖L2 = ‖Ūn+1
k −Unk−Ik(U

n+1
k−1 −U

n
k−1)‖L2 ≤ ‖Ūn+1

k −Ūnk−Ik(Ū
n+1
k−1 −Ū

n
k−1)‖L2+‖Ik(Ū

n+1
k−1 −U

n+1
k−1 )‖L2+‖Ū

By theorem 2 and (4.20), the inequality (4.21) is recurred about the level k. We have

‖Ūn+1
k −Un+1

k,0 ‖L2 ≤ Rk+γRk−1+γ‖Ū
n+1
k−1 −U

n+1
k−1 ‖L2 +c[‖Ūnk−U

n
k ‖L2+γ‖Ūnk−1−U

n
k−1‖L2 ] ≤

k
∑

i=2

γk−iRi+γ
k−1‖Ūn+1

1

Applying hk = 1
2hk−1, we have

‖Ūn+1
k −Un+1

k,0 ‖L2 ≤ Rk

k
∑

i=1

(2γ)k−i+c
k

∑

i=2

γk−i‖Ūni −U
n
i ‖L2 ≤ ǫ0Rk+c

k
∑

i=2

γk−i‖Ūni −U
n
i ‖L2

where ǫ0 = 1−(2γ)k+1

1−2γ . Therefore, we obtain

‖Ūn+1
k − Un+1

k ‖L2 ≤ γǫ0Rk + cγ
k

∑

i=2

γk−i‖Ūni − Uni ‖L24.22

here we used (4.16). (4.22) is recurred about n. We obtain

‖Ūn+1
k − Un+1

k ‖L2 ≤ Rk.4.23

Similar to (4.23), we can prove that

hk‖Ū
n+1
k − Un+1

k ‖H1
0
≤ Rk.4.24

Therefore, we obtain the result of convergence of the multigrid algorithm.

Theorem 4. Assume that conditions (2.2), (2.3) and (4.1) hold. Then the ap-

proximate solution defined by multigrid algorithm satisfies the inequality:

‖u(tn+1) − Un+1
k ‖L2 + hk‖u(tn+1) − Un+1

k ‖H1
0
≤ Rk4.25

where the constant c∗ is independent of hk,△t and {Unk }.

The proof of the theorem 4 can be obtained by the triangle inequality, theorem 1

and (4.23), (4.24).



376 X.J. YU

5. Computational Cost and Development

Because the coefficient a(x, u) and right term f(x, t, u) in the nonlinear parabolic

equation (2.1) associate with the known function u, much computational time is costed

in forming the algebraic system (3.5) in the time-dependent fully multigrid algorithm.

If Nk denotes the dimension of the finite element space Mk on the k’th level, the

computational cost for forming the algebraic systems (3.5) can be bounded by c1Nk.

In addition, the computational cost of ν1+ν2 time smoothing iterations (3.20), (3.23) or

(3.26) is bounded by c2(ν1 +ν2)Nk. The computational cost of p time coarse corrective

iterations is bounded by c3(Nk−1 + pNk−1). Thus the computational cost of the k’th

level algorithm is that

c1Nk + c2(ν1 + ν2)Nk + c3(Nk−1 + pNk−1).

Usually, the iterative frequencies ν1, ν2, p all are not larger than 4. By the relation

Nk ∼ 4Nk−1, we obtain that the computational cost of the k level algorithm is bounded

by c4Nk. Therefore, the computational cost of the multigrid algorithm satisfies that

∑

j≤K

c4Nj ≤ c4Nk(1 + 14 + 142 + · · ·+) ≤ 43c4Nk.

If N denotes the number of time steps, then the computational cost of the time-

dependent fully multigrid algorithm is bounded by O(NNk).

Note that the multigrid algorithm defined in Section 3 has a few restrictions for the

equation (2.1). Hence the multigrid scheme can be extended to more general nonlinear

parabolic equation, such as the equation

{ c (x, u)∂u∂t = ∇(a(x, u)∇u)+~b(x, u)∇u+f(x, t, u), (x, t) ∈ Ω × [0, T ], a(x, u)∂u∂t+~n~b(x, u) = g(x, t), (x, t) ∈ ∂Ω

here ~n denotes the unit outer normal direction of the domain boundary, ~b(x, u) =

(b1(x, u), b2(x, u)).

By using finite element discretizing the equation (5.1), we obtain that a system of

linearized algebraic equations is simillar to (3.3)

(c(IkU
n+θ
k−1 )Un+1

k − Unk△t, v)+a(IkU
n+θ
k−1 ;Un+θ

k−1 , v) −(~b(IkU
n+θ
k−1 )∇Un+θ

k−1 , v) = (f(IkU
n+θ
k−1 ), v) + < g(tn+θ), v >, ∀v

where < ·, · > denotes the inner product on the boundary ∂Ω.

Similar to (3.6)-(3.10), we can define the time-dependent fully multigrid algorithm

for solving the equation (5.2). The convergence proof of the algorithm needs for the

nonlinear coefficient c(x, u) and ~b(x, u) some constrain conditions, here it is omitted.
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