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Abstract
A characterization of linear symplectic Runge-Kutta methods, which is based
on the W -transformation of Hairer and Wanner, is presented. Using this charac-
terization three classes of high order linear symplectic'*Runge-Kuttﬁ niethﬂds‘ are
.+ - constructed. They include and extend known classes of high order linear symplectic
Runge-Kutta methods. . @ - A S o el S

1. Introduction

»

The present paper is a continuation of [13] where characterizations of symmetric and

- symplectic Runge-Kutta methods, based on the W-transformation of Hairer and Wan-
~ ner, were presented. 'Using the characterization of symplectic Runge-Kutta methods,
two classes of high order symplectic Runge-Kutta methods were constructed there. In
‘the present paper we shall discuss a characterization of linear symplectic Runge-Kutta
" methods, which is based on the W-transformation of Hairer and Wanner. Up to now
only symmetric one-step methods are found to be linear symplectic in the class of high
order one-step methods. We shall construct three classes of high order linear symplec-
tic Runge-Kutta methods, which include and extend known classes of high order linear
symplectic Runge-Kutta methods. In this paper we shall continue to use the notation

in [13].

It is well known that the sta.bility function of implicit Runge-Kutta methods may

- be written as

det{] — .zA + zeb?
¥ . R(z)—- (det(I—zA) )’ N | _(1'1)
ft 1R(z)=1+ sz.(_I . I I L B (1.1)

4

In [6] Feng has proved that the necessary and sufficient condition of ]Jnear symplectlc
- schemes is A s b de

. . R(2)R(-2) =1. (1.2)
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From [6] we can easily obtain that symmetnc Runge-Kutta methcrds are linear sym-
plectic. In [13] we have proved

Theorem 1.1. An s-stage RK-method with distinct nodes ¢; and bi # 0 satzsfymg

(}3} C( ) and D(Q withp 2 8 +§ 18 symmatm: if and only of -

a) Pc = e — c for the permutation matriz P,
b) the transformation mairiz X of the method ta,kes the following form

12~

having the residue matriz R, whose (k l) th element r;,; 0ifk -H is even, where the
(i, j)-th element of permutation matriz P, is the Kronecker Bipin e,
In [9] Hairer and Wanner have found. that the stability function in terms of the
transformed RK-matrix X = W AW can be expressed as -~ =
P (z) _ det(] — zX_+ ze;lelT)J |
 det(f - 2X)

(1.4) 4

or

R(z) =1+ ze{(f — zXY e, | (1. 4)Jr
that is, R(z) depends only on X and not on the underlying quadrature formula. Thus,

Theorem 1.1 mnd:ltmn b) shnuld be a chﬂ.raciénzatmn of linear symplectm Runge-Kutta.
methods, ‘which is based on the W-transformation of Hairer and Wanner. Note that

there e}usts a d]ﬁerence between the deﬁmtlon of transfﬂrmat 1011 matnces

Xt =WlAW

- X =WTBAW, :

but it is Ilﬂt essential. The two matrices are related by _:l
" X =wTBwx*. D (. 5)

In genera.l X and X* should possess 1dent1ca.l propertles We can obtain at least the -
following result :

Lemma 1.2. For the tmnsfommtwn matrmes specsﬁed by X* = W 1AW and
X = WTBAW respectively, if one of (X 6161) and (X* — ~—~elel T satisfies condition
b) in Theorem 1.1, then the other does also :f and only if the (k })-th element of matriz -

W*BW vanishes if k +1 is 0dd . Rt TR RO LR DR
Pmaf Let S | g e, G
i B ome e s if_?

w |0 —~f fmg ~ o

I = . @
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. By the assumption and X = WP BWX* we have - |
- e 1 - g
I (.X --%616?) ET = — (X == -2-616{)_ == —WTBW (X* -— }i.ﬂlﬂ,{) .
- On the other hand, there is o . | .
I(X ~3ere] )17 IWTBW(I“ ~ Lee)IT
_IWTBWI’TI(X* - ——elel)fr N
E = WIBWI (X e %elef)fr i
= | I( * E—eléf) i +( "‘12%—16'16%1)“‘-—;'0. "
Themversemalsoabwaus : ~
In Section 2, we shall give a cha.ractenza.tmn of lmea.r symplectlc Runge-Kutta
methods, which is based on the W—tra.nsformatwn of Ha.trer and Wanner and other
results. Using these results the existing linear symplectic Runge-Kutta methods (in-
“cluding block implicit one-step methods and composite multlstep methods) are verified.
~ In Section 3, we construct three classes of linear symplectlc Runge-Kutta methods us-
' ing the charactérization of linear sympletic Runge-Kutta methods. Finally, examples
- of new methods for two and three stages are given .

2. Characterization of lmear ' sympléctic RK-methods

Let § be a domain (i.e. a non-empty, open, connected set) in the oriented Euclidean
space IR?® of the point (p,q) = (p1,-- -, Pdiq1," ,qd) If Hisa Buﬁéiently smooth
. real function defined in {l, then the Hamﬂmma.n system of differential equations with
i Hamiltonian H is given by |
L S amieo Fogmabd, 1sisd @Y
The integer d is called the number of degrees of freedom and £ is the phase space.

. Asmooth transformatmn (p,q) = ¥(p*.q") defined in £ is said to be aymplectic(mth

respect to symplectlc matnx J) if the Janoblan 1,6' ' 33(1(:’ 3)) sa.tlsﬁas
o) . 8(p.0)
J J ‘ Q,
B g B f’?‘“?

wIa +is'the: wcalled sﬁandtrd :aymplectlc matnx

v TJp =

. In-this paper, we reatrict our. interest to one's i‘jf:l.fnéizl:u::»:.‘.sIf h Héh&te‘s‘ the step-
 length and (p”; g")-tlenotes;the iwumerical approximations at time t, = nh to the




104 - | .SUN GENG

value (p(tn),g(tn)) of a solution of (2.1), the one-step method is specified by a smooth |
mapping | - * - | . F-
(pn+1! n+1) ol Wi H(P“ 'n)
and 1y, g is assumed to depend only smoothly on h and H. In numerically éolﬁﬁg .:
the Hamiltonian systems of differential equations (2.1), it is natural to require that
numerical solutions should preserve the property of symplecticity. Then the numerical .:‘-j-':'

method
| (pn+1! n+1) =¢M(Pﬂi n).
should be a symplectic transformation. To sum up, we give the following definitions, ;

Definition 2.1. A one-step method is called symplectic if, as applied to Hamilto- 3
nian systems (2.1), the underlying formula of gmémtinﬁ numerical solutions (p™+, qn-l-.l);
(p"t,¢"*) = Yup(p".q") 15 @ symplectic transformation, that is , | | -

I | ik wide il . ke side’ DU 1
T , ? e o ! oo n _n 9
¢h'HJ¢hiﬂ = a(pn?qn): J 3(19",97") J'.l 3 V(p ) ) € §2 (2 2)

Definition 2.2. A gné-,step method is called linear symplectic if it is symplectic

for linear Hamiltonian systems.
For Hamiltonian systems there exists the relation

is the Jacobian matriz of the transformation.

i i B S
L '.'LIHE:'.E"'... at .::!._.L'I. ]

F

a(f,9)" ,, ;OU9) ' 2.8 _::,

o(pq) - O@g) I |

For notational simﬁ]icity, we assume d = 1 in the following. The Runge-Kutta
methods with tableau |

c; 1 G113 -.. Qls

2 aszy .-« Q2

bi ... b, (2.4)
applied to the Hamiltonian systems (2.1), by virtue of the relation (2.3), we may obtain

3(Pﬂ+1: r.1+1)T J3(P“+1, ﬂ-+1)
™, q") a(Pn:qﬂ) ; | |
" 3 irqi)s 9 44 T .o, 545 /)y S\Fyr 43 - fory

mi; = biaij + bjaji — bibj, - 1<£¢,7<s,

that is, the so-called M matrix _introduced in [2] where it is used to gieﬁne algebraic

stability in the study of stability criteria of implicit -RK-methods. Obyiously, if the

coelBcients of the method (GAVSBHEY. . . < ol i ¢ A sepdelad
mi; =0, 1 <t j<8, or M"—'*BA +A'B "‘bbT = | RAEE R "‘fd
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then the method is symplectic. The result was dmcovered mdependently by Lasagm[m]
:Sanz-Serna[”] andit4l, ‘ - .
-~ For linear Hamiltonian systems, in fact 8(f,9) =(C i8a mnstant matrix, and

d(p,q)

then the second term on the right-hand side of (2. 5) may be expanded as a series about
p2CT JC. Finally, (2.5) becpmes

3(pﬂ+1 qﬂ--l-l)T 3(Pn+1 qﬂ.+1,) | (k—1)
24 ) g 0 g - Y myy UR*H(CT)RIC, (2.6)

- a(p : ) B(P 3 ) k>1 J _

?'.where mfﬂ) =Miy -

A question follows lmmedlately, for linear symplectic methods, what 1s the charac-

i;énzatlon of M®)(k =0,1,2,---) matrix?
- Using (1.1)', expanding (I — Az)™" and (I + zA)"‘l in origin Taylor series about 2

“and inserting them into (1.2) give the following result:
Theorem 2.1. An s-stage implicit RK-method 18 Imear symplectic if and only if

=0 |
and there 15 »
M® - (E(-l) (AT)%- 'MA‘) E=0,1,2,-.
e

~ Corollary 1. For linear symplectic RK- methods,
el Me =0

i necessary but not sufficient.
For example, a 2-stage one-step method with order 2

| 0 0
1 {0 1
5 - | T 1
: § 2

. satisfies ef Me = 0 but is not linear symplectic.
It might be conaectumd that the RK-method which satisfies the conditions

TMe—-D

(Z( 1)‘(AT)“’-‘MA')B -0
'._.: . linear symplectlc The fo]lowlng example gwes 8 negatwe answer. A 3-stage Lobatto-
itype method with order 4 |
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(5+80) ~-(1+48) —(1+8)

¢ 66 . 15 60
1 | (11-48) (5+28) —(1+4P)
2 | 60 15 60
L] qutss) (-45) (485
60 15 60
1 2 R |
6 3 6

linear symplectic. - |

~ Motivated by the above examples, we may conjecture that an s-stage implicit RK- 4
method with order p > s is linear symplectic, B e ' B

2% . .
eT (Z(——I)I(AT)%_IMAI) e =0, k=0,1,2,---,8— | AR (28)

Obviously, even if the answer is affirmative, it is inconvenient to use the relation
(2.8) to check whether a one-step method is linear symplectic. g

For a special class of,implicit RK-methods, namely symmetric methods, we shall
give a set of conditions for checking linear symplectic methods, which is based on M’
matrix, later in this section. Now we discuss symmetric methods from another angle.
In [13] it was shown that an s-stage RK-method is symmetric if and only if for the
ation matrix P whose (4, 7)-th element is the Kronecker 8i s+1—jy 3

permut
A+ PAPT = eb? (2.9) .ff._
Pb=1b (2.10) ]
hold. From this, we can obtain easily the following result: é
Theorem 2.2. Symmetric Runge-Kutta methods are hinear symplectic. ;
C A

Proof. By (2.9) there is |
det(I — zA + zeb?) = det(I + zﬁAﬁT) = det(I + zA).

Fi i e v
L O RN e ey T IR 1 h.:"'_lﬂ‘

Acoording to (1.1), R(z)R(—z) =1 holds. |
Recalling Theorem 1.1 and in combination, with the result [9], that the stability =
function in terms of the transformed RK-matrix X = W-1AW depends only on X and
not on the underlying quadrature_-formﬁl"af., we can obtain g
. Theorem 2.3. An s-siage htgh-mderIRfﬁmﬁthodmth distinct nodes ¢; and b; # 0*;5

T

satisfying B(p), C(n) and D(C) with p =" a+C is lincar symplectic, i the (k,1)-th clement

of the residue matriz R, in the {mnsformation mainz X satisfies riy =0 as k+1 85
5 . ; : IEE.; "3

E‘Uen. | ) - 2 O PR SR Ak % S i
L
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Proof. By WTBe = WTb=¢; and X = W BWX* there is

3 .
: WTB(I —zA+ zebT)W = WTBW — 2X + zere]
% - |
= WTBW(I — 2X* + ze1e1 ).

; Hence formula (1.1) becomes F

3 * T

e F €

% | R(z) det(I zX* 4+ zeq )

o det(I zX*)
Iiurthmore, by Lemma 1.2 and the property of the res1due matiix R, we obtain -

o D) segiaxy

E. YT Tdell-2XY) . det(I-2XY)

‘; ' For symmetric RK-methods conditions (2.9) and (2.10) imply
 Peee—at .  (2.11)

f and ' ' |

M =-PMPT. . & (2.12)

For example, for 42.12), by (2 9) and (2.10) there is
BA+ PBAPT — " =0.
;".Then, adding . 3§ -
(BA+ PBAPT — 0bT)T =0

':' to the formula above we may obtain (2.12). But, under conditions (2.10) and (2.11),
i we cannot obtain (2.9) from (2.12). Then, for arbitrary s (stage of RK-method) there

.is the following result:
¥ " Theorem 2.4. An s-stage RK—method is linear symplectic 1f (2. 10)*‘(2 12) and

C(n)n>s—2 or D(C)C?‘)s-— (213).

hold - |
::-_:_' Proof. Let X = (PW)TBA(PPV) Since Pc =e— c, by the symmetry of Legendre
_f: polynomals we have PPy,(c) = ( l)kPk(c) for k=0(1)s - 1 It then follows that

* By 1)""‘"‘Xk; - (2.14)

1r
I'!l e E . | 1
L 3 & i

&)IldltIOIl (2 12) maybe rewntten.:# e ok
3 | BA+ PBAPT bbT -r-_—(BA + PBAPT ; bbT) '

'e - B e o _“ e .
WT(BA + PBAPT - bbT)W = -(WT(BA + PBAPT bbT)W)T
s i.’ﬂ-s: ;»’u-*,;& Ex EThEE A £ $F1 e ’*’r ST ‘., Ao

==3"XF+-X,<"'GI'Eh ="'(X+X — €16 )T



(for more details see [13] ), that is, the matrix X + X = ere] is skew S}"mmEtriC.
Furthermore, according to conditions (2.13) and (2.14), there is ©

X+)?--'616T=0

and the transformation matrix X must satisfy the condition b) in Theorem 1.1. There-
fore, the method is linear symplectic. | | | E
It may be seen from the proof above that the matrix (BA+ PBAPT — bb") is skew
symmetric and (BA + PBAPT — bbT)e = 0 if the condition s < 3 is used in place of 3
(2.13) in Theorem 2.4 such conclusion holds still. . B
Up to now Lobatto I A and III B methods are found to be linear symplectic

in the class of high order RK-methods(besides symplecfic RK-methods). Their linear -3
symplecticness can be verified easily by one of Theorems 2.9-2.4 because the methods 3
are symmetric. In addition, for example, A-stable block implicit one-step methods[15]

and A-stable composite multistep methods(1] with the form

G = €Yo + hdfa + BBF(fm), n=mr, m=0,1,2,--",

where &L= (d], d2, rety d-r)T: Ym = (yn+1-. Un+42y" " 1'yﬂ+f)T! F(ﬂm) = (fﬂ"[“‘l'.l' fﬂ+21 Ty fn+r J
and B = (bij)er are’also linear symplectic. In fact, A-stable r-block one-step meth-
ods or A-stable r-step composite multistep methods above may be converted into an 3
(r + 1)-stage symmetric RK-method which possesses a special Runge-Kutta tableau 3

010 0 .. O 3
1 di bu b 3
r | r r T
dow
r r T
dr b O (2.15)
™ T r

By (2.15) and the property of the transformation matrix X of linear symplectic meth-
ods, such linear symplectic r-block one-step methods or r-step composite multistep
methods can reach at most 2r-th order. < R

3. The Construction of linear symplectic RK-methods

We construct a family of s-stage IRK-methods_satisfyiﬁ_g_ at least B(28—2),C(s— 2) ne
a.nd D(s — 2), based on the combination h ) S
M(z)=F, P
(z) = Ps(z) + N TS 1(z) + =1

whch is linear symplectic, where _I?.ﬂ;(a;), ¢t = 0,1,2, are Legendre polynomials of

=

i B e

=
-

BP,a(),  (31)

oo - A -IE'-.I.':'-'.- K

B ; .[.' x ."'"

E

degree s —i, i =0, 1,2, respectively. Here we assume that the roots of M(z), c,
and distinct, the weights are determined by B(2s — 2). Furthermore, by the deﬁmtlml

]
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ng W, we compute a matrix W and then choose the transformation matrix.as

1/2 =&

% (a0 - . |

: X = % % "=ikaed | F e (3.2)
4 | €a—2 0 =Ly 101

3 §s-102 0

where & = 5 \/4,‘:?__ : and 01,02 € IR. .

i~ According to Theorem 2.3 and Butcher’s fundamental theorem (3], the four-parameter
fa.mﬂy of IRK-methods with coefficients A = W XW? B, which is linear symplectic and
fbf order at least 2s — 2, is constructed (see [9] IV.5. for details). Besides such results
jiwith the special choice of parameters (d,-ﬁ, oy and o2) we can obtain: |
- a)a=p=0 corresponding to s-stage Gauss-type method :

1) or&er' 23 if o1 = oz = 1[3] ;

2) order 2s — 2 with B(2s),C(s — 2) and D(s — 2), if 01,02 # 1;

3) order 2s — 2 with B(2s),C(s — 1) and D(s—2),ifoy #1and o2 = 1;

4) order 2s — 2 with B(2s),C(s—2)and D(s—1),if o1 =1 and o9 # 1;
b) @ = 0 and § = —1 corresponding to s-stage Lobatto-type methods with order

. & e
3 1) L_Qba,ttg I11 A method if #1 =0 and 02 = o7 P;—l D [5] ;
2)_ Loba,ttﬂ.I.II B method if 01 = 77 P;-l 0 and o2 = 0[5] ;
3) Lobatto III E method if o1 = 02 = 1 P§—1 B [11],[4] 5
4) Lobatto ITI1 S method if oy = o2 # o7 P.;—l 0 and s > 3[4] ;

5) Lobatto III X method if o1 # o2 and, besides 1) and 2) ;
¢) # = 0 and a = 1 corresponding to s-stage Radau I type method :
k. 1) Radau I B method with order 2s — 1 satisfying B(2s — 1),C(s — 1) and
. D(s—1) if 01 =02 = 1[13] ; ; 3 | |
E 2) Called as Radau I C method with order 2s — 2 satisfying B(2s — 1),
j:- C(s —1) and D(s—2) if 01 =0 and 02 = 1; -
31; 3) Called as Radau I D method with order 25 — 2 satisfying B(2s — 1%
E C(s—2) and D(s=1)if 01 =1 and o3 = 0; |
¢ d)f=0and =1 corresponding to s-stage Radau II type method :
b 1) Radau II B method with order 2s — 1 satisfying B(2s — 1),
E C(s—1)and D(s—1) ifoy =0 =1[13}; . | e |
b 2) Called Radau II C method with order 25 — 2 satisfying B(2s — 1),
b C(s—1)and D(s—2)if oy =0and oz =1
3) Called Radau II D method with order 2s — 2 satisfying B(2s — 1),
J_:-C(s —2)and D(s—-1)ifor =1 and 03 =0. | . -'
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The examples of new methods of Gauss type and Radau type for two and three stages
are given in the following. : -- . 3

The 2-and 3-stage Gauss type methods with order 2 and 4 are

1 V3 | 1. ., " T
Ty e Tr e —J—l—ﬂ'

ik




