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Abstract

A necessary and sufficient condition of regularity of (0,1, - - -, m— 2, m) interpo-
lation on the zeros of the Laguerre polynomials LS;E)(:E) (e > —1) in a manageable
form is established. Meanwhile, the explicit representation of the fundamental
polynomials, when they exist, is given. Moreover, it is shown that, if the problem
of (0,1,-+-,m — 2,m) interpolation has an infinity of solutions, then the general
form of the solutions is fo(z) + Cf1(x) with an arbitrary constant C.

»

1. Introduction

Let us consider a system A of nodes
DLy <29 << &, N2 (1.1)

Let P,, be the set of polynomials of degree at most n and m > 2 fixed integer. The
problem of (0,1,---,m — 2,m) interpolation is, given a set of numbers

Ykiy ke N .= {1:23*":”}1 jEM:: {0,1,-",??’1-—2,??1}, (12)
to determine a polynomial Ryy-1 € Pmn—1 (if any) such that

RY) (zx)=wms;, VEEN, VjEM. (1.3)

mn-—1

If for an arbitrary set of numbers y; there exists a unique polynomial Ryn—1 € Povni—1
satisfying (1.3), then we say that the problem of (0,1,:--,m — 2,m) interpolation on
A is regular (otherwise, singular) and Ry,,—1(x) can be written uniquely as

Ron1(z) = ) ykjTii(z) (1.4)
kREN
iEM
where 73; € Pmn—1 satisfy
rj(g}(mu) = Ok 0jp, k,w€N, jueM (15)
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and are called the fundamental polynomials. In particular, for convenience of use we
set

pel3) s=Temle), Kk=1,2, ¥ (1.6)

In (1] and [2] the exact condition of regularity on the parameter a > —1 of the
Laguerre polynomials LS,,“)(:I:) is found for (0,2) interpolation based on the zeros of
these polynomials. The problem of determining the fundamental polynomials is also
discussed. But the latter problem is solved for &« = —1 only. For a > —1 the represen-
tation of fundamental polynomials is given only in the case when « is an odd integer
and only on (—o00,0), while a representation on [0, c0) would be more important. Fol-
lowing the main idea of {1] and [2], in this paper we attempt to give a necessary and
sufficient condition of regularity of (0,1,---,m — 2, m) interpolation for the Laguerre
abscissas. Meanwhile, we develop a method of finding the explicit representation of the
fundamental polynomials when they exist without exception. Thus, our results improve
and extend the ones of [1] and [2]. Finally, when the problem of (0,1,::-,m — 2,m)
interpolation on A is not regular, then for a given set of numbers y;; either there is
no polynomial Ry, # () satisfying (1.3) or there is an infinity of polynomials with the
property (1.3). The possibility of an infinity of solutions raises the question on the
dimensionality of their number. We show that in the case of infinitely many solutions
the general form of the solutions is

Ryn-1(z) = fo(z) + Chi(),

where fo(r) and fi(z) are fixed polynomials and C is an arbitrary number.

2. An Auxiliary Lemma

We first state a lemma given by the author in [3]. To this end we introduce the
fundamental polynomials of (0,1,---,m — 1) interpolation. Let Ag;, Bi € Pumn—1 be
defined by

AV (2,) = Bbin, kv =1,2,+-,n, jp=0,1,-,;m—1 (2.1)
and
Byl o= Aol = %(a: — )™ UMNz), k=1,2,--,m, (2.2)
where
lelg) = %) wpl(z) =clz —z1)(x —x2) -+ (T — Zn), ¢ #0. (2.3)

(¢ — zi)wn(zr)

Then we have
Lemma. If there is one indexr i, 1 < i < n, such that p; € Puyn—1 with the
properties (1.5) exists uniquely, then the problem of (0,1,---,m — 2, m) interpolation 13
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reqular and

T

rkj(m) — Akj(:r) T Z AggT)(mu)pu(m)*r k=1, 2, g, 7=0, L, wee iy — 2, (24)

=1

Remark. Since the explicit representation for A/ ;5 18 well known, by (2.4) it is
suflicient to find the one for ps.

3. Main Results

In what follows let n be fixed and (1.1) the zeros of wy(z) := L™ (z). Write

1
¥ 1= -2-(m — 1) + 1), (3.1)
.4 k{nto
e | )kl(n_k)r k=0,1,---,n. (3.2)
It is well known that [2]
LP(x) = Y mr* (3.3)
k=0

satisfies the differential equation

2L (2) + (@ + 1 - )L (z) + nL®(z) = 0 (3.4)
and ;
LT V(2) = ~aL')(a). (3.5)

The first main result in this paper is the following

Theorem 1. The problem of (0,1, ---,m — 2,m) interpolation on the zeros of
LS,,“)(:B) (a > —1) is regular if and only if

2= (-2 () () o 6

k=0

When a = —1, the problem is always reqular.
If the problem is regular, then for each i, 1 <i < n, the fundamental polynomial
pi(x) = pi(z; @) is given by

pi(z) = L ()™ gi(z), (3.7)

in which ¢; € P,_1 is of the form

(m—1)z

w(0) =27 " ot (00 - e ), @
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with sevtain amatants 4, and 2;, where

1, a>—1,
“ { VR T ) (3.9)
shey o — ] (3.10)

m! [L:Eﬂ)(m,-)]"‘—l .
Proof. By the definition of p; we may set
pi(z) = WP (2)ai(2), (3.11)

where ¢; € P,_1 will be determined later. Then the requirement (1.5) yields

W Nao)g(2))™,, = bk, k=1,2,---,n. (3.12)
It is easy to see that
& i 1 s
W~ @), = 5 (m = Vyml (o)™ ()
»

and |
Wt (@)2e D = (m — 1)), (2:)™

Then (3.12) becomes

1

E(m = I)Mﬁ(mk)qi(:ck) - “’:;(ﬂ?k)qz(mk) - 6.,;

b8 m (B8
mlw!, (xp )™ 2 ’ = (313)

It follows from (3.4) that
e (zh) + (e + 1 — 2wy (zx) =0, k=1,2,---,n. (3.14)

This, coupled with (3.13), gives

Zrdik

—1
Trg:(x +(m Tp — )im = , k=1,2,---,n
ki (k) 5%k — 7 ) %i(zk) ot ()]
or
m—1 x;0;
and(on) + (T o =) lae) = e, k=120 (315)
2 miw! (z;)
Denote by D the differential operator
—1
Dy := 2y + (m2 T *‘r)y.
Then (3.15) implies _
Dai(z) = Qi() — ciwn(2), (3.16)

where ¢; is a constant to be determined and Q;(z) is given by (3.10). Solving this
differential equation we get (3.8) with a constant d; to be determined.
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Now let us determine ¢; and d;. To this end, put

gi(z) = ¥ opx”. (3.17)

Meanwhile we write

Qi(z) =) Bzt (3.18)

We distinguish two cases.

Case 1. @ > —1. Using (3.17), (3.18), and (3.3), and comparing the cnefﬁments
of z¥ on both sides of (3.16) we obtain the system of equations with the unknowns

Xy "y Qg 1, G5

2
Q] = Op = Oy = 0.

m— 1
- k— L 3 k:U:]-:”'n ;
{ g1+ (kK — v)og + ee: = G 7 (3.19)

The coefficient feterminant of this system is

~y 0 0 0 0 0 ~o

1’"'2;1 1 — 0O D 0 1

0 m;;—l 2 — 0 0 0 Y2

Dp{a) =] 0 0 mel o 3o 0 0 V3
0 0 0 0 m—1 n=l—y 7 4

0 o0 0 0 ... 0 mLl o

Expanding the coefficient determinant of this system in terms of the elements of the
last column we get

n — n—k |
D,(a) = Z(—l)“*'”k’m( : 1) (Ll)kk!(z)

k=0
£ @)
e 2 n—kJ\k
We know that the system (3.19) has a unique solution if and only if (3.6) is true, By
the lemma this is equivalent to the regularity of (0,1,---,m — 2, m) interpolation.

Solving (3.19) by Cramer’s rule we get ¢;. As for d; we note that by (3.8) and (3.17)

n—1

. d,'=8 5 qt(l)"*em; Zﬂf;;
k=0
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To calculate o we use (3.19) to get

2
Dlg—y = s 1{ﬁk — v+ vy —kax}, k=nn-1,.--,1. (3.20)

Case II. a = —1. In this case ;1 = 0 and v = 49 = Fy = 0. Then the equation
corresponding to k = 0 in (3.19) becomes an identity. So we must find another equation.
To this end, using (3.2) and (3.3) we get

Ly =m=-1, LV0)=2y=n~1.

Substituting these values into (3.13) yields

(m—1)(n— 1) e (—=1)"651
9 QI(O) qt(o) = m! -
Meanwhile, by means of (3.17) we obtain
m-Dm-1) (U
2 m!

’ |
Adding this equation to the equation corresponding to k =1 in (3.19) we get

n(m — 1 —1)™M§;
( ){IU + v1¢; = Bi A A . (3.21)
2 m!
At last we obtain the system of equations for this case:
nim — 1 —1)™M8,
( )CE0+’Y1Ci==ﬁ1 | ) 5,
2 m!
m—1
5 Ck-1T kag +vxei = Oy, k=1,---,n, P
n = fn = 0.

Expa.nding the coefficient determinant of this system in terms of the elements of
the last column we get

Dn(-1) = (~1)™** {“(”"2‘ 2 kz:(—l)*(k o (T e (2 1)“71}
=(_1)ﬂmz_1 {Zn: (mz‘_l)n_k ;!sz(:n,ﬂi k)! (m;l)“‘l}

=(—1)“m;1{é(m;1)n*k R =

=(Hl)nm2—-1 {(H m;l)"’ m;—l (mz—l)“_l}
o) (5o
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Stmilarly, solving (3.22) we can determine ;. Meanwhile, (3.8) and (3.17) imply
. . o 2e (—1)"‘6,—1}
d‘l — 6Q‘1(0) — €Qg = n(m » ].) {{31 Cq + m! .

This completes the proof.

Although Theorem 1 gives a necessary and sufficient condition of regularity in a
manageable form, it does not provide practical information of regularity on n and a.

The next theorem provides a sufficient condition of this type in which [v] stands for
the largest integer not larger than Y.

Theorem 2. Let a > —1. If for v = [v]

n > %[(m +1)7v° + (3 —m)y — 2] . (3.23)

and if for v # [] |
- L n =90+ (dy+m — ) + 2

) 2y ) ’ -

then the problem is regular.
Proof. Let *

m—1\""*(n4a 07
: = i w p 4 3.2
Q. ( 2 ) (ﬂ . k‘) (k)a k Oa 1: y T2 ( 5)

2(n+1—k)(y+1— k)
s - :_, s —— S 3 li.. -26

Obviously, (3.23) and (3.24) imply n > [v]+ 1. Thusax >0, 0< k<~ +1.
First we note

Then

g

T < Tk—1, 2<k<y+1. (3.27)

Meanwhile, it is easy to check that (3.23) and (3.24) are equivalent to 7., > 1 for y = 7]
and to 7,41 > 1 for 4 # [v], respectively. Thus we have

Gr > a5 1>0, 1<k<~+1. (3.28)

For the proof of the theorem, if «y is an integer, then

~

| Dn(e)] = Z("l)kﬂk 2 Gy = 8y-1 > 0.
k=0

If 7y is not an integer, then

Sgn ap = (—-l)k"'”h]“q, k=[y]+1,[+]+2,-+,n

and hence

" [7]

‘DH(Q)‘ = Z(“l)kﬂ'ﬁ: > Z Iﬂk' _ Z(_l)kﬂk > Av]+1 — Ay > 0.
k=0 k=[v]+1 k=0
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This completes the proof.

The last result deals with the dimensionality of the set of the solutions when the .
problem is singular. -

Theorem 3. If the problem of (0,1,---,m — 2,m) interpolation on the zeros of
LL“)(:c) (@ > —1) is not regular, t.e., D,(e) = 0, then the general form of the solutions
ﬂf (1.3) with Yk = 0 s

Rmn—1(z) = C[L{ ()™ q() (3.29)

in which C is an arbitrary number and g € Pp_1 is of the form

g(x) = T {d-!—f L&“)(t)t'"""_legm_;lﬁdt} (3.30)
1

with o certain constant d. | |
Proof. Obviously, Rmn—1 € Pmn-1 is a solution of (1.3) with yz; = 0 if and only if
Rpyn—1(z) is of the form

*  Rpmoi(z) = P\ (2)a(e), ¢€Pa (3.31)
and satisfies
[w?‘l(:r)q(:r}]g;;k =0, k=12,--,m. (3.32)
Comparing (3.32) with (3.12) and following the line of the proof of Theorem 1 we can
show that g = ‘;‘;3 opz® satisfies the differential equation with an arbitrary number
C
Dg(z) = Cwg(z) (3.33)

and the system of equations

m—1 e i
‘—&k—1+(k_7)ﬂk207k: k=0,1,---,m,
{ : (3.34)

.1 — Qn — U,

which are analogues of (3.16) and (3.19), respectively. Moreover, if we can show that

equation (3.33) with C = 1 has a unique solution (3.30), then the proof of the theorem is

complete. Solving (3.33) with C = 1 we get (3.30) with a constant d to be determined.
To determine d we note

L n—1
d=e 2 Z Of.
k=0
Obviously, D,,(c) = 0 means that the system (3.34) has a nontrivial solution ayg, -,
0yn—1,C. In this case we see that C # 0, for ﬂthemise g =+ = Qp-1 = C = 0 would

occur, which is impossible. This shows that the system (3.34) with C = 1 must have a
solution. On the other hand, from this system we can uniquely solve

2
m — 1

X1 — {'Tk"l"(’}""k)ﬂfk}, k=n,n—1,---,1
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and hence uniquely determine d.
This completes the proof.
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