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Abstract

In this report we present some new numerical methods for unconstrained op-

timization. These methods apply update formulae that do not satisfy the quasi-

Newton equation. We derive these new formulae by considering different techniques

of approximating the objective function. Theoretical analyses are given to show the

advantages of using non-quasi-Newton updates. Under mild conditions we prove

that our new update formulae preserve global convergence properties. Numerical

results are also presented.

1. Introduction

Unconstrained optimization is to minimize a nonlinear function f(x) in a finite

dimensional space, that is

min
x∈Rn

f(x) . (1.1)

Newton’s method for problem (1.1) is iterative and at the k−th iteration a current

approximation solution xk is available. The Newton step at the k−th iteration is

dk = −(∇2f(xk))
−1∇f(xk) . (1.2)

One advantage of Newton’s method is that it convergence quadratically. Assume x∗ is

a stationary point of (1.1) at which ∇2f(x∗) is non-singular. Then for xk sufficiently

close to x∗ we have that

||xk + dk − x∗|| = O(||xk − x∗||2) . (1.3)

However Newton’s method also has some disadvantages. Firstly the Hessian ∇2f(xk)

may be singular, in that case the Newton step (1.2) is not well defined. Secondly when

∇2f(xk) is not positive definite the Newton step dk may not necessarily be a descent
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direction of the objective function. Thirdly the calculation of the Hessian ∇2f(xk)

may be very expensive especially for large scale problems, not to mention that for some

problems the Hessian of f(x) is not available.

Quasi-Newton methods are a class of numerical methods that are similar to New-

ton’s method except that the Hessian (∇2f(xk))
−1 is replaced by an n × n symmetric

matrix Hk which satisfies the “quasi-Newton” equation

Hkyk−1 = sk−1 (1.4)

where

sk−1 = xk − xk−1 = αk−1dk−1 (1.5)

yk−1 = ∇f(xk) −∇f(xk−1) , (1.6)

and αk−1 > 0 is a step-length which satisfies some line search conditions. Assume Hk

is nonsingular, we define Bk = (Hk)
−1. It is easy to see that the “quasi-Newton step”

dk = −Hk∇f(xk) (1.7)

is a stationary point of the following problem:

min
d∈Rn

φk(d) = f(xk) + dT∇f(xk) +
1

2
dT Bkd (1.8)

which is an approximation to problem (1.1) near the current iterate xk, since φk(d) ≃
f(xk + d) for small d. In fact, the definition of φk(.) in (1.8) implies that

φk(0) = f(xk), (1.9)

∇φk(0) = ∇f(xk), (1.10)

and the quasi-Newton condition (1.4) is equivalent to

∇φk(xk−1 − xk) = ∇f(xk−1) . (1.11)

Thus, φk(x − xk) is a quadratic interpolation of f(x) at xk and xk−1, satisfying con-

ditions (1.9)-(1.11). The matrix Bk (or Hk) can be updated so that the quasi-Newton

equation is satisfied. One well known update formula is the BFGS formula which

updates Bk+1 from Bk, sk and yk in the following way:

Bk+1 = Bk − Bksks
T
k Bk

sT
k Bksk

+
yky

T
k

sT
k yk

. (1.12)

In Yuan (1991), approximate function φk(d) in (1.8) is required to satisfy the inter-

polation condition

φk(xk−1 − xk) = f(xk−1) , (1.13)
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instead of (1.11). This change was inspired from the fact that for one dimension prob-

lem, using (1.13) gives a slightly faster local convergence if we assume αk = 1 for all k.

Equation (1.13) can be rewritten as

sT
k−1Bksk−1 = 2[f(xk−1) − f(xk) + sT

k−1∇f(xk)] . (1.14)

In order to satisfy (1.14), the BFGS formula is modified as follows:

Bk+1 = Bk − Bksks
T
k Bk

sT
k Bksk

+ tk
yky

T
k

sT
k yk

, (1.15)

where

tk =
2

sT
k yk

[f(xk) − f(xk+1) + sT
k ∇f(xk+1)] . (1.16)

Assume that Bk is positive definite and that sT
k yk > 0, Bk+1 defined by (1.15) is

positive definite if and only if tk > 0. The inequality tk > 0 is trivial if f(x) is strictly

convex, and it is also true if the step-length αk is chosen by an exact line search which

requires sT
k ∇f(xk+1) = 0. For an uniformly convex function, it can be easily shown

that there exists a constant δ > 0 such that tk ∈ [δ, 2] for all k, and consequently global

convergence of the modified method can be proved by slightly modifying the global

convergence proof of the BFGS method for convex functions with inexact line searches,

which was given by Powell (1976). However, for a general nonlinear function f(x),

inexact line searches do not imply the positivity of tk, hence Yuan (1991) truncated

tk to the interval [0.01, 100], and showed that the global convergence of the BFGS

algorithm is preserved for convex functions.

If the objective function f(x) is cubic along the line segment between xk−1 and xk

then we have the following relation

sT
k−1∇2f(xk)sk−1 = 4sT

k−1∇f(xk) + 2sT
k−1∇f(xk−1) − 6(f(xk) − f(xk−1)) , (1.17)

by considering the Hermit interpolation on the line between xk and xk−1. Hence it is

reasonable to require that the new approximate Hessian satisfy condition:

sT
k−1Bksk−1 = 4sT

k−1∇f(xk) + 2sT
k−1∇f(xk−1) − 6(f(xk) − f(xk−1)) (1.18)

instead of (1.14). Biggs (1971, 1973) gives the inverse update of (1.15) with the value

tk so chosen that (1.18) holds. For one-dimensional problems, Wang and Yuan (1992)

showed that (1.18) without line searches (that is, αk = 1 for all k) implies R-quadratic

convergence, and except some special cases (1.18) also gives Q-quadratic convergence.

It is well known that the convergence rate of the secant method is only (1 +
√

5)/2

which is approximately 1.618 < 2.

There are other methods that use information of function values of the objective

function to construct the subproblem. The conic model method requires the approxi-

mate function φk(d) to satisfy conditions (1.9)-(1.11) and (1.13), and φk(d) is a conic
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function, instead of a quadratic function. More details on conic methods can be found

in Davidon (1980) and Schnabel (1983). The quasi-Newton method without derivatives

of Greenstadt (1972) uses a quadratic subproblem, where the approximate Hessian is

updated based on function values only. Our approach is to consider quadratic subprob-

lem (1.8) where the approximate Hessian Bk is updated based on some approximation

to the second order curvature along the last search direction. For example, update the

approximate Hessian satisfying relation (1.18) implies that we use the cubic approxi-

mation to get an approximation to the second order curvature, which in turn is used

to construct the quadratic subproblem.

In this report, we study update formulae that satisfy the condition

skBk+1sk = ρk (1.19)

where we assume that ρk > 0 is some kind approximate value of the second curvature

of f(x) between xk and xk+1. For example, ρk−1 may be the value of the right hand

side of (1.14) or (1.18). Except for ρk = sT
k yk, Bk+1 can not satisfy the quasi-Newton

equation if condition (1.19) holds. However, as in the Broyden family update formulae,

we also consider update formulae for Bk+1 that depend on Bk, Bksk, and yk. In the

next section, we derive a class of update formulae by minimizing certain norm of the

residual of the quasi-Newton equation. In section 3, we study a specific method of the

family. We show the global convergence of the method under certain conditions.

2. A Class of Update Formulae

We consider update formulae that have the following form:

Bk+1(β, γ, τ) =Bk + β
Bksks

T
k Bk

sT
k Bksk

+ γ
yky

T
k

sT
k yk

+ τ

(

Bksk

sT
k Bksk

− yk

sT
k yk

)(

Bksk

sT
k Bksk

− yk

sT
k yk

)T

.

(2.1)

where β, γ and τ are parameters. For simplicity, we shall use the notations

uk = yk/s
T
k yk , vk = −Bksk/s

T
k Bksk . (2.2)

Let W ∈ ℜn×n be a positive definite matrix, we require that matrix Bk+1 solves the

least norm problem:

min ||Bk+1sk − yk||W (2.3)

subject to

sT
k Bk+1sk = ρk (2.4)

where ρk > 0 being some approximation of the second order curvature sT
k ∇f(xk+1)sk,

and ||v||W =
√

vT Wv. Replacing Bk+1 in (2.3)–(2.4) by formula (2.1), we have that

min ||Bksk − yk − βsT
k Bkskvk + γsT

k ykuk||2W (2.5)
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subject to

sT
k Bksk + βsT

k Bksk + γsT
k yk = ρk . (2.6)

If uk + vk = 0, it is straightforward that solutions of problem (2.5)-(2.6) are any β, γ

pairs that satisfy βsT
k Bksk + γsT

k yk = ρk − sT
k Bksk, all the solutions will give the same

update formula which can be written as

Bk+1 = Bk − Bksks
T
k Bk

sT
k Bksk

+ ρk
yky

T
k

(sT
k yk)2

. (2.7)

Assume that uk + vk 6= 0, One can easily find that the unique solution of (2.5)-(2.6) is

given by

βk = (vk + uk)
T W [(ρk − sT

k Bksk − sT
k yk)uk − sT

k Bkskvk]/(s
T
k Bksk||vk + uk||2W ), (2.8)

γk = (vk + uk)
T W (ρkvk + sT

k ykuk)/(s
T
k yk||vk + uk||2W ). (2.9)

Thus, we have obtained a class of update formulae

Bk+1(τ) =Bk +
(vk + uk)

T W [(ρk − sT
k Bksk − sT

k yk)uk − sT
k Bkskvk]

||vk + uk||2W
vkv

T
k

+
(vk + uk)

T W (ρkvk + sT
k ykuk)

||vk + uk||2W
uku

T
k + τ(uk + vk)(uk + vk)

T .

(2.10)

We can rewrite (2.10) in the following form:

Bk+1(τ) =Bk − sT
k Bkskvkv

T
k + ρkuku

T
k

+ σk[vkv
T
k − uku

T
k ] + τ(uk + vk)(uk + vk)

T
(2.11)

where σk = (ρk − sT
k yk)(vk + uk)

T Wuk/||vk + uk||2W . It is easy to see that update

formulae (2.11) are the Broyden family if ρk = sT
k yk.

The following result is obvious.

Lemma 2.1. Assume that sT
k yk > 0, ρk > 0 and Bk is positive definite, then

Bk+1(0) has at least n − 1 positive eigenvalues.

Proof. We can write Bk+1(0) into two parts, namely

Bk+1(0) = B̄k+1 + σk[vkv
T
k − uku

T
k ] (2.12)

where B̄k+1 is the same matrix as given in the right hand side of (2.7). It is easy to

see that B̄k+1 is positive definite and that the matrix σk[vkv
T
k − uku

T
k ] has at most one

negative eigenvalue. Therefore Bk+1(0) has at least n − 1 positive eigenvalues.

From the above lemma, it can be shown that

Corollary 2.2. Under the conditions of Lemma 2.1, the matrix Bk+1(τ) is positive

definite if and only if

det[Bk+1(η)] > 0 (2.13)
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for all η ≥ τ .

Proof. If Bk+1(τ) is positive definite, then Bk+1(η) is also positive definite for all

η ≥ τ . Hence inequality (2.13) holds.

Assume inequality (2.13) holds for all η ≥ τ . Let ξ = max[0, τ ], it is easy to see that

det[Bk+1(ξ)] > 0. Because ξ ≥ 0, due to Lemma 2.1 Bk+1(ξ) has at least n− 1 positive

eigenvalues. Therefore Bk+1(ξ) must be positive definite. Consequently Bk+1(τ) is also

positive definite because det[Bk+1(t)] > 0 for all t ∈ [τ, ξ] and because the eigenvalues

of Bk+1(t) are continuous functions of t.

As we are interested in update formulae that give a positive definite Bk+1, we now

calculate the determinate of Bk+1(τ). First, in general we have

Lemma 2.3. For any symmetric matrix B ∈ ℜn×n, and vectors v, u ∈ ℜn, if B−1

exists and B+ is defined by

B+ = B + βvvT + γuuT + τ(v + u)(v + u)T (2.14)

where β, γ and τ are any real numbers, then the following relation

det(B+)

det(B)
= [1+βvT B−1v+γuT B−1u+βγχ+τ((v+u)TB−1(v+u)+(β+γ)χ)] (2.15)

holds, where χ = vT B−1vuT B−1u − (vT B−1u)2. Furthermore, if det(B+) 6= 0 we have

that

B−1
+ = B−1 + β̄B−1vvT B−1 + γ̄B−1uuT B−1 + τ̄B−1(v + u)(v + u)T B−1 (2.16)

where

β̄ = [−β − (βγ + (β + γ)τ)uT B−1(u + v)] det(B)/det(B+) (2.17)

γ̄ = [−γ − (βγ + (β + γ)τ)vT B−1(u + v)] det(B)/det(B+) (2.18)

τ̄ = [−τ + (βγ + (β + γ)τ)vT B−1u] det(B)/det(B+). (2.19)

Proof. Because B−1 exists and because the nonzero eigenvalues of UV T and V T U

are the same for any U, V ∈ ℜn×m, it follows that

det(B+) = det(B) det(I + βB−1/2vvT B−1/2 + γB−1/2uuT B−1/2

+ τB−1/2(v + u)(v + u)T B−1/2)

= det(B) det(I + [B−1/2v B−1/2u]

[

β + τ τ

τ γ + τ

] [

vT B−1/2

uT B−1/2

]

)

= det(B) det

([

1 0

0 1

]

+

[

β + τ τ

τ γ + τ

] [

vT B−1v vT B−1u

vT B−1u uT B−1u

])

= det(B)[(1 + (β + τ)vT B−1v + τvT B−1u)(1 + (γ + τ)uT B−1u + τvT B−1u)

− (τvT B−1v + (γ + τ)vT B−1u)(τuT B−1u + (β + τ)vT B−1u)] ,

(2.20)
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which gives equation (2.15). When det(B+) 6= 0, the relation (2.16) can be proved by

direct calculations.

Using equations (2.15) and (2.11), we have that

det[Bk+1(τ)]

det(Bk)
= [ρk + (vk + uk)

T B−1
k (vk + uk)[τρk + σk(ρk − σk)]]/s

T
k Bksk . (2.21)

Hence it is easy to see that det[Bk+1(τ)] > 0 if and only if τ > τ0, where

τ0 = −σk(1 − σk/ρk) − 1/(vk + uk)
T B−1

k (vk + uk) . (2.22)

Consequently, from Corollary 2.2, Bk+1(τ) is positive definite if and only if τ > τ0.

The following function

Ψ1(τ) = Tr[Bk+1(τ)] − log[det(Bk+1(τ))] (2.23)

is given by Byrd and Nocedal (1989), where Tr(.) denotes the trace of a matrix. They

use this function to “measure” the distance of Bk+1 from the identity matrix. In order

to force the update formula having certain smallest change property, it is desirable

to have the matrix B
−1/2
k Bk+1B

1/2
k being as close to the identity matrix as possible.

Therefore we consider the following scaled function:

Ψ2(τ) = Tr[B
−1/2
k Bk+1(τ)B

−1/2
k ] − log[det(B

−1/2
k Bk+1(τ)B

−1/2
k )] (2.24)

which is similar to (2.23) except that Bk+1 is replaced by B
−1/2
k Bk+1B

−1/2
k . In the

case when ρk = sT
k yk, function (2.24) was used by Fletcher(1990) to show that Bk+1

updated by the BFGS update formula minimizes this function. It is straightforward to

calculate

Ψ2(τ) = n + σk/s
T
k Bksk − 1 + (ρk − σk)y

T
k B−1

k yk/(s
T
k yk)

2 + τ(vk + uk)
T B−1

k (vk + uk)

− log[ρk + (vk + uk)
T B−1

k (vk + uk)(τρk + (ρk − σk)σk)] + log[sT
k Bksk]

(2.25)

Let τ1 ∈ [τ0,+∞] minimize Ψ2(τ), we can easily find that

τ1 = −σk(1 − σk/ρk) = τ0 + 1/(vk + uk)
T B−1

k (vk + uk) > τo , (2.26)

which yields the following update formula

Bk+1(τ1) =Bk − (sT
k Bksk − σ2

k/ρk)vkv
T
k

+ ρk(1 − σk/ρk)
2uku

T
k − σk(1 − σk/ρk)[vku

T
k + ukv

T
k ] .

(2.27)

In the next section, under certain conditions we prove the global convergence of the

method if update formula (2.27) is used.

3. Global Convergence Analyses

In this section, we consider the update formula (2.27). We study two cases when

the matrix W = I and W = B−1
k .
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From (2.27), it is easy to see that

Tr(Bk+1(τ1)) = Tr(Bk)−sT
k Bksk||vk||22 +ρk||uk||22 +σ2

k||vk +uk||22/ρk −2σk(vk +uk)
T uk

(3.1)

First we study the case when W = I, which gives

σk = (ρk − sT
k yk)(vk + uk)

T uk/||vk + uk||22 (3.2)

and (2.27) can be rewritten as

Bk+1 = Bk − sT
k Bkskvkv

T
k + ρkuku

T
k

+ [(vk + uk)w
T
k + wk(vk + uk)

T ](ρk − sT
k yk)(vk + uk)

T uk/||vk + uk||22
(3.3)

where

wk = −uk + (vk + uk)(ρk − sT
k yk)(vk + uk)

T uk/(2ρk||vk + uk||22). (3.4)

It follows from (3.1) and (3.2) that

Tr(Bk+1) = Tr(Bk) − sT
k Bksk||vk||22 + ρk||uk||22 − σk(ρk + sT

k yk)(vk + uk)
T uk/ρk

= Tr(Bk) − sT
k Bksk||vk||22 + ρk||uk||22

+[(sT
k yk)

2 − ρ2
k][(vk + uk)

T uk]
2/ρk||vk + uk||22 .

(3.5)

Now the last term of equation (3.5) is non-positive if sT
k yk < ρk and it is bounded above

by [(sT
k yk)

2 − ρ2
k]||uk||22 if sT

k yk ≥ ρk. Thus relation (3.5) implies the inequality

Tr(Bk+1) ≤ Tr(Bk) − sT
k Bksk||vk||2 + ρk max[1, (sT

k yk)
2/ρ2

k]||uk||22. (3.6)

We assume that there exist positive constants ω1 and ω2 such that

ω1s
T
k yk ≤ ρk ≤ ω2s

T
k yk (3.7)

which means that our approximation of second order curvature of f(x) between xk and

xk+1 is not far away from the approximation based on finite difference of first order

directional derivatives. From (3.6) and (3.7), it follows that there exists a positive

constant c̄ such that

Tr(Bk+1) ≤ Tr(Bk) − sT
k Bksk||vk||2 + c̄sT

k yk||uk||22 . (3.8)

From (2.26) and (2.21), we have that det(Bk+1) = det(Bk)ρk/s
T
k Bksk which implies

that

ω1s
T
k yk/s

T
k Bksk ≤ det(Bk+1)/det(Bk) ≤ ω2s

T
k yk/s

T
k Bksk . (3.9)

Consequently, using relations (3.8) and (3.9), we can show the global convergence of

the method by slightly modifying the global convergence of the BFGS method given by

Powell (1976), or by applying the techniques given by Byrd, Nocedal and Yuan (1987).

Hence we can state our convergence result as follows.
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Theorem 3.1. Assume that f(x) is convex and twice continuously differential and

that at the k-th iteration the search direction is dk = −B−1
k ∇f(xk) and the stepsize αk

is chosen by inexact line search that satisfies

f(xk + αkdk) ≤ f(xk) + c1αkd
T
k ∇f(xk), (3.10)

dT
k ∇f(xk + αkdk) ≥ c2d

T
k ∇f(xk) (3.11)

where c1 < c2 < 1 are two positive constants, if B1 is symmetric and positive definite

and Bk+1 is updated by (3.3), if (3.7) holds for all k, and if the sequence {xk, k =

1, 2, 3...} is bounded, then xk converges in the sense that

lim
k→∞

||∇f(xk)||2 = 0 . (3.12)

Now we consider the case that W = B−1
k . It follows that

σk = ρk − sT
k yk . (3.13)

Hence update formula (2.27) becomes

Bk+1 =Bk − (sT
k Bksk − (ρk − sT

k yk)
2/ρk)vkv

T
k

+ ρ−1
k (sT

k yk)
2uku

T
k − ρ−1

k (ρk − sT
k yk)s

T
k yk[vku

T
k + ukv

T
k ] .

(3.14)

For update formula (3.14), direct application of Powell’s techniques to prove the

global convergence requires (3.7) and that

(ρk − sT
k yk)

2/ρk ≤ ω3s
T
k Bksk (3.15)

holds for some constant ω3 < 1, which is equivalent to

sT
k yk/ω4 ≤ ρk ≤ sT

k ykω4 (3.16)

where

ω4 = 1 + 0.5ω3s
T
k Bksk/s

T
k yk +

√

ω3s
T
k Bksk(1 + 0.25ω3s

T
k Bksk/s

T
k yk)/s

T
k yk . (3.17)

Theorem 3.2. Under the conditions of Theorem 3.1, if update formula (3.14) is

used instead of (3.3), and if (3.15) holds for all k, then (3.12) is true.

Update formulae (3.3) and (3.14) can be rewritten as

Bk+1 =Bk − Bksks
T
k Bk

sT
k Bksk

+
yky

T
k

sT
k yk

+ (ρk − sT
k yk)[ukuT

k + ((uk + vk)w
T
k + wk(uk + vk)

T )
(uk + vk)

T uk

||uk + vk||22

(3.18)



104 YA-XIANG YUAN AND RICHARD H. BYRD

and

Bk+1 =Bk − Bksks
T
k Bk

sT
k Bksk

+
yky

T
k

sT
k yk

+ (ρk − sT
k yk)[vkvT

k − sT
k yk

ρk
(uk + vk)(uk + vk)

T ]

(3.19)

respectively, where wk is defined by (3.4). Assume that xk converges to a solution x∗ at

which ∇2f(x∗) is positive definite and that Bk and B−1
k are bounded, either of (3.18)

and (3.19) ensures that

Bk+1 = BBFGS
k+1 + O(|ρk − sT

k yk|/||sk||22) = BBFGS
k+1 + O(||sk||2) (3.20)

if the objective function f(x) is three times differentiable near x∗. BBFGS
k+1 is the BFGS

update matrix which is defined by

BBFGS
k+1 = Bk − Bksks

T
k Bk

sT
k Bksk

+
yky

T
k

sT
k yk

. (3.21)

From (3.20), we can apply techniques of Byrd and Nocedal (1989), Dennis and Moré

(1977) and Powell (1976) to prove the local Q-superlinear convergence of Algorithm

4.1 when update formula (3.3) or (3.14) is used. A more detailed study on the local

superlinear convergence of (3.3) and (3.14), and that of a modified BFGS method given

by Yuan (1991) will be given in a forthcoming report.

4. Algorithms and Numerical Results

In this section, we state an algorithm that applies update formulae (3.3) and (3.14)

given in section 3. For either update formula, we run a collection of standard test

problems, and present numerical results.

First, our algorithm is given as follows.

Algorithm 4.1.

Step 1. Given x1 ∈ ℜn, B1 ∈ ℜn×n symmetric and positive definite,

0 < c1 < c2 < 1, c1 < 1/2, ǫ > 0 very small and k = 1;

Step 2. Calculate gk = ∇f(xk), if ||gk||∞ < ǫ then stop;

Step 3. dk = −B−1
k gk, calculate αk > 0 such that (3.10)-(3.11) hold;

Step 4. xk+1 = xk + αkdk, sk = xk+1 − xk, yk = ∇f(xk+1) −∇f(xk);

Step 5. Compute ρk, and update Bk+1;

Step 6. k:=k+1 and go to Step 2.

Our algorithm is exactly the same as a quasi-Newton method except the updating

of the approximate Hessian Bk. We have not specified the update formula in the

algorithm, which can be either (3.3) or (3.14). The step-length αk in Step 3 of the

algorithm is calculated by quadratic and cubic interpolations and extrapolations with
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bracketing techniques (more details can be found in Fletcher, 1987). For the calculation

of ρk, we let

ρk = 4sT
k ∇f(xk+1) + 2sT

k ∇f(xk) − 6(f(xk+1) − f(xk)) (4.1)

which is (1.18) with k replaced by k+1, and it is an approximate second order curvature

based on the cubic interpolation. As Bk+1 is updated by (3.3) or (3.14), we require the

positiveness of ρk to ensure Bk+1 positive definite because of relation (2.4). However, it

is possible that ρk defined by (4.1) is negative. This can happen even for strictly convex

objective functions. For example, if we let f(x) to be the one dimensional function x4,

and if we let xk = −1 and xk+1 = 0, formula (4.1) gives ρk = −2 < 0. Therefore, in

our algorithm if ρk computed by (4.1) does not satisfy inequalities (3.7), we truncate

ρk in the following way:

ρk =

{

ω1s
T
k yk if ρk < ω1s

T
k yk,

ω2s
T
k yk if ρk > ω2s

T
k yk.

(4.2)

For convex objective functions f(x), the second inequality of (3.7) is always true if

ω2 ≥ 4

3
, as it is easy to show that

ρk = 4sT
k ∇f(xk+1) + 2sT

k ∇f(xk) − 6(f(xk+1) − f(xk))

= 4sT
k ∇f(xk+1) + 2sT

k ∇f(xk) − 6

∫ 1

0
sT
k ∇f(xk + tsk)dt

= 4

∫ 1

0
sT
k [∇f(xk+1) −∇f(xk + tsk)]dt − 2

∫ 1

0
sT
k [∇f(xk + tsk) −∇f(xk)]dt

=

∫ 1

0

(
∫ 1

t
4sT

k ∇2f(xk + usk)skdu

)

dt −
∫ 1

0

(
∫ t

0
2sT

k ∇2f(xk + usk)skdu

)

dt

=

∫ 1

0

(
∫ u

0
4sT

k ∇2f(xk + usk)skdt

)

du −
∫ 1

0

(
∫ 1

u
2sT

k ∇2f(xk + usk)skdt

)

du

=

∫ 1

0
(6u − 2)sT

k ∇2f(xk + usk)skdu ≤ 4

3
sT
k yk .

(4.3)

And one can also easily see from (4.3) that ρk = sT
k ∇2f(xk+1)sk if f(x) is cubic on the

line segment between xk and xk+1, and ρk = sT
k yk if f(x) is quadratic.

The test problems we run are the 18 standard unconstrained optimization test

problems suggested by Moré, Garbow and Hillstrom (1981). Our stopping criterion is

||∇f(xk)||∞ ≤ 10−6. We let c1 = 0.01, c2 = 0.9. ρk calculated by (4.1) is truncated so

that (3.7) is satisfied with ω1 = 1/4 and ω2 = 4. When update formula (3.14) is used,

we also truncated ρk if needed so that (3.15) holds for ω3 = 0.8. The numerical results

of Algorithm 4.1 with Bk updated by (3.3) and (3.14) are given in Table 1, where

results of the BFGS algorithm are also presented. For each algorithm, the numbers in
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Table 1. Numerical Results of Algorithm 4.1 and BFGS algorithm

BFGS (3.3) (3.14)

Problem NI NF NG NI NF NG NI NF NG

1 28 40 30 25 36 26 30 42 32

2 36 45 40 37 42 39 35 45 40

3 3 5 4 3 5 4 3 5 4

4 159∗ 221 170 148∗ 197 169 158∗ 215 180

5 19 32 27 13 23 19 17 27 24

6 18 23 19 12 16 13 12 16 13

7 68 76 69 70 79 71 70 79 71

8 27 43 39 45 65 56 51 75 64

9 8 12 10 8 12 10 7 11 9

10 10 23 15 12 24 17 11 24 16

11 25 42 29 21∗ 39 25 21∗ 40 26

12 30 44 35 34 51 39 24 37 29

13 46 51 49 44 53 50 44 47 46

14 128 179 133 125 172 130 122 171 128

15 102 123 105 54 73 55 71 95 72

16 13 17 14 14 20 15 13 18 15

17 81 114 87 70 97 77 78 109 87

18 21 35 23 22 32 24 22 35 23

columns NI, NF, and NG are numbers of iterations, function evaluations and gradient

evaluations respectively. A star “*” indicates an usual stop due to very small reduction

in the objective function, that is, [f(xk) − f(xk+1)]/(1 + |f(xk+1)|) < 10−16. In all 5

such cases, we found that the infinity norm of the gradient at the final point is less

then 1.1 ∗ 10−5. The numerical results indicate that both (3.3) and (3.14) give a slight

improvement over the original BFGS method.
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