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NUMERICAL ANALYSIS OF NONSTATIONARY THERMISTOR.
PROBLEM*V

| Yue Xing-ye
(Suzhou University, Suzhou, Jiangsu, China)

Abstract

The thermistor problem is a coupled system of nonlinear PDEs which consists of
the heat equation with the Joule heating as a source, and the current conservation
equation with temperature dependent electrical conductivity. In this paper we
make a numerical analysis of the nonsteady thermistor problem. L°(Q2), W1 ((2)

stability and error bounds for a piecewise linear finite element approximation are

given. £

1. A Mathematical Model and a Discrete Scheme

The model of a nonstationary thermistor problem is derived from the conservation
laws of current and energy (see [1] [2] [3]): |
Find a pair {¢,#} such that

V - (o(u)Vp) =0 in Qr=90x(0,T), (1.1)
© = Qg on 89 x (0,T), | (1.2)
u— Du=o0cu) | Ve [* in Qr, (1.3)
u=0 on 890 x(0,T), (1.5)
w(z,0) =uo(z) in (1.5)

where @ C RY(N > 1) is a bounded domain, occupied by the thermistor; ¢ = ¢(x, 1),
v = u(x,t) are distributions of the electrical potential and the temperature in £,
respectively; o(u) is the temperature dependent electrical conductivity; o(u) | Ve |?
is the Joule heating. Throughout this paper, we assume that 0 < 61 < 0(s8) < @@ <
+oo Vs, € RL.

There has been interest in the problem mathematically (see [1] [2] [3]+and references
therein recent mathematical. Yuan [3] proved the following result.
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Theorem 1. If gy € L0, T;CF(Q), up € C*H{M) N Hy{), 0 < a <,
o(s) € C° (Rl) then problem (1.1)~1.5) has a unige solution (p,u) satisfying

u e CP4(Qr), ¢ € L(0, T; C*+(Q))
and

lull 6.8 £ = < C, |l pooo,rior+8@y) < ¢

where 8 € (0,0), and C depends only on the given data.

As a corollary, we have

Theorem 2. Under the conditions of Theorem 1 and o(s) € CY{R'), ¢g €
L=(0,T; HX(Q)),

(1) If uo € H2() N HY(N), then

we W2 (Qr), V2<P<+o0; ¢€L®0,T;HY Q)  (18)
(2) If uo € H3(Q) N Hg(9Y), then
s € WE(Qr), V2 < P < +oo; u € L®(0,T; H*(Q)) (1.7)

Proof. (1) From Theorem 1, o(u) | Vo |?€ L®(Q7). By the standard parabolic
estimate!”, (1.3). gwes
ue Wil (Qr), Y¥2<P<+x.

Furthermore, by the Corollary in |7]
" 3y e(0,1), ug €C'(Qr), i=12,---, N

Therefore, o(u) € C°(0,T; C*(2)).
By the standard elliptic estimate, from (1.1) we get

¢ € L®(0,T; H*(Q))
(2) From (1.3), we gain
oot — Dotia, = o (Whtiz; | Vo | +20(u) Vo - Vigi € L2(Qr).

It follows that
Uz, € W2 (Qr), V2 < P < +o0. (1.8)

Hence, u; € W;,’O(QT), V2< P < +00.
On the other hand, by the embedding theory, we again have

3 € (0,1), uz,z; € CY (Q1), 6,5 =1,2,+--,N.

Now the theorem is proved.
Problem (1.1)—(1.5) has a weak form as follows, Find u € H (), ¢ € wp + H(S2),

such that
(o(u)Ve, Vi) =0, te(0,T), V¥¢€ Hy(Q), (1.9)

(ug, v) + (Vu, Vo) = (o(u) | Ve 2, v) te€ (0, T)l, Vo € H) (Q),
' (1.10)

w(z,0) = uo({x), = €Q, (1.11)
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From (1.1}, (1.3) can be changed into
us — Au=V . (o(u)pVe).

Therefore, we can define another weak form as follows: Find u € H3(Q2), ¢ € g +
H}(2), such that

(c(WVe, V%), = 0 v € HL(®), (1.12)
(ue,v) + (Vu, Vo) + (o(u)eVe, Vo) = 0, Vv e H(), (1.13)
u(x, Q) = uo(x), x € (. (1.14)

Now we consider the finite element approximation to problem (1.9)-(1.11). Assume
that Q is a polygonal domain in R? only for simplicity. A triangle is employed as the
element in the discretization mesh.

The semi-discrete scheme is defined as follows: Find uy € Sg, wp € gog . Sﬂ, such
that

(o (un)Vion, V) = 0, Vo € 89, (1.15)
(uht,v) + (Vug, Vo) = (o(up) | Vor |%,v), Yo € S}, (1.16)
up(z,0) = Rpup(x), (1.17)

where @} = I s, with I;, the linear interpolation operator from H(2) to Sy, and Ry,
is the Ritz projection H}(2) — Sp. For u € Hj(Q2), Ryu € 59 satisfies

(V(Rpu —u),Vv) =0, VYves) (1.18)
where
Sr = {v(z) € H'() : v(z) is a continuous piecewise linear function},
Sy = {v(z) € S, : v(z) =0 on O9}.

As to the approximation problem (1.15)-(1.17), we are ready to have

Lemma 1. If (pp,up) is a solution of problem (1.15)-(1.17), then ||epll1 < C,
where C is independent of h and t.

We also have

Theorem 3. There exists a unique pair (@p, wp) satisfying (1.15)—(1.17).

The existence is obtained from Schauder’s Fixed Point Theorem and the equivalence
of any norms in the finite dimensional space SJ.

As a consequence of W12 (Q) stability of ¢p, the uniqueness will be given in Section
3.

In this paper, || - ||, || - llx and || - ||, denote the L3(Q})-, H*(Q)- and W*?(Q)-norm
respectively.
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2. L*() and Wh=(Q) Stability of s

Just as in the continuous case, it is difficult to deal with the nonlinear term o(uy) |
Vern |2, which is why we have to know more information on ¢y than Lemma 1 can
show. In this section, we examine the L*°(§}) and W*(Q) stability of @5, which plays
an essential role in the error estimation. The L (1) stability comes from the discrete
maximum principle of (1.15). Just as for the simple Laplacian, we have to place some
restrictions on the regularity of the mesh.

Here we assume

(A1): All triangles in the mesh are acute-angled or right-angled. (2.1)

Lemma 25, Let T be a triangular element; j, k be its two vertices, h;, hi be the
normal distance of vertexzes j, k to their opposite edges respectively; vjx be the angle
between the inward normal vectors of the two edges which are opposite to the nodes j,
k respectively. Then

1 |
,:/;ro'(uh)?vj + Vg = cos(vjk) hiTon /r;a(uh) (2.2)

where v;, v are the node bases of S at nodes 3, k.
Now we can prove the following discrete maximum principle.
Theorem 4. Under assumption (Al), if (@n,un) solves (1.15)—(1.17), then

i h h
e < Y j 2.3
325 95 < o S 1K ve ol -

Therefore ||onllLeo(o,1;Lo(q)) < C, where C is independent of h.
Proof. We will check only the right-hand inequality.

We will prove that the maximum must occur at the boundary. Otherwise, the
maximum takes place only at some inner node &, so we have

k
max =
e Ph = ¥Yh

where ¢}, is a value of ;, at node i.
Now in (1.15), replacing ¢ with the node basis v, yields

(o(un)Ven, Vug) = 0, (2.4)

for ¢, can be formed as pp = }_; @iﬂj (x).
(2.4) can be rewritten as follows:

La(uh) Zcpﬂ?vj -V = 0.
J
Employing the equivalent formula: 3. v;(z) = 1, we have

js; o{up) Z((pi — qpﬁ).Vﬂj - Vo = 0.
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Noting the properties of linear node basises, it follows that

> il — k) =0, (2.5)

i adj k

where 'a adj b’ means ‘a is adjacent to b’,

Qg = Z f o(up)Vv; - Vg,
T adj kj* L
and kj is the edge connecting vertices 7, k.
Under (A1), using Lemma 2, we can see that

ay; <0, V j adjacent to k. (2.6)

Therefore, ap; < 0 implies <,o}'1 = (,oﬁ.

But ag; = 0 if and only if both of the two inner angles, which belong respectively
to the two triangles adjacent to edge k&7 and opposite to the common edge, are right-
angled.

See Figure 1. where ﬂ:gj =0, and ag,, < 0, so we have ¢}' = f,oﬁ. That 1s to say, m
is also a node at which the maximum occurs. If m lies on the boundary, then we get
a contradiction, which proves the theorem. If m is also an inner node, repeating the
preceding procedure, we certainly have f,f:r:.’l = ¢}, and hence, rp}; = goﬁ. Now we come

to
Or = pf V n adjacent to k (2.7)

The last formula implies that ¢ = @f, V z € Q. This is also a contradiction. So (2.3)
is again proved. |

CEakird

Fig.1

Now we begin to examine the Wlo2(Q1) stability of p. First, we give some further
restrictions on the grid.
(A2)!8) The mesh is regular, and satisfies the inverse assumption.
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Set |
e=u—up = (u— Rpu)+ (Hpu—uy) =p+90, | (2.8)

=@ —pn=(p—Trp) + (rnp —pn) =n+¢, (2.9)

where R}, is the Ritz-projection defined in (1.18), and 3, is an operator from g+ Hj (2)
to tpg 4 89, defined as follows: For ¢ € @g + H(Q), rpp € tp’g + 8P, such that

(o(u)V(p — rae), Vu) = 0, Vv € Sp. (2.10)
Obviously, §,£ € SP, and it is well known that
lells < € h*2, inlls < ¢ B>~ s=0,1. (2.11)

Using (1.15), we can rewrite the right-hand term of (1.16) as follows:
' (o(un) | Veon |%,v) = (o(un)Ven, vVpr) = —(a(ur)erVeon, Vv)
+ (o(un)Vp, V(prv)) = —(o(un)orVen, Vv)

3 + (o (up)Von, V(prv — In(ppv)), Vv e SE (2.12) -

where @nv € H3(Q).
By (1.13) and (1.16),

(€2, v) + (V(u — up), Vv) = —(o(u)oV — o(un)onVn, V)
— (o(un)Veon, V(env — In(pnv))), Vv e Sy,

(6:,v) + (V8, Vo) = —((a(u) — o(ur))pVe, Vo) — (o(un)(e — ¢r)Ve, Vo)
~ (o(un)pn V(e — on), Vv) — (o(un)Vion, V(env — In(env)))
— (pt,v), Vv € S;,

8(0) = 0

Observe that ¢p, and v are both piecewise linear functions, and

j{; | V{erv — In(pnv)) [= ZT:‘[P | V(env — In(env)) |< ch;fT | 8;,5(nv) |

= chZf | Gyop Bjv |= ch,f | Gipndjv |
T T £l

< ch||Venlll| Vol < ch| Vol (2.13)
From Theorem 4 and (2.13), using Poincare’s inequality, we see that |
(61, v) + (V6,Vv) < c ([le]l + l|Ell + [VelIVoll + ¢ [Venllo,o RIVY

+ loel-alivlly < e(lloll + 161+ il + 991l + [|9€]) ol
+e h(||Venlloeo + lluel)| Vol Vo € Sp. ' (2.14)
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But, from (1.9), (1.15) and (2.10),
IVE)? < ¢ (o(up)VE, VE) = ¢ (o(up)V(rnp — @n), VE)
= ¢ ((0(un) — o)) Vrap, VE)

= c [|ellI V&I Vraelloo < ¢ Jlellll VE]

l.e.
IVENl < c Jje]]. (2.15)

From (2.14) (2.15), we see that
(6, v) + (V8,Vv) < ¢ h|[Vin|lo,0l[ VOl + € |01 V]| + ¢ Rlluel]| Vo]

Vv € S5.
(2.16)
Replacing v by 8 in (2.16), it follows that
d
2 1017 + V011 < e (F*(IVenllg oo + lluell?) + 1611%)-
By Gronwall’s inequality, noting that #(0) = 0, we get
.} 3
617 + [ 19817 < ¢ 52 [ IV enlR oo + l1uel)
Sc hz(”v‘:ﬂh"LE(u,T;Lm(ﬂ)) + “MH%E(QT)): VOo<s<T. .
From Theorem 2 (1), uy € LP(Q7),V 2 < p < 400, we see that
1| oo (0, 7522¢00y) + VOl L2(0,7:22(02)) < € PV enllL2(0,7;2(02))- (2.17)
Noting (2.15), we have
WVEN < e AliVonll L2700 ()
1.e.
Vel Looo,7;22(00)) < € Al|VonllLago,m;1o0(02))- (2.18)

Now we state the L%(0,T; W1°°(Q2)) stability of ¢, in the following theorem.
Theorem 6. Under (A1}-(A2), and if (vp,un) s the solution of problem (1.15)-

(1.17), then
”whHLE(U,T;WLm(ﬂ}) < C fD‘T’ h suffzczently small

where C is indepéndent of h.
Proof. For the W1°°(Q) estimate of ¢}, we introduce the derivative Green’s function

in (8]. _

Pick any point z € {} contained in the interior of some triangular element 7', and
denote by 8 any of the ﬂperafors 3%(1 = 1,2). There is a function §, € C$(T") such
that | | -
fn S.dr =1, |V,6, |[<ch?°, s=0,1,---. (2.19)
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Green’s function g, € H3(?) is defined by

0b, ‘
(0(urn)Vg., Vv) = ( am',v), i=1,2, Yve H}{Q). (2.20)
We are ready to get the estimate
96, | (522, 9) | 52,8
Voulop < el 22| sp <o sup Lo qup LoD
z; sewit 9l pewbt (|9l
< c||b2)lop V1 <p < 400, (2.21)
where 1/p+ 1/q = 1.
The finite element approximation to g, is defined by
Find g;, € 52, such that
(o(un)V(gz — gn)Vv) =0, Vv € Sj. (2.22)
It is obvious that
IVgnllop < ¢ IV9:llop; vVl < p < +00. (2.23)
]

From (2.19), (2.20), (1.15) and (2.10), we have
9¢ = (8¢,8;) = —(¢, 99;) .
= —(o(un)Vgsz, V&) = —(o(un)Van, V(rre — Vior))
: = —(o(un)Vah, Vrap) = ((o(u) — o(ur))Van, Vrap)
Therefore, by Holder’s inequality,

| € |< cllu — unllosl| Vanlio,g [IVrrelloe (2.24)

By Poincare’s inequality, ||u — upllos < ¢||V(uw — un)l] < c(JIVp| + [[VE])-
From (2.23), (2.21), (2.19), we get

_o4 N

[Vanllop < I16:llop < ch™>*%, 1< p < +oc. (2.25)

Therefore, taking p as 6/5 in (2.25), we can turn (2.24) into

A
| 8¢ |< ¢ (hllullz + [[VO]]) A5, (2.26)
Hence,
~1

IVE L2 o) < ¢ RT3 (hllwl|z20,1;m520)) + 1VOIl200,7;02(0)))- (2.27)

From (1.6) and (2.17), (2.27) becomes
2 2
[ V€l 20,20 (1)) < € B3 + ch3||Vn L20,7;0())- (2.28)

Now, we get
HVSDJ;"LZ(U,T;LW(H}) < ”Th<P||L2(n,T;L===(m) + || V¢ ||L2(0,T;Lm(n))

< ¢+ ch¥ | Venll za(o1:z(ay < C. for h sufficiently small, (2.29)
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where C is independent of h.
- - (2.29) and Theorem 4 implies that the theorem 5 is true.

Remark. Though Green’s function in (2.20) cannot reach higher regularity as
g. € W2P(Q2), that would not cause any sevese olifficulty. We do not require so high
a regularity in the former procedure.

3. Error Estimates

On the basis of L>®(0,T; L*(Q)) and L%(0,T; WH*>(Q1)) stability of ;, we are
ready now to handle the nonlinear term o(uy) | Viop |2, and to derive the error bounds.
From (1.10), (1.16) and (2.15), we have

(62, v) + (V8,Vv) = (o(u) | Vo [* —a(un) | Veon |%,v) — (o2, v)
= ((o(u) — o(un)) | Vo I%,0) + (a(ua)(| Vi [> = | Vion [1),v) = (o1, v)
< ¢ Jlu~unllllo]] + ¢ (IVello,0 + 1Vierllo,co) V(e — en)lllvll + lloell-1lv]l:

< c (llell £ 181l + IVnIDllell + e(I¥all + llell + 181} Venlloeollzll + ¢ Noell—1 /I V2]
(3.1)

subject to
#(0) = 0.

Replacing v by 8, yields

4 | |
1017 + IVOII* < c h? +c |BI* + ¢ K2(IVellf o + lhue?) (3:2)
By Gronwall’s inequality,

101 20,7, 3¢ + 1011220 7,112y < € B? + € R2(|| V|l 2o, 000y + el 2(07)):

From Theorem 2, (1) and Theorem 5, we obtain

101l oo 0,7;22¢00)) + 118l 220,712y < € A (3.3)

Theorem 8. Under assumptions (Al1)-(A2) and conditions of Theorem 2 (1), if
(@r,un) 18 a solution of problem (1.15)—(1.17), then

| — unlleogo,iz2)) + 1w — nll 20,7 11(00)) < € b, (3.4)
and
le — @nrllLeoormr(0)) < € A, (3.5)

where (3.5) comes from (3.4) and (2.15).

Furthermore, we can give the following error estimate.

Theorem 7. Under the conditions of Theorem 6 and Theorem 2. (2), if (@n,un)
s a solution of problem (1.15)-(1.17), then -



