journal of Computational Mathematics, Vol.12, No.2, 1994, 123-131.

(0,1,---,m — 2,m) INTERPOLATION FOR THE LAGUERRE
ABSCISSAS*)

Shi Ying-guang
(Computing Center, Academia Sinica, Betjing, China)

Abstract

A necessary and sufficient condition of regularity of (0,1,---,m—2,m) interpo-
lation on the zeros of the Laguerre polynomials L{®)(z) (a > —1) in a manageable
form is established. Meanwhile, the explicit representation of the fundamental
4 polynomials, when they exist, is given. Moreover, it is shown that, if the problem
4 of (0,1,--+,m — 2,m) interpolation has an infinity of solutions, then the general
t .. form of the solutions is fo(z) + Cfi(x) with an arbitrary constant C'.

1. Introduction
» :

Let us consider a system A of nodes
Q'S 1< 2 <+ €24 R22 (1.1}

‘Let P,, be the set of polynomials of degree at most n and m > 2 fixed integer. The
‘problem of (0,1,---,m — 2,m) interpolation is, given a set of humbers

Ukiy RBEN:={1,2,---,n}, e M:=1{0,1,---,m —2,m}, ' (1.2)
to determine a polynomial Ry, 1 € Pry,_; (if any) such that

v ¥

' RO, (zx)=wj, VKEN, VjeM. (1.3)

“ for an arbitrary set of numbers y;; there exists a unique polynomial Rynn—1 € Pmn_1
satisfying (1.3), then we say that the problem of (0,1,---,m — 2, m) interpolation on
A is regular (otherwise, singular) and R,,,-1(z) can be written uniquely as

Boma(z)=")_ ini(z) (1.4)
kEN :
JEM |
'here Tkj € Pon-3 satisfy < gz
rg)(mu) = 6-&”6_?‘#! k,l-"' E Ng jgﬂ 6 M (1.5)
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{
and are called the fundamental polynomials. In particular, for convenience of use q}
set | |

pk(fﬂ) g Tkm(m)*: k=1,2,:+,n. | '. (16

In [1] and [2] the exact condition of regularity on the parameter a > —1 of th
Laguerre polynomials 8 (z) is found for (0,2) interpolation based on the zeros ;;
these polynomials. The problem of determining the fundamental polynomials 18 & ;_;,
discussed. But the latter problem is solved for a = —1 only. For a > —1 the represe -
tation of fundamental polynomials is given only in the case when a is an odd integer
and only on (—o0,0), while a representation on [0, 00) would be more important. Fols
lowing the main idea of [1] and (2], in this paper we attempt to give a necessary & d

sufficient condition of regularity of (0,1,-+-,m — 2, m) interpolation for the Lague :?;;
abscissas. Meanwhile, we develop a method of finding the explicit representation of t -
fundamental polynomials when they exist without exception. Thus, our results iImpre
and extend the ones of [1] and 2]. Finally, when the problem of (0,1,:+-,m —
interpolation on A is not regular, then for a given set of numbers yi; either there
no polynomial Rn—1(z) satisfying (1.3) or there is an infinity of polynomials with the
property (1.3). The possibility of an infinity of solutions raises the question on the
dimensionality of their number. We show that in the case of infinitely many solutio
the general form of the solutions 1s '

Ron_1(z) = fo(z) + Cfilz),

where fo(z) and fi(z) are fixed polynomials and C is an arbitrary number.

2. An Auxiliary Lemma

We first state a lemma given by the author in [3]. To this end we introduce the
fundamental polynomials of (0,1,-:+ym — 1) interpolation. Let Agj, Bk € Ponn—1 DES
defined by £

A‘i‘;)(mv)::ékvéjp! k,!/=1,2,"',ﬂ, j,;z=0,1,---,m—1 (2‘
and } - :
Ba() o= Anunle) = la- s IR, b=L3oon O

where

- wn(2) qu:L' —clz —z1)(xz—x2) (& — c ‘!"
) i (z — ok )wh (k) n(®) =<l L i e (2;

Then we have 3
Lemma. If there is one inder i, 1 < 1 < n, such that pi € Pmn—1 '-;".t"--

properties (1.5) exists uniquely, then the problem of (0,1,---,m—2, m) interpolati

L
f

-
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nvy =?

" qular and

€y (z) = Api(z) — Z A(m](:t:,_,)p,,(:n) e 12, =01, ,m - 2. (24)

p=1

(i Remark. Since the explicit representation for A‘Ljs is well known, by (2.4) it is
sufficient to find the one for p)s. ovd fif

| 3. Main Results

~ In what follows let n be fixed and (1__.1'5 the zeros of wn(T) = L' (z). Write

1 |
=5 (m'-1)(a+1), (3.1)
=3 k (m+c
Vi 2= ( )kfﬂ_k) = k=010 (3.2)
:t' is well known that [2]
. Li(z) = Z Tz" (3.3)

»
satisfies the differential equation

F 212 + (@ +1 = 2)L'(2) + nLE(z) = 0  (3.4)

~ and :
L{(2) = ~aL'y (z) (3.5)

£\ !

The first main result in this paper is the following
Theorem 1. The pmblﬂm of (0,1,---,m — 2,m) interpolation on the zeros of

(ﬂ'] (.’L‘) (& = .-1) 28 -regular zf ﬂnd only lf

b - 5 (-25) 7 (22) (1) #o 6

=0

When a = —1, the problem s always regular.

~ If the problem 1s reqular, then for each i, 1 < i < n, the fundamental polynomial
_ i(z) := pi(z; a) is given by 1 '~,§

pilz) = [ @)™ (=), i g
i i which g; € Pn—1 18 of the form!«= = 1% it
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with certain constants d; and c;, where
1, a> —1,
. = St
ili(@
i'ﬂ‘)( ) . H_:
m'[L“ (:ri)]m_l - o

Qi(z) =

Proof. By the definition of p; we may set
pi(z) = wn " (2)gi(),

where ¢; € P,—1 will be determined later. Then the requirement (1.5) yields

[w:tn_l(m)qi(m)](zﬂ—;)zk = iy ok = 1,2,--,M.

It is easy to see that
1

E(m — 1)ml, (z1)™ 2wy (k)

it (@), =

and

, @)D = (m— Wwh(ze)™

Then (3.12) becomes
Ll en(e) + b EeE) =
9 n i n i _ m!f.&-’:l(ifk)m_z )

k=1,2,:+yN.

It follows from (3.4) that

zrwh(zk) + (@ + 1 — zi)wl(zx) =0, k= 1,2, 2001,

This, coupled with (3.13), gives

m — 1 TkOik
Trq:(zr) + ( 5 Tk f}*) gi(zk) = i (:1:::)"‘_1 Koy =% 15 SRR
: et 1

Or

m—1 ¢ T:0:k
g, (zx) + ( L ’.T) gi(zk) = gorsy E;)m,p k=120
bt A e

Denote by D the differential operator

m— 1
Dy :=a:y'+( :E—"}’) Y.

Then (3.15) implies
:;-51

(3.10). Solving thi

o

Dg;i(z) = Qi(z) — ciwn(Z);

where ¢; is a constant to be determined and Q;(z) is given by
differential equation we get (3.8) with a constant d; to be determined. -
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i- Now let us determine ¢; and d;. To this end, put

n—1 :
. k—0 _ _

r;r

‘Meanwhile we write

{

Qi(z) = Brz®. (3.18)

We distinguish two cases.
Case I. @ > —1. Using (3.17), (3.18), and (3.3), and comparing the coefficients

of zF on both sides of (3.16) we obtain the system of equations with the unknowns

+* 3 0np—-1, Cqe

m— 1
_ ;< — e O 1 T
{ ) ] T oy (k ‘T)ﬂk + YkCi )61:1 k y Ly y Ty (3‘19)

a1 = Qn = Bn = 0.

coefficient determinant of this system is

—y 0 0 | 0 0 0 Yo
: "‘—2_1- 1 —~ 0 0 0 0 %)
0 =% 2-q9 0 0 0 Y2
Dy(a)=| 0ir - 0asmzl 34 0 0
0 0 0 0 - 22 n—-1—-7 Y1
£y TSI | AR SRR 0 =

-:-TExpa.nding the coefficient determinant of this system in terms of the elements of the

last column we get
n n—k
. __1\n+2+k m— 1 — A\E L} ¥
Du(@) = -0 (55) (D u(7)

£ G0
E et 2 n—kJj\k]
.'?_.We know that the system (3.19) has a unique solution if and only if (3.6) is true. By

he lemma this is equivalent to the regularity of (0,1,---,m —2,m) interpolation.
L Solving (3.19) by Cramer’s rule we get ¢;. As for d; we note that by (3.8) and (3.17)

n—1
2

m—1 m—1 .
di=ez2 g(l)=e Y o
' k=0
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To calculate ax we use (3.19) to get

2 - , :
Qg—1 = {ﬁk'—'n:ci+('}'— k)ak}, k=ﬂ1n“1=”'=1-' (3~2U)ﬁ

Case II. a = —1. In thiscase z; = 0 and v = Y = ﬁg — 0. Then the equatmn
corresponding to k = 0 in (3.19) becomes an identity. So we must find another equa.tmn,

To this end, using (3.2) and (3.3) we get

V0 =m =-1, LIED0)=2y=n-1.

Substituting these values into (3.13) yields

(m =DE 1) 40 - g0y = T2
Meanwhile, by means of (3.17) we obtain
(m — 1)2(11 - 1) s (— 113:!"'6,1

Adding this equation to the equation corresponding to k = 1 in (3.19) we get

9 &p -"l-"}']C;:ﬁl | '
m:

* nlm-—1) (—1)”1651‘ (3.21)

At last we obtain the system of equations for this case:

nim-—1 —1)™é;
( )ﬂu+'rlci=51 1 =) -,
2 m!

m — 1 (3.22)

Ok =9 + kag + YrCi :ﬂk,, k=100,

@ =y = 0.
Expanding the coefficient determinant of this system in terms of the elements of
the last column we get |

D.(-1) = (_1)n+2 {n(mz— 1) Z(_l)k(}g - 1)! (mz— 1)"’“‘ Yk T (m; 1)“71}
sy e {Z C) e (53 1)}

k=1

_(_1)“ 1{%( ;1)“-‘“ (:) _ (m;l)“_(m;l)““l} ‘.ﬁ,j

k=0 \ . . 7

= (- l)ﬂ : SiL {(1 | m;lj“;-ﬁgl (m; 1)“'_1}
= (-1)" 24- : {(*"“;'1)"'_*1— (m; l)ﬂ_l} # 0.
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imila.rly, solving (3.22) we can determine ¢;. Mea.nwhile, (3.8) and (3.17) imply

i ' mE Ly
. d; = egi(0) = eap = n(ﬂ:e_ 1) {!31 G + ( 1131! 611} :
"_j; F This completes the proof.

_‘ Although Theorem 1 gives a necessary and sufficient condition of regularity in a
manageable form, it does not provide practical information of regularity on n and o.
The next theorem provides a sufficient condition of this type in which [y] stands for
the largest integer not larger than . |

. Theorem 2. Let a > —1. If for v = [9]

o n> zl(m+ 1)y + (3 - m)y—2] (3.23)
and if for v # [1] it .
i - m — 3)[v]* + (4y + m — 1)[y] + 27

i 27— 1) ' e

.;-";' the problem is regular.

j Proof. Let
fm=1 "k fn+a\ (v
; uk_-( : ) (n_k)(k), bRt R (3.25)

2(n+1—k)(v+1—k)
3 (m — 1)k(k + a)
_,bviﬂusly, (3.23) and (3.24) imply n > [yl + 1. Thus ax >0, 0 < k<~+ 1.
. First we note

Gh_1 = N0k—1, k=1,++,n. (3.26)

A —

€ Th1s 2SS E<Y+1. (3.27)

a,r eanwhile, it is easy to check that (3.23) and (3.24) are equivalent to 7, > 1 for v = 7]
and to 7,41 > 1 for v # [¥], respectively. Thus we have

ar > -1 >0, 1Sk <y + 1. (3.28)

',-T_Fnr the proof of the theorem, if 7 is an integer, then

5
[Dn(e)] = | (—1)*ax

k=0

{; is not an integer, then
sgn ax = (-1, k=Q]+1L,0]+2,:-0n

ind hence

Da(@)] = [3(=1kan| > 3 Joul -

k=0 k=[~] +1

[]

> (—1*ak| 2 a4 — apy > 0.
k=0
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This completes the proof. | | 3
The last result deals with the dimensionality of the set of the solutions when the

problem is singular. |
Theorem 3. If the problem of (0,1,---,m — 2.m) interpolation on the zeros of

LLG)(I') (e > —1) is not regular, i.e., D,(a) =0, then the general form of the solutions
of (1.3) with yx; =0 1s * '
Rmn—1(z) = C[I}gﬂ) (z)]™ q(z) (3.29-:

A

in which C is an arbitrary number and q € Pp_1 15 of the form 8

g(z) e b {d-l- f Lgf)(t)r’?—lei—u?‘ “dt} (3.30)
1 -

- h._.

with a certain constant d.
f and only if

Proof. Obviously, Rmn—1 € Pmn—1 is a solution of (1.3) with yx; =01
Ron—1(z) is of the form

Ron-1(z) = 0P Y(@)g(2), q € Pnt (3.31)

and satisfies s :
WY (z)g(@)2, =0, k=1,2,--:,m. (3.32)

I=I|

Comparing (3.32) with (3.12) and following the line of the proof of Theorem 1 we

show that ¢ = 3.7 _a axa” satisfies the differential equation with an arbitrary number

4
Dg(z) = Cwp(z)

and the system of equations

{ m_g_l'ﬂk-—l"l’ (k—T)ak = C, k= 0,1,:--,m,

ooy o =Y,
which are analogues of (3.16) and (3.19), respectively. Moreover, if we can show t]:lat
equation (3.33) with C = 1 hasa unique solution (3.30), then the proof of the theorem is

~complete. Solving (3.33) with C = 1 we get (3.30) with a constant d to be determined.

To determine d we note &

L ]

Obviously, Dp(a) = 0 means that the system (3.34) has a nontrivial solution ag, =**3
an—1,C. In this case we see that C # 0, for otherwise ag =+ =ap—1=0=0 .*
occur, which is impossible. This shows that the system (3.34) with C = 1 must
solution. On the other hand, from this system we can uniquely solve 3

G e L 'k BB Al SRR
k-1 m__l{’fk-'P('Y )ak}I k=mn,n—1, )
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‘and hence uniquely determine d.
This completes the proof.

£
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