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Abstract

In this paper we discuss Specht’s plate bending element, give the relationships

between f wds or g_'w ds and the nodal parameters (or freedoms of degrees),
F F, UT

P2 :
further light on the construction methods for that element and at last introduce

a new plate bending element with good convergent properties (passing F-E-M-
Test!111),

1. Introduction

The solution of the C!-continuity requirement of Kirchhoff bending with finite ele-
ment models results in complicated higher elements(241{7] Besides the large number
of unknowns, difficulties may also arise from mixed second derivatives at the vertices
taken as nodal variablel®]. To overcome such difficulties, a splitting spline element
method is introduced[E’]*[g], but this always causes complicated computation. From the
practical point of view lower-degree polynomial finite elements are more desirable. Un-
fortunately, the simple elements based on lower degree polynomials for the displacement:
field are non-conforming (not C! compatible). This may cause convergent problems and
unreliable finite approximations. For non-conforming finite elements, there are some
relaxed sufficient convergent conditions, such as the well-known patch test, the inter-
polation test, the generalized patch tests and the F-E-M-Test, instead of the strong ol
continmuty. |

Consider the simple triangular plate bending element whose nodal variables (or
freedoms of degree) are the deflection and two rotations at the vertices. Based on
the quadratic displacement expansion proposed early by Zienkiewicz, this element is
nonconforming because the normal slopes do not match continously along the interele-
ment boundaries. As this element fails in the (generalized) patch test10], Bergan in
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[1] proposed a modified displacement basis, but the modified version does not satisfy
the patch test either. Later, by the aid of the interpolation test, B. Spechtlw] con-
structed an appropriate polynomial displacement basis. This modified element passes
the (generalized) patch test ensuring the convergence.

Specht’s construction is based on the requirement of weak continuity, i.e., the dis-
placement w and the normal slope 2% 3. (and tangent slope $* ) are continuous in the sense
of intergral along the interelement boundaries. The intention of this article is to derive
the relationships between [ F, wds as well as [ 9@ s and the nodal variables, further
to light on construction method for Specht’s plate bending element and to introduce a
new plate bending element with convergence by the aid of Shi’s F-E-M-Test[8).,

To facilitate our presentation, we must agree on certain notations. Given a triangle
K with the vertices B = (2, 3:)(i = 1,2,3) in counterclockwise order and the area A,

we put

Si1=xzy—w3, Ea=z3—21, &=121— 29,
m —=rYy2 — Y3, flz2 = Y3 — U, M =4 — Y3,

12 = o2 + 73, 23—51 + 75, 13 = {5 +n3,

1 1 1 ?
r = 3(5253 + 1mam3), T2 = 3(5351 + m3m ), T3 = 3(5162 + mna2),

1 1 1
i1 = E(Ef +n7), tz= E(E‘% F 7?%): i3 = E(Eg + ﬂg)

Denote by F; the edge of K opposite to the vertex P;, and by 7; and n; the unit
tangent and outward normal on F;(i = 1,2, 3), respectively. Now we let )\; denote the
area coordinates relative to the vertices B, i.e.,

T = Z1A) + Tao + 233,

Y = Y11 + y2A2 + yaAs,
1= A1+ A2 + Ag

such that the triangle K is transformed into the standard simplex K* = {(A1, Az, A3)
A1+ A4+ A3 =1, > 0}.

2. Analysis for Specht’s Element

Specht’s plate bending element was defined in [13] as follows.

Let K be a triangle with vertices at P; = (x;,%:), (¢ = 1,2,3) in counterclockwise
order. Specht’s element has three degrees of freedom per vertex, i.e., displacement at
vertex and the two rotations expressed by the derivatives of the transverse displacement,
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samilar to Zienkiewicz’s element
; b

D(K: w} — (w(Pl)!w-‘r(Pl)?wy(Pl)!w(Pﬁ)ﬂwI(PQ)?wy(Pﬂ)!

(2.1)
w(P3), wz(Ps), wy(P3))" .

The shape function space of Specht’s element is

P(K) = {w e R(K)|f 20 g:: g, IL£EL 3}, (2.2)

where P( “) is the Legendre polynomial of order 2 on F; and

R(K) = span{A1, Az, Az, MAz, Az s, AsAq, A2Ag, AZAs, -
7.
A2A1, A2A023, A1 2223, A Az A2}

It 18 clear that dimP(K) = 9 and the interpolation problem (P(K), D(K,w))
is unisolvable, i.e., for any given constants C = (cy,cg,--,c9)’ there exists unique
w € P(K) such tha.t D(K,w) = C. In [13], B. Specht wrote “The required three
higher terms are assuméd linear combinations of the following cubic and quartic terms:
M Az, AE)s, A1, ATA2)s, A Mz, M AaA3. This assumption is successful”, but why did
B.Specht add those terms? To explain Specht’s element again, first, we introduce an
interpolation theorem.

Let mx(K) be polynomial space of order &k defined on K and denote by A(K,w) the
following interpolation conditions (or linear functionals defined on 7(K))

A(K,w) = (w(P), wa(P)), wy(Pr), w(Ps), wa(Py), wy(P),

(Pg) ’{Um(Pg) wy(Pg) / wds wds, (24)

wdsf ——dS —ds/ *-—ds
v[F'a I3 t’:-",'n-l Fy aﬂ-g Fy 8n3

Theorem 2.1. The interpolation problem (mwq(K), A(K,w)) s unisolvable, that
is, for any given constants C = (ci,cz,--+,c15)7, there exists a unique polynomial
w € m4(K) such that

AMK,w) =

Proof.  For w € m4(K'), by Bernstein-Bezier representation, we have

| 4 ”w
sy E: IRt YEY.
it j+k=4

It is not difficult to show that the coefficients w; ;1 (¢ = 0 or 7 = 0 or k = 0) can be repre-
sented by ?.U(Pl') — Cl,’w’:ﬂ(Pﬂ = C2awy(P1) = C3, ’lU(Pg) = C4,‘IUE(P2) = Cg, ‘wy(Pz) = CH
w(F3) = c7, we(P3) = cg, wy,(Ps3) = cg, fFl w ds = ¢y, sz wds = ci1, fF3 wds = €13.
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By the aid of the barycentric coordinates with respect to K, we obtain

Sw 1 Ow Ow o ' 3!
l — I |, t — _2 1 Ajl\k
126713 9 (T2 L | 3)12 3 8}‘3) (TE ‘i+j+zk » E'Jlk' W +13kA1

3! 3!

*}.-?A + ¢
Ty Wii+1 kA ARAS + 83 Et TR
2133k iti k=3 VIR

+1 Z

i+j k=3

Substituting A3 = 0 on the edge P, P, yields the follﬂwing relation
3!

We integrate the above equation on the edge F3, then

e,
2049 fé%@: —(?‘2 D, Wirjo+ Y wijyio+ts N wtjl)

+7=3 i+7=3 i+73=3
»
Thus we have
Ow
t3(wo11 + wya1) = —2I49 A @48 — tz(waey + woz:)
o dns
) Z Wit1jo — 71 Z Wij+10.
itj=3 i+5=3

Similarily, the following relations are derived

Jw
t(‘wlzl + wy12) = “2323f o ds — t1(wze + w103 )
. Ong
— T3 Z Woj+1k — T2 Z Woik+15
j+k=3 j+k=3
dw
ta(wa11 + w1y2) = —2lgq oo ds — ta(ws301 + wigs)
Fy a’ng
A ke Z Wigk+1 — 73 Z Wit-10k -
k=3 k=3

Hence the coeflicients W11, Wiz1 and wyiz can be represented by C = (¢1,¢9,€3, 4, c5,

CG:C'?;CS:CQ:CIUJ(’:II:EH,'313;(314:(315)T- _

Now we consider the following interpolation problem: Find a 9-dimensional sub-
space Q(K) of m4(K) such that for any given values 1, €2, €3, C4,C5, Cg,Cr,Cg, Cg there
exists a unique w € Q(K) satisfying

w(P) =c1, we(P) =cy, wy(P)= e,
TU(PQ) = C4, ’IUE(PZ) = Cs, wy(Pﬂ) = Cg, (2‘5)

W(PE) . i w:r(PS) — C8, wy(P3) == Cg,
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wds = -ll—z[w(Pﬂ + w(Pp)] + 11_2 [Q’E(Pl) - (PE)]
Fs s
[cl + ta] 45 [63(&:. — ¢z) + m3(cs — 03)]
123 I,
-/F1 wds = [w(Pg) w(Pg)] T [ (Pe) (Ps)] (2.6)
123 5 ] 5y 2 [ﬁl(ca ~ ¢s) +mlco — ce)]
Fz'wds— 12 [w(P3)+w(P1 ]+ [BT (Ps) g:;(Pl)]
= %[ca + ¢1] + 81—2~ [52(02 ~ ¢g) + ma2{ca — o)),
and
ha [ Ow ow
. ./Fa dng - [3?13 S H_(Pz)]
— —2—[——63(62 o 65) T ??3(53 T Cﬁ)]:
dw . Iy Ow
[ o as="2 [ 2P + 5 (P) -

= E[‘_El(cs + ¢cg) + m(es + co)l;

Hw _ Is1 [ Ow _3_1{:_
F Ony o 2 [3nz Wk (Pl)]

= %[-—fg(ﬂg + ¢} + 112(ce + cs)].

Denote by Q; the coefficient matrix, with respect to C = (c1,ca,---,¢g)", of the

I
right hand sides of (2.6) and (2.7), and let Q@ = (Ql ), then (2.5), (2.6) and (2.7) can

be written as

A(K,w) = Q D(K,w). (2.8)
Let the interpolation polynomial be
4! %
w= Z EHTE Wik A }«‘?)t (2.9)
i+7+k=4

Substituting (2.9) into (2.4) yields the following relationship
AK,w)=GX, (2.10)

where X = (wijk)i, ;4 p=s-
Clearly G is a certain nonsingular matrix of order 15 x 15 in view of Theorem 2.1.
Then according to (2.8) and (2.10); we have

GX =QD(K,w).
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Defining

49 »
QK) = {w = ) T Wik M5 € m(K)| GX = QD(K,w)} :
t+3+hk=4 Y

we obtain the following results.

Theorem 2.2. With assumptions as above we have Q(K) = P(K) ( The shape
function space of Specht’s element ) and (Q(K), D(K,w),K ) is just the Specht’s plate
bending element.

Proof. It is necessary to show that for any polynomial w € P(K), (2.6) and
(2.7) are valid. In [12], Shi and Chen have showed that the integrals of normal slopes
of Specht’s element on each edge of K are discretized by linear integral formula. Thus
(2.7) is valid for Specht’s element. Let w ¢ P(K), then from [13] w is a polynomial of
order 3 on each edge of K. Hence equations (2.6) are also valid for w. This completes
the proof. ._

By (2.6) and (2.7), element (QK), D(K,w),K) (K € Aa triangulation) passes the
strong F1 and sErﬂng F2 testi1 1] which ensure convergence,

3. A New Plate Bending Triangular Element

It is known that the strong F1 and the strong F'2 tests ensure the Patch Test for the
plate bending problem, but the strong F1 and the strong F2 tests are indeed stronger
conditions for convergence of finite element. In general, F1 test (not strong F1 test)
can be satisfied when the displacement values at the vertices of the triangular element
are used as the freedoms of degree (or parameters) of the finite element/11), Thus it is
not essential that how to discretise integrals f F, wds (such as (2.6) in the construction
of Specht’s element). It is important to keep the strong F2 test.

Now let us discuss another interpolation problem as follows: Find a polynomial
subspace H(K) such that for any given constants C = (c1,¢2, -, c12)T there exists a
unique polynomial w € R(K) satisfying the following interpolation conditions

' T.U(P]_) = €1, wﬂ:(Pl) — Ca, wy(Pl) = C3,

w(P;) =cqy, wi(P3) = e, wy(P2) = cg,

3.1
‘IU(P3) = €7, w:‘..."(P3) = Cg, wy(_Pg) = Cg, ( )
Ow Ow S |
B 400 fo g da =, [ g do = s
Let
F(K,w) = (tU(Pl):wa:(Pl):wy(Pﬂ,‘lU(Pz),wm(Pz),wy(Pg),w(P:s),
Ow dw Bw \T (3.2)
‘lﬂm(P:i)awy(PS): Fl gn_;dS,‘[Flz 5;;2_{13, [FS —a—nﬂ—3d3) .

We will use the method introduced in [6] to find the interpolation subspace R(K).
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Denote
R(K) = m3(K) @ {d1(radz + 223 + t1A1)(A3 + A3 + 3% AaAa)
tda(rids + r3ds +1222)(A3 4+ Af + 3AA2A3) sl
Fda(reh + Tz 4 t3xs)(AF + A3 + 3A1d2ls) :
t1dy + tods +t3ds =0, d; € R}.

Refer to [6] and the Section 4, we can prove the following --
Theorem 3.1. The interpolation problem (R(K), F(K,w), K ) is unisolvable and
dimR(K) = 12.
Now let the interpolation polynomial
w = B3 + BaXd + B523 + BAiha + BsA3hs
4B A2Ag + BrA3a + Be A3 + BaAiAs + PBroA1A2As
*d](?g}\z -ro A3 + tl.:'kl)(}\% -+ }\g -+ 3)’.1)\2}\3) (3.4)

+ds (’Fl A3 + raAl + tzkg)(:\g + )\? -+ 3)‘1}t2)\3)

+d3('1‘2/\1 + 71 A2 + tg.).g)()x? -+ }\% -+ 3,\1}.2.}\3)

and t1d; + tods + tads = 0.
Substituting (3.4) into (3.2), we have

F(K,w) = Ci2x13X
where X = (ﬁl*r 6‘23{331 )841)85& Bﬁ: ﬁ?: ﬁS: 59: Blﬂ&dlad'Zadv.?t)T and t1d; + t2d2 t3 d3z = 0,

(K C |
- ( (O,w)) - ( 12:13) X where t = (0, 0, 0, 0, 0,0,0,0,0, t1, tz, t3), then

C
( 12: 13) is a nonsingular matrix with Theorem 3.1.
Now we discretise the three integrals in (3.1) as in (2.7), then we have

F(K,w) = G D(K, w)

(GD(K,’LU)) . (Cuxlg X
0 S\t ’

X '= (C”“‘"')_l (GD (K:"”)) . (3.5)
L 0

Let P* (K) = {w € R(K) |wis defined as (3.4) and (3.5) and D(K, w) is the degree
of freedom }, then we have |

Oor

and hence
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Theorem 3.2. The new finite element (P*(K ),ID(K ,w), K) passes the F1 test and
the strong F2 test and hence it converges for the plate bending problem. P*(K) # P(K){
shape function space of Specht’s element).

Proof. For (P(K), D(K,w), K), integral / —~— ds depends only upon the param-

eters on the edge F; in the sense of (2.7). Thus / & 3 ~ ds =0 along the interelement
1

boundary F;. On the other hand, as the values at the vertices of the triangles are
degree of freedoms, we can easily prove that f . Awds = o{||h||2,k,uK, ), Where F; is
the common boundary of K and K. This is just F1 test. With the conclusions of [11]
the finite element (P*(K), D(K, w), K) is convergent over any regular triangulation for
the fourth order elliptic problems. At last it is not difficult to show P*(K) # P(K) by
direct computation.

4. The Proof for the Interpolation Theorem

In this section we will use the constructing method introduced in [6] to find the
interpolation subspa,ce R(K) related to the interpolation conditions (3. 1) or F(K,w)
of (3.2). |

Let w € n{K) and w(z,y) = w(A, A2, A3) where (A1, A2, A3) is the barycentric
coordinate of (z,y) with respect to the triangle K. We associate a function analytic at
0 with each interpolation coudition of (3.1).

w(P1) = w(1,0,0) & e, w(P;) = w(0,1,0) & €2, w(P3) = w(0,0,1) « e,

1 s, o o

w;r(Pl) —~ 2A lnlaAI + "723’12 | 7?33_}.3} w(]".lﬂﬁ D)
1 Xi Al
"“"(WIAI M2 A2 -I-’I)3}13)6 — ZI(A11A2:A3)E ;

| o

wy(Fr) =~ (6155 + &g + & w(1,0,0)
_E(flh + &2 + &323)e’™ = I5(M, Az, Ag)e,
1 % o s,

w;-;(Pz) = E I}Tl 8)&1 I ?}23;\2 | 7?35;-] ‘lU(U, 1,0)

1
o s (mAs+m2Az + 773)\3)*5'3kz = l1(A1, Mg, Ag)e™?,

1 ¢,
wy(P2) = THA [51 oA EZBAE E36A3] w(0,1,0)

1
_‘{l—(é-l/\l + &2 + '53)*3)EA2 = Ia(A1, Az, ’\3)6}\2?
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1 o s, o

we(P5) = 2K [MBx; T 5%, T M on

] w(0,0,1)

1
o —o(mAs+ mda + mds)e™ = (M, da, Ag)e™,

wy(P3) = - [ 2 e ¢

oA E‘a_.xl + €2 +§3—"] w(0,0,1)

, |
H ﬁ(flh E2)g + £3)3)e™ = la(A1, Az, As)e™®,

Sw Cow, . B, 8w B, Buw
s By % = 1250, (P + 3 57250, () ¥ 6 57m, Y
4, &'w |
T 24 argana(P‘) LI
B 1,8 8, 1,8 8 ,, 1,8 8.4 )
B (1t2(a).2 a,xl) 68X 3)\1)}. +24(8A2 a)q) +

0 0 o0
X (1"251; - '»"]_'"3‘}‘—2 + taB_M) ‘LU(].,O,U)

1 1 1
— [1 = 5(;\2 e 51) -+ E()Lg — )k1)2 + 2—4(}‘2 — )&1)3 + - ]
X (1‘2}1 + riA2 + t3}(3)e‘h1 =M ()\1, Ag, )t3)EA1.
Similarily,
ow 1 1 1
—d 14 =(A3 — A2) + =(A3 — X2)% + — (A3 — A2)? ]
[ 3 ds e [14+ 500 = da) + 500 =2+ 51000 = ha)" o

X (r3Aa + r2A3 + tlz\l)e}" = pa( A1, A2, Az)e?,

/F: gn“"-’;ds & [1 + %P(Al ~do) + 5 (= Xa)? + 271 = 0)° +]
X (r1A3 + r3A1 + t;,,u\g)t&z”’k3 = p3(A1, A2, }.3)6}‘3.
Define |
H =span{e)‘1, e?2 e’ Iy ()«1,.};2, A3)eM, la( A, Az, Az)e™, b1 (A1, Ag, Asz)e??,
la(A1, A2, As)e™?, Li(Ar, Az, Az)e™s, a(Ar, Az, As)e™,
p1(A1, Az, As)e?, pa(Ag, Az, As)e 2, pa(A1, Az, A3)e??}

and H ll= span{f; | f € H} where f| is the leading term of the Taylor’s series of f
in H, then from the conclusions of [6] H| is an interpolation polynomial space with
respect to F(K,w).
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Let f be any function in H,
f =cre™ + coe™? 4 c3e™® 4 cali(A1, Ag, )\3)15'1‘1 + c5l1(A1, Ag, /\3)8}‘2
+ cel1(A1, Az, Az)e™® + crla(Ar, Az, As)e™ + cgly(Ar, Ag, Ag)e??
+ cola(A1, A2, A3)e™ + e10p1( A1, Az, A3)eM + c11pa(A, Ag, Ag)e?
+ c1203(A1, Az, Ag)es.

We expand f as the power series at (A1, A2, A3) = (0,0,0) and let the coefficients
of all of the cubic terms be zero, then we have a linear system of ten equations about

€1, -, c12 Which yields the following relations
{21=U, {32——"0, C3=U',

4 32 73C10 N2C12], 7 3 A aCio + &2 12},

B 1 _ 1

;35 = "33[7?3610 e 7?1?11]: C8 A [53010 + 51611]:
1 1

Cg = —“*-[7?1"311 o 7?2612] Cqg — -ﬁ[&ﬂu + 52612],

t3c1o + tic1y + tacyo = 0.

Then we can prove that the coefficients of 1, Ay, o, Xg, A A2 A2 X8 Xoks. Kaks

are also zero and that f is of the following form (here only the quartic terms are
written):

1
f = ﬁcm(?‘zh + 712 + t3A3)(3AT A2 + 30 A3 — A3)
1
+ 5011(1‘3,&2 + 1223 + 81A1)(3A30 + 3h2A3 — A3 — A3)
1
“+ 724‘:12(1"1)\3 + r3A; + t2A2)(3A3’\1 + 3‘)‘3’\1 ) Lok

where t3¢10 + ¢1c11 + tacys = 0. Hence we have, noting that Ay + A3 + A3 =1,
Hl = T3 D {Cm(?‘g)«] + Tl;\g -+ t3/\3)(3)k Ao + 3/\1)«2 e .}ta S - )

+enlrsdo + r2As3 + £1.21)(3A3X3 + 32222 — A2 — AD)

+ C19 (Tl Az + r3A1 + tzl\z)(&\%)ll 3,\3}«% — ,\g — z\"i’) :

|- t3¢10 + L1011 + tacyg = 0}

=" & {dl(‘rg}hg + rol3 + tl}q)(kg —I—- )lg -+ 3A1A2A3)

+ dz(?‘lz\g + r3A1 + tzAg)(Ag + )k.‘;' + 3}t1/\2;\3)
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+ dg(rady + 7122 + £323) (AT + A3 + 3X 1 h2h3)
| t1dy + tody + t3ds = 0: d; € R} = P*(K).

Thus the interpolation problem (P*(K), F(K,w), K) is unisovable.
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