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Abstract

A class of nonconforming finite elements is considered in this paper, which is
continuous only at the nodes of the quasi-uniform mesh. We show that there ex- |
ists an essential estimate which indicates the equivalence relation, independent of
S the mesh parameter, between the energies of the nonconforming discrete harmonic |
extensions in different subdomains. The essential estimate is of great importance
in the analysis of the nonoverlapping domain decomposition methods applied to
second order partial differential equations discretized by nonconforming finite ele-

ments. »

1. Main Result

Let © be a bounded connected open domain in R? with a piecewise smooth bound- -'
ary 99, a;;(z),i,j = 1,2, piecewise smooth bounded functions in (2, and (ai;(z)) a
symmetric, uniformly positive definite matrix in 2. Q is divided into two open subdo— 3

mains 2,2 by an open smooth curve I' | which satisfies
(2 Ny = @, ﬁ1Uﬁ2=ﬁ, Q=8 uUflul.

We make the following definitions:

. ou Ov
a(u,0) = | 3 % B s (1)
2 ou Ov
ﬂk(ﬂ,‘l}) . /k iJZ;lﬂIJ 6331 amj k= 11 2:

Vi = {(vi,v2) : vi, € H' (), vkloq.nen =0, wvi|r = va|r,
ax(vi,0) =0, VO € Hj(%u), k=1,2}.

v is called the a; harmonic extension in Q,k = 1,2, if (v1,v2) € V. Using the trac:e
theorem and a well-known priori mequa.hty[l ﬁ], we obtain 5
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Theorem 1. There exist two positive constants o1, 71, such that
T1a2(v2,v2) < a1(v1,v1) < o1a2(ve,v2), V(vi,v2) € V.

| In what follows, for simplicity, we assume that {2 is a bounded polygonal domain
" in R? with a quasi-uniform mesh Q = {e}, where e , a triangle or a quadrilateral,
. represents the typical element in €2, . Let ) be compatible with the subdomain
. division, i.e.

enT=¢, Yee

f  Let S"(Q) be a conforming finite element space, e.g. the space of continuous piece-
- wise linear or bilinear functions defined relative to the mesh €2;. We define

S5(Q) = S*(Q) N Hy(Q), Th=Mlr,
M) = Sg( g, *k=1,2,
Sg(ﬂk) = Sh(ﬂk) n H&(Qk), N=3 2

Ve = {('Ul 1'”2) '”k € Sh(ﬂk): '”illlf'h = Uzll"m

»
ak(vﬂ,ﬁh) =0, VO, ¢ Sg(ﬂk), k=14.3)

* v is called the conforming discrete ax harmonic extension in 2, k = 1,2, if (v}, v) €
~ Vo. Concerning Ve, we have

Theorem 212, If the mesh Q, is quasi-uniform, then there ezist two positive con-

E

. stants 09, T2 , independent of the mesh parameter h, such that
h _h o
raaz(vy,vy) < a1 (v, v}) < oaaa(v3,v3), V(vi,v3) € Ve

i_; Theorems 1 and 2 are the foundations of the analysis of nonoverlapping domain
?decompusiticm methods applied to second order partial differential equations in the
* continuous case and in the conforming discrete case respectively. The aim of this paper
:is'tc: show that an estimate , similar to Theorem 1 and Theorem 2, is ture for a class
of nonconforming finite elements.

Let T"(Q2) be the set {v" : v* = wh + uh,w" € THQ), uv*|. is a finite order
01)’1101111&1 Ve € Q4,ul(z) = 0,V node = € Q} , where TH(Q) = {+" € C(9) : v"|e is
2 linear function if e is a triangle, or a bilinear functmn ifeisa quadnlateral VE € (4 }.
'__1- ere, a node = € (2 is defined to be the vertex of some e € 4.

1 Th(Q) is a class of nonconforming finite elements, which is continuous only at the
nodes of the mesh (2, and many practical nonconforming elements possess this property
(e.g. [3], [4], [6]). In what follows, we assume that the nonconforming approximate
solution of a given problem exists uniquely and converges to the exact solution of the
problem. | |
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Now, we make the following definitions:
Th(Q) = {v" € T"(Q) : v"(2) = 0,V node z on Ny},
h __mh o '
T*(Q%) = 1o (QHQE
T ()= (v € T"() : v™(z) =0, V node z on I'n},
ou av" 3
A By = f =12 -4
k(u v ) Z E Qij B:c.; 33:33 k pra E

eC {1k t.9=1

Vi = {(v?, v3) 0P € TH), vi(z) = vz h(z),Y node x on L,

Ak('u ,0p) =0, Vo€ Tg(ﬂk), k= 1,2}. ;,J;.

vy is called the nonconforming discrete Ay harmonic extension in Q,k = 1,2, 1f

(vh,v3) € V. The property of Vy is stated as follows:
Theorem 3. If the mesh Qp, is quasi-uniform, then there exist two positive con-_

stants o3, T3, independent of the mesh pargmeter h, such that

rsa(of, o) < Ar(ol o) < oaalvh ) v(vh,vh) € Viv. (1-2)?!
In what follows, ¢ will denote a

The complete proof Of Theorem 3 is given in §2.
in different places, but is mdepen-

seneric positive constant, which is possibly different 1

dent of h. 3
2. The Proof of Theorem 3 :

{

Denote

[ol13.00,0 = z 11,3 olf qpn = }: |'”|1e-.- k=1,2

eCSl eCilk

and define the interpolation operator I : ThQ) — C(Q2) as follows:

voh € THQ), Inoh € TH(Q), (Inv")(z) = v"(z), Vnodez € D, b
D
with regard to Ip, we have e

Lemma 4. There ezxists a positive constant ¢,
andk=1,2,

such that for arbitrary vt € Th(gk}-

“Ihv “ﬂ ﬂk,h < It'5"'!J “U Qi hs IIhU ll Qg h 5 c'” Il S, h

Proof. Tt follows from the interpolation theorem and an ”inverse property” 1mphea :

by the quam-umfﬂrmness of the mesh {2, that B
10" loe < 1o lloe + 1" — Tn*lloe < o™ llo. + chlv?1e < cllt™lloe Ve C Qi

Summing up over all the elements e C i gives the first inequality. The second on¢ e

can be done similarly.
The proof of Theorem 3. Suppaee (uf,ul) € Vn. We denote {z;}2, as the ﬁeﬁ ok
nodes on I'y. \ is a piecewise linear continuous function on 'y, with A(z;) = uy (m,) =

e —————
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Rul(z:), 1 =1,2,---,m. Now, we construct ux € H'(Q4), the a; harmonic extension of
. ), as follows: |
h ﬂ.k(uk,ﬂ) =10, YOE& H{}(ﬂk), -

up = A, R AR | (2.1)
Up = U, on Bﬂk\I‘.

Correspondingly, u} is the nonconforming approximation of u.
For conciseness, we make the following definitions:

Wh() = T*(Q)lg, »
W Q) = _{vh e Wh(Q) : v"(z) = ui(z),V node z € O},

T (%) = {v" € TR(Q) : v"(z) = uf(z),V node = € AN }.

‘- :01' arbitrary wh € Té‘(ﬂk), we have
_ Oﬂ Ak(wh—uﬁ-uk,wh—ut—uk) :Ak(wh—ug?whﬂut)
T h h
+ Ap(ug, ur) — 2Ak (ug, w" — ug)
and then

it Ar(w" — g, w — up) = Ap(w® — uf, w" — u}) + Ap(ui — Uk, UF — Uk

+ 2Ak(wh - ut,ug - 'u;,-,) = Ak(wh — ‘ut,wh . ‘Hi:) : 5 Ak(ﬂt > “k:“i:l — Uug)

( —— 2Ak(wh e ui‘,uk) :_3‘ Ak(u}l: s uk,ui‘ — u;,_.) = Ak(uk, uk).
.Thus,

4 Kk _h h h
Ap(ug,up) < 2[Ax(ug, ux) + Ag(up — ug, ug — ug))

‘. F < 4[Aﬁ:(uka u’k) g Ak(wh = uk:wh e ‘Hk)]-

t follows from the arbitrariness of w” in T}*(£) and the last inequality that

y

o Ax(ui,u) < 4{Ax(wsun) + inf  Ag(w® — u w" - w)). (2.2)
e w GET:I= (ﬂh]

pplying a well-known a priori ineqﬁalityll'ﬁ] to (2.1) gives

! -

A (ug, up) = ap(ur, ux) < 4:::|*t.r,,",@“m.hl= < ﬂl}\lﬂ%lr, (2.3)
F 1

here | - | 1r is the norm of Sobolev space HZ,(I")!1. |
i+ Since W () € H' (%) N T} (), W"(%) C H'(2), it follows from the approx-
Imation properties of Wh(%) that, for 0 <e < %,

inf = Ap(w" — ug wh —ug) < inf  Ap(w" — ui wh—uk)
w“ETE(ﬂk) ( : ) whEW,*:'(ﬂk) ( :

 Sdmic e 1} wh — up, w" = up) < ch®||lugl|%qe 2.4
< whew,{-(n,,)ak( k k) <c | Muklleeay) (2.4)
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by the a priori inequality!’® and an “inverse property” implied by the quasi-uniformness
of the mesh €, we see that &
2e 2e E

h ”uk”HHE{ﬂ ) < ch™|uy lH’i“(an.,) < Clﬂkll o CIM (2.5) 3

It follows from the substitution of (2.3),(2.4) and (2.5) into (2.2) that
Ap(up,up) < cl,\@j, (2.6)

On the other hand, Lemma 4 implies that
Tnuili g, n < clugl? a, a- (2.7)

Since Ihu‘;: =g § l(ﬂk)a Ih'uﬂ ="{, Ihuk‘r = )\, using the Poincare inequality
yields e

O \I

h h
I Inupll}q, < cllnuiliq, = cllnuili g, n- , (2.8)
It follows from the trace theorem that |

"Ihui:”l,ﬁk 2 ﬂlfhu’gl%,ank 2 cuhui‘%,[' == CIM%,I" (2.9)

By the uniform positive definiteness of the matrix (a,-j (:::)) in 2, we see that

» 3
Ak(“k:“k) > ﬂl“kh b (2.10) 3

Combination of (2.7), (2.8), (2.9), and (2.10) gives
A(uf,uf) > c|Ali p (2.11) E
27

(2.6) and (2.11) complete the proof.
Remark 1. If we change (1.1) into

2
Ou Ov
a(u,v) = L‘Jz:: %5 B az; + d(x)uv (2.12) 3

where d(z) > 0 in ©, Theorem 3 holds in this case also.
Remark 2. From the proof of Theorem 3 we know that Ak(uk,uk) is equivalent
to |A|2 ., where X is the restriction to I' of the conforming part of u?, if (u},u}) € VN

Therefore, T"(Q) can be viewed as

TH () = {" . »™ is continuous at the nodes of mesh 2,

h

oM is a finite order polynomial, V e € Q}

e

LE L - Mﬂm&m-mmhﬁmm&ﬂ

Remark 3. By Lemma 4 and the uniform positive definiteness of the matrix
(ﬂ-ij (:t:)) in €2, there exists a positive constant c, such that S 1) o

cAk(Ith‘,Ihvi.‘) < Ap(vP,vp) < Ar(Inol, Log), V(vh, vB) € Vn,

which means that the energies Df nonconforming discrete extension v} and its conform-

ing part I, ;,'uk are eqmva.lent
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3. Conclusion

Based on Theorem 3, we can prove that all existing nnnﬂverlappiﬁg domain decom-

E position methods valid for the conforming finite element discretiza.tiun of second order

. partial differential equations (e.g. [2], [7], [8], [9], [10], [11]) can be generalized to the
. ponconforming discrete case; which has been done by the authors and will be given in
.~ the forthcoming papers.
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