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Abstract

In this paper, we develop a one-parameter family of P-stable sixth-order and
eighth-order two-step methods with minimal phase-lag errors for numerical inte-
gration of second order periodic initial value problems:

y′′ = f(t, y), y(t0) = y0, y′(t0) = y′0.

We determine the parameters so that the phase-lag (frequency distortion) of these
methods are minimal. The resulting methods are P-stable methods with minimal
phase-lag errors. The superiority of our present P-stable methods over the P-
stable methods in [1–4] is given by comparative studying of the phase-lag errors
and illustrated with numerical examples.

1. Introduction

The development of numerical integration formulae for the direct integration of the
periodic initial-value problem

y′′ = f(t, y), y(t0) = y0, y′(t0) = y′0 , (1.1)

which arises in the theory of orbital mechanics and in the study of wave equations, has
created considerable interest in the recent years.

Usually, the Numerov’s method

yn+1 = 2yn − yn−1 +
h2

12
(fn+1 + 10fn + fn−1) (1.2)

is the most popular method. Although, Numerov’s method has phase-lag of order four
and possess only a finite interval of periodicity (0, 2.4492). Recently Chawla and Rao[2,3]

developed fourth-order and sixth-order P-stable methods with phase-lag of order six.
Ananthakrishnaiah[4] obtained a two-parameter family of second order P-stable

methods M2(α, β) with phase-lag of order six. It is therefore natural to ask whether we
can obtain P-stable methods with phase-lag order and accuracy order higher than the
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methods in [1–4]. The purpose of this paper is by modificating the methods in [1–4]
and selecting parameters suitably, to obtain a new family of methods with sixth-order
and eighth-order. Comparing with the methods in [1–4], our methods are more useful
when a large step-size is used, that is , when a modest accuracy is sufficient or the
solution which consists of a slowly varying oscillation with a high-frequency oscillation
superimposed, has a small amplitude. At the end of this paper we give two examples
to demonstrate that our methods are better than the methods in [1–4].

2. Basic Theory

When we apply an symmetry implicit two-step method to the test equation

y′′ = −λ2y, λ > 0 , (2.1)

we obtain the polynomial

Ω(ξ, H2) = A(H)ξ2 − 2B(H)ξ + A(H), H = λh . (2.2)

It is stability and Ω(ξ,H2) = 0 is characteristic equation, A(H) and B(H) are polyno-
mials of H = λh.

Definition 1. (Lambert and Watson[5]) The method with stability polynomial
(2.2) is said to have interval of periodicity (0,H2

p ) if for all H2 ∈ (0,H2
p ), the roots ξ1,2

of Ω(ξ,H2) satisfy
ξ1,2 = e±iθ(H) (2.3)

for some real valued function θ(H).
Definition 2. The method with stability polynomial (2.2) is said to be P-stable

if its interval of periodicity is (0,∞).
It is easy to see that the roots of (2.2) are complex and of module one if

∣∣∣B(H)
A(H)

∣∣∣ < 1 . (2.4)

Thus, the P-stability condition is satisfied if

A(H) + B(H) > 0 and A(H)−B(H) > 0, for all H2 ∈ (0,∞) . (2.5)

The exact solution of the test equation (2.1) with the initial condition y(t0) = y0

and y′(t0) = y′0 is given by

y(t) = y0 cos λt +
y′0
λ

sinλt . (2.6)

Evaluating (2.6) at tn+1, tn and tn−1 and eliminating y0 and y′0, we obtain

y(tn+1)− 2 cos λhy(tn) + y(tn−1) = 0 , (2.7)
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its characteristic equation is

ξ2 − 2 cos θ(H)ξ + 1 = 0, H = λh . (2.8)

Now the characteristic equation of (2.2) is written as

ξ2 − 2 cos θ(H)ξ + 1 = 0 , (2.9)

where cos θ(H) = B(H)/A(H).
Definition 3. (Ananthakrishnaiah[6]) We define the phase-lag error of the method

with stability polynomial (2.2) as the leading coefficient in the expansion

P (H) =
∣∣∣A(H) cos(H)−B(H)

H2

∣∣∣ . (2.10)

The motivation of Definition 3 can be easily derived from the difference in the
frequency distortion of the characteristic equation (2.8) and (2.9).

3. A Family of Sixth-Order P-Stable Methods with Minimal

Phase-Lag

For the numerical integration of the second-order periodic initial-value problem
(1.1), we consider a family of implicit two-step sixth-order methods

y[i]
n = yn − αih

2(fn+1 − 2f [i−1]
n + fn−1) , i = 1, 2, ..., m, f [0]

n = fn , (3.1)

ȳn+ 1
2

=
3
8
yn+1 +

3
4
yn − 1

8
yn−1 − h2

128
(5fn−1 − 2f [m]

n − 3fn−1) , (3.2)

ȳn− 1
2

= −1
8
yn+1 +

3
4
yn +

3
8
yn−1 − h2

128
(−3fn+1 − 2f [m]

n + 5fn−1) . (3.3)

Then, for n ≥ 1, the m-parameter family of sixth-order discretization for y′′ = f(t, y)
is given by

yn+1 = 2yn − yn−1 +
h2

60
[fn+1 + 26fn + fn−1 + 16(f̄n+ 1

2
+ f̄n− 1

2
)] , (3.4)

where

f [i]
n = f(tn, y[i]

n ), i = 1, 2, ..., m ,

f̄n± 1
2

= f(tn± 1
2
, ȳn± 1

2
), fn = f(tn, yn) ,

tn± 1
2

= tn +
h

2
, h > 0

and αi, i = 1, 2, ..., m are free parameters.
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The local truncation errors of (3.1) – (3.4) are given by

αih
4y(4)(xn) + o(h6), i = 1, 2, ..., m ,

5
768

h5y(5)(xn) +
h6

3072
y(6)(xn) + o(h7) ,

− 5
768

h5y(5)(xn) +
h6

3072
y(6)(xn) + o(h7) ,

− h8

120960
y(8)(xn) + o(h10) .

Note that our discretizations given by (3.4) are based on m+2 evaluations of f per
step. Note also that there is no need to compute f̄n− 1

2
because it is available from the

previous calculation that determined yn.
If we apply the method (3.4) to the test equation (2.1), we have the stability poly-

nomial
Ω(ξ,H2) = A(H)ξ2 − 2B(H)ξ + A(H) , (3.5)

where

A(H) = 1 +
H2

12
+

H4

240
− 1

120

m∑

k=1

(−1)k+12k−1αm−k+1 · · ·αmH2k+4 , (3.6)

B(H) = 1− 5
12

H2 +
H4

240
− 1

120

m∑

k=1

(−1)k+12k−1αm−k+1 · · ·αmH2k+4 . (3.7)

Thus

A(H)−B(H) =
H2

2
> 0 , for all H2 ∈ (0,∞) , (3.8)

A(H) + B(H) = 2− H2

3
+

H4

120
− 1

60

m∑

k=1

(−1)k+12k−1αm−k+1 · · ·αmH2k+4 . (3.9)

From (3.6), (3.7) and Definition 3, we have

A(H) cos(H)−B(H)
H2

=
m+1∑

k=2

(−1)k
[ 1
(2k + 4)!

− 1
12(2k + 2)!

+
1

(2k)!
· 1
240

+
1

120

k−1∑

l=1

2l−1

[2(k − l)]!
αm−l+1 · · ·αm

]
H2k+2 . (3.10)

From (3.10) and Definition 3, we have
Theorem 1. If the parameters α2, α3, · · · , αm of (3.1) are given by

αm = − 5
252

, m ≥ 2 ,

αm−k+2 = − 120
2k−3αm−k+3 · · ·αm

[ 1
(2k + 4)!

− 1
12(2k + 2)!

+
1

240
· 1
(2k)!

+
1

120

k−2∑

l=1

2l−1

[2(k − l)]!
αm−l+1 · αm

]
, k = 3, · · · ,m , (3.11)
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then, the sixth-order implicit methods (3.4) possess minimal phase-lag errors

P (H) =
∣∣∣ 1
2(2m + 6)!

− 1
12(2m + 4)!

+
1

240
· 1
(2m + 2)!

+
1

120

m∑

l=1

2l−1

[2(m− l + 1)]!
αm−l+1 · · ·αm

∣∣∣H2m+4 . (3.12)

Thus , if α2, α3, · · · , αm are given by (3.11), we obtained one -parameter α1 family
of sixth-order implicit methods (3.4) with minimal phase-lag error order 2m+4, which
is denoted as M6(α1).

Selecting parameter α1 of methods M6(α1) suitably, we have

A(H) + B(H) =2− H2

3
+

H4

120
− 1

60

m∑

k=1

(−1)k+12k−1αm−k+1 · · ·αmH2k+4 > 0 ,

for all H2 ∈ (0,∞) .

From (3.8), (3.9) and (2.5) , a family of sixth-order P-stable methods M6(α1) with
minimal phase-lag error order 2m+4 can be obtained by selecting parameter α1 suitably.
From (3.8), (3.9), (3.11) and (2.5), we obtain Table 1 as following:

Table 1

P-stable sixth-order method M6(α1)

m M6(α1) α1 α2 α3 α4 Phase-lag error P(H)

1 Method 1 −1
972 (13 + 2

√
55) 2

3×8! |5 + 252α1|H6

2 Method 2 < −2.560009E − 02 − 5
252

3
2×10! |7 + 400α1|H8

3 Method 3 < 0 − 7
400 − 5

252
9

12! |5 + 308α1|H10

4 Method 4 < −2.187734E − 02 − 5
308 − 7

400 − 5
252

1
30×14! |7061 + 491400α1|H12

From Table 1 we conclude that new sixth-order P-stable method M6(α1) have
smaller phase-lag error than the same order implicit methods in [1–4].

4. A Family of Eighth-order P-stable Method M8(β1)

For the numerical integration of the second order periodic initial problem (1.1) we
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consider the m-parameter family of implicit two-step eighth-order methods:

y[i]
n = yn − βih

2(fn+1 − 2f [i−1]
n + fn−1) , i = 1, 2, · · · ,m, f [0]

n = fn , (4.1)

ŷn+α + a1yn+1 + a0yn + a−1yn−1 = h2(b1fn+1 + b0f
[m]
n + b−1fn−1) , (4.2)

ŷn−α + a−1yn+1 + a0yn + a1yn−1 = h2(b1fn+1 + b0f
[m]
n + b1fn−1) , (4.3)

ỹn+α + c1yn+1 + c0yn + c−1yn−1 = h2(d1fn+1 + d0fn + d−1fn−1

+ e1f̂n+α + e−1f̂n−α) , (4.4)

ỹn−α + c−1yn+1 + c0yn + c1yn−1 = h2(d−1fn+1 + d0fn + d1fn−1

+ e−1f̂n+α + e1f̂n−α) . (4.5)

Then for n ≥ 1, our m-parameter family of eighth-order discretization for y′′ = f(t, y)
is given by

yn+1 =2yn − yn−1 +
19

1740
h2(fn+1 + fn−1) +

199
390

h2fn

+
441
1885

h2(f̃n+α + f̃n−α) , (4.6)

where

α =
√

13
42

, f [i]
n = f(tn, y[i]

n , i = 1, 2, · · · ,m ,

f̂n±α = f(tn±α, ŷn±α), f̃n±α = f(tn±α, ỹn±α) ,

and β1, β2, · · ·, βm are free parameters and the local truncation error of (4.6) is given
by

h10

8!× 2216760
y(10)(xn) + o(h12) . (4.7)

In order to use these approximation with (4.6), we need o(h8) - approximation for
ŷn±α and o(h6) - approximation for ŷn±α. We note that because of symmetry it is
sufficient to have o(h7) - approximations for ỹn±α. The following order conditions are
satisfied: 




1 + a1 + a0 + a−1 = 0

α + a1 − a−1 = 0

1
2
α2 +

1
2
(a1 + a−1) = b1 + b0 + b−1

1
3!

α3 +
1
3!

(a1 − a−1) = b1 − b−1

1
4!

α4 +
1
4!

(a1 + a−1) =
1
2
(b1 + b−1)

(4.8)

where α =
√

13
42

.
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Taking a1 + a−1 = −13
42

, we obtain the solution of (4.8) :





a0 = −29
42

, b0 =
377

21168

a1 = −1
2
α(1 + α), a−1 =

1
2
α(1− α)

b1 = − 29
504

α(1 +
1
2
α), b−1 =

29
504

α(1− 1
2
α)

α =
√

13
42

.

(4.9)

The local truncation error for sum formula of (4.2) and (4.3) is given by

1885
222264

h6y(6)(xn) + o(h8) .

In order to get o(h7) - approximations for ỹn±α, based on the order conditions, we have





1 + c1 + c0 + c−1 = 0

α + c1 − c−1 = 0
1
2
α2 +

1
2
(c1 + c−1) = d1 + d0 + d−1 + e1 + e−1

1
3!

α3 +
1
3!

(c1 − c−1) = d1 − d−1 + α(e1 − e−1)

1
4!

α4 +
1
4!

(c1 + c−1) =
1
2
(d1 + d−1) +

α2

2
(e1 + e−1)

1
5!

α5 +
1
5!

(c1 − c−1) =
1
3!

(d1 − d−1) +
α3

3!
(e1 − e−1)

1
6!

α6 +
1
6!

(c1 + c−1) =
1
4!

(d1 + d−1) +
1
4!

α4(e1 + e−1)

α =
√

13
42

.

(4.10)

Let c1 + c−1 = −13
42

, we obtain the solution of (4.10) as following





c0 = −29
42

, c1 = −1
2
α(1 + α), c−1 =

1
2
α(1− α)

d0 =
2233
49392

, d1 = − 1
144

α(1 +
9
7
α), d−1 =

1
144

α(1− 9
7
α)

α =
√

13
42

,

(4.11)

The local truncation errors for sum formula of (4.4) and (4.5) are given by

700843
8!× 467544

h8y(8)(xn) + o(h10) .
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We apply methods (4.6) to the test (2.2),

A(H) = 1 +
H2

12
+

H4

240
+

H6

6048
+

1
3024

m∑

k=1

(−1)k+12k−1βm−k+1 · · ·βmH2k+6 ,

B(H) = 1− 5
12

H2 +
H4

240
+

H6

6048

+
1

3024

m∑

k=1

(−1)k+12k−1βm−k+1 · · ·βmH2k+6 . (4.12)

Thus, we have

A(H)−B(H) =
H2

2
> 0, for all H2 ∈ (0,∞) , (4.13)

A(H) + B(H) = 2− H2

3
+

H4

120
+

H6

3024

+
1

1512

m∑

k=1

(−1)k+12k−1βm−k+1 · · ·βmH2k+6 (4.14)

A(H) cos(H)−B(H)
H2

=
m+1∑

k=2

(−1)k+1
[ 1
(2k + 6)!

− 1
12(2k + 4)!

+
1

240(2k + 2)!
− 1

6048(2k)!
− 1

3024

k−1∑

l=1

2l−1

[2(k − l)]!
βm−l+1 · · ·βm

]
H2k+4 .(4.15)

Based on (4.15) and from the definition of phase-lag error, we have following con-
clusion :

Theorem 2. If the parameter β2, β3, · · ·, βm of (4.1) are given by




βm = − 7
400

βm−k+2 =
3024

2k−3βm−l+1 · · ·βm

[ 1
(2k + 6)!

− 1
12(2k + 4)!

+
1

240(2k + 2)!

− 1
6048(2k)!

− 1
3024

∑k−2
l=1

2l−1

[2(k − l)]!
βm−l+1 · · ·βm

]
(4.16)

then, we obtain a family of eighth-order implicit methods with minimal phase-lag errors

P (H) =
∣∣∣ 1
(2m + 8)!

− 1
12(2m + 6)!

+
1

240
· 1
(2m + 4)!

− 1
6048

· 1
(2k + 2)!

− 1
3024

m∑

l=1

2m−1

[2(m− l + 1)]!
βm−l+1 · · ·βm

∣∣∣H2m+6 . (4.17)

Thus, if parameters β2, β3, · · ·, βm of (4.1) are given by (4.6), we obtain one-parameter
β1 family of eighth - order implicit methods (4.6) with minimal phase-lag error order
2m + 6, which is denoted as M8(β1).

By selecting parameter β1 of methods M8(β1) suitably, so that

A(H) + B(H) > 0, for all H2 ∈ (0,∞) ,
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and considering (4.12), we obtain a family of eighth-order P-stable methods M8(β1)
with phase-lag error order 2m + 6.

Based on (4.13) – (4.17) and (2.5), we can obtain Table 2 as following

Table 2

P-stable eighth-order method M8(β1)

m M8(β1) β1 β2 β3 Phase-lag error P(H)

1 Method I < −2.560009E − 02 3
2×10! |7 + 400β1|H8

2 Method II < 0 − 7
400

9
12! |5 + 308β1|H10

3 Method III < −2.187734E − 02 − 5
308 − 7

400
1

30×14! |7601 + 491400β1|H12

From the Table 2, it is easy to see the P-stable eighth-order methods I, II, III
of Table 2 possess higher accuracy and considerably smaller phase-lag error than the
P-stable implicit methods of [1–4].

5. Numerical Performance

We notice that for nonlinear f(t, y), all the methods we discussed above are implicit,
so an iterative process for computing the solution at each step is needed. Now we apply
the modified Newton’s methods for this purpose.

We consider methods M6(α1), M8(β1) defined in the form:

G(yn+1)− φ(yn+1) = 0 . (5.1)

Let y
(0)
n+1 denote an initial approximation for yn+1, then the modified Newton’s method

for (5.1) is

G(y(i)
n+1) + G′(y(0)

n+1)∆y
(i)
n+1 = 0 ,

y
(i+1)
n+1 = y

(i)
n+1 + ∆y

(i)
n+1, i = 1, 2, · · · . (5.2)

The starting value y
(0)
n+1 is provided by the Noumerov explicit methods

ȳn+1 = 2yn − yn−1 + h2fn ,

y
(0)
n+1 = 2yn − yn−1 + h2

12 (f̄n+1 + 10fn + fn−1) .
(5.3)

The modified Newton’s method converges for h sufficiently small, because |y(0)
n+1 −

yn+1| = o(H6), |1−G′(y(0)
n+1)| = o(h4) and G′(y) is a continuous function of y.
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6. Numerical Illustration

We consider the test problem

y′′ = −λ2y, y(0) = 1, y′(0) = 0, λ = 25 . (6.1)

The problem is solved by using the methods

(i) M4(
1

200
) given by [1] ,

(ii) M6(0) given by [3] ,

(iii) M6(− 5
308

) given by Method 3 of Table 1 ,

(iv) M8(− 5
308

) given by Method II of Table 2.

Using the steplength h =
π

12
, the absolute errors in the solution y(t) are tabulated for

t = 2π(2π)10π, in Table 3.

Table 3

Absolute errors in y(t) for the problem (6.1)

t M6(− 5
308

) of Table 1 M8(− 5
308

) of Table 2 M4(
1

200
) of [1] M6(0) of [3]

π 2.45D − 07 1.84D − 07 2.07D − 05 2.21D − 06

2π 9.22D − 07 8.75D − 07 9.13D − 05 8.92D − 06

4π 5.67D − 06 3.09D − 06 3.81D − 04 5.23D − 05

6π 9.20D − 06 8.54D − 06 8.70D − 04 9.41D − 05

8π 2.87D − 05 2.17D − 05 1.56D − 03 2.8D − 04

10π 3.42D − 05 3.18D − 05 2.44D − 03 3.59D − 04

Notice that in Table 3 the absolute errors for our present sixth- order P-stable

method M6(− 5
308

) and eighth-order P-stable method M8(− 5
308

) are much smaller

than M4(
1

200
) of [1] and M6(0) of [3] because our present method M6(− 5

308
) and

M8(− 5
308

) possess minimal phase-lag error of order twelve.

We now again consider the Duffing equation forcedly by a harmonic function[7]

y′′ + y + y3 = F cos(Ωt), y(0) = yG(0), y′(0) = 0 , (6.2)
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with F = 0.002, Ω = 1.01, yG(t) is Galerkin’s approximation of order nine to a periodic
solution computed by Van Dooren:

yG(t) =
4∑

i=0

a2i+1 cos[(2i + 1)Ωt] ,

where a1 = 0.200179477536, a3 = 0.246946143 × 10−3, a5 = 0.304014 × 10−6, a7 =
0.374 × 10−9, a9 = 0.0. We solved the problem both by our present sixth-order P-

stable method M6(− 5
308

) and by the present Method 3 of Table land M6(0) of [3].

We showed the absolute errors in the computation of y(40π) for a few selections of the

steplengths. From Table 4, it is easy to see that our present method M6(− 5
308

) has

much smaller absolute error than the method M6(0) of [3].

Table 4.

Absolute errors in the computation of y(40π) for the problem (6.2)

h the present M6(− 5
308

) (Method 3 of Table 1) M6(0) of [3]
π

5
3.45D − 05 1.4D − 03

π

10
5.67D − 07 2.2D − 05

π

20
7.91D − 09 3.4D − 07

π

40
8.20D − 11 5.4D − 09
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