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Abstract

In this paper multistep methods for higher order differential systems of the
type Y(7) = £{4, Y} are proposed. Such methods permit the numerical solutions of
initial value problems for such systems, providing error bounds and avoiding the
imcrease of the computational cost derived from the standard approach based on
the consideration of an equivalent extended first order system.

1. Introduction

Higher order differential systems of the form
Y () = f(t,Y (1), a<t<b,
YY) =0, € €79, 0<t<r—1, r>2 (1.1)

are frequent in a variety of models in physics. These systems arise for example modeling
the motion of a system of particles as determined from the laws of classical mechanics
such as the interaction of atoms and molecules!®!%17 the motion of the solar system
and space capsules®?!l and the evolution of star cluster!®. Other situations where
systems of the type (1.1) appear in a natural way may be found in optics!®, quantum
theory of scattering!”!l or celestial mechanics!?. Apart from these problems, systems
of the type (1.1) arise using the method of lines for solving higher order scalar partial
differential systems(20l.

(1.1) can be written as an extended first order problem!*; however, there are ad-
vantages in studying methods for problems of the type (1.1) for several reasons:

(a) the transformation of system (1.1) into an extended first order problem increases

the computational cost:
(b) the physical meaning of the original magnitudes is lost with the transformation
of the system:; |

* Received January 12, 1994,
1} This work has been supported by the Spainish D.G.I.C.Y.T. and the Generelitat Valenciana grant

GV-1118/93.



274 LUCAS JODAR, JOSE LUIS MORERA AND GREGORIO RUBIO

(¢) by requiring less generality we may able to produce more efficient algorithms;
(d) useful concepts may be identified, leading to a better understanding of what we
require of a nunerical method for problems in our chosen class.

Systems of the type (1.1) with r = 1 have been treated in [13] for the vector case
and in [15] for the matrix case. The special problem

YOU)=7(t), YOa)=, 0<i<r—1, a<t<bh

g spe——

has been treated in [14] for the scalar case.
In this paper, we consider problems of the type (1.1) where f is a bounded, contin-
uous function f : [a,b] x €P*? — P> satisfying the Lipschitz condition |

17t P) — F(t, Q) < LIP—Qll, P,Qe €P¥. (1.2)

This paper i1s organized as follows. In section 2 some preliminaries about rational matrix
functions are included. In section 3 multistep matrix methods for problems of the type
(1.1)—(1.2) are introduced and concepts of consistency, zero-stability and convergence
are defined. A family of examples is given. Section 4 deals with the study of the
discretization error of thultistep methods, in particular it is proved that consistent and
zero-stable methods are convergent.

If A is a matrix in CP”?, we denote by ||A|| its 2-norm, defined in [10]. If B is a
matrix in €P*9, we denote by o{B) the set of all the eigenvalues of B and its spectral
radiius p(B) is the maximum of the set {|z|; 2z € ¢(B)}. If z € o(B), the index of z
considered as an eigenvalue of B, denoted by Ind(z, B) is the smallest non-negative
integer n such that Ker(B — zI)® = Ker(B — zI)**!, [6]. The number Ind(z, B)
coincides with the dimension of the bigest Jordan block of B in which the eigenvalue
z appears in the Jordan camonical form of B. An efficient algorithm for computing
Ind(z, B) can be found in [1].

In an analogous way to the definition of matrices of class M, given in [9] , we
say that a matrix B € €P*? is of class r if for every eigenvalue z € o(B) such that
|z| = p(B), every Jordan block of B associated with z has size s x s with s < r. Finally,
from formulae 0.121 of [11], if ¢ is a positive integer it follows that

= g+l e I 1 1
S I3[ e 2] s 3] B
k=1 |

where last term contains either n or n? and B,, denotes the m-th Bernouilli number.

2. Preliminaries About Rational Matrix Functions

We begin this section with a result that generéllizes lemmas 5.5 and 6.2 of [12].
Theorem 2.1. Let the polynomial p(z) = apz® + ag_12571 + .-+ + ap has only
zeros on the unit disk |z| < 1 and those with modulus 1 are of multiplicity not exceding
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r, where r 13 an integer r > 1. Let the coefficients v, forn =0,1,2,---, be defined by

[cxk + 12 + "'{quk] . Z ya2", |2 €1 (2.1)
n>0

Then there exist constants I'g,I'y,---,'r-1 such thal

n| <To+nl1 +n°To+ -0 ' Ty, n>0 (o)

Proof. We use an induction argument. If » = 1 the result coincides with lemma 5.5
of [12]. Let us assume that the result is true for r = 2,3,---,7 — 1 and let z;,---, z;
be all the distinct roots of multiplicity r of p(2) with |z| =1 for 1 <7 < j, and let us
consider the factorization

p(z) = ;m(2)p2(2), p2(2) = |](z — 2). (2.3)

g=1

Note that po(z} has only j simple roots zy,---,2; with |z]| = 1. If #(z) = arz® +
agp_12°"1 + -+ ag = z*p(z~1) note that p(z) can be written in the form

# o p2) =2p(z7) = p(2)p2(2), s+t=k,
(2.4)
p1(z) = 2°pr(z7™Y), P2(2) = 2'pa(27)
From lemma 5.5 of [12] applied to the polynomial p(z), it follows that
1
~ = E 22", |zl <1, % =supiyma| < +oo. (2.5)
p2(2) 5% n>0

Since p;(z) has all the roots on the unit disk |z| < 1, and those with modulus 1 are of
multiplicity not exceding r — 1, by the induction hypothesis it follows that there exist

constants g, ¥y, -, 1,0,._2, such that

Tn, 12", 2| <1, (2'6)
p1(Z) .,;]
1] < o+ 0Py 4+ +n" Py, n>0. (2.7)

From (2.5), (2.6) and taking into account the product of power series we have

(z) (E Tn,1% )(z ’Yn,zz“) = Z ,‘f.‘ﬂz“, |z| 1 (2_8)
n>0 n>0 |

n>0

where

n
=Y "iYen-ks 120 (2.9)
k=0

From (2.5), (2.7) and (2.9) it follows that
r—2

[¥al <¢Z|'m| <¢22khrh- ZI‘h(Zk"’) (2.10)

k={) 0 h=0 =0 k=0
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From (1.3), for appropriate coefficients c(m, n) expressed in terms of Bernouilli’s num-
bers, we can write

n h+1 .
S k=) elm Bt 0Ehgr-1 (2.11)
k=0 m=0

and from (2.10)—(2.11) it follows that

|Yn ] < Do dbmly des s vl g o 20

Io = ¥[%p ¢(0,0) + ¥y ¢(0,1) +--- + ¥z (0,7 2)] ,

Ly = [ ¥ o{1,0) + 3 e(1, 1)+ + Wpog e(L,r = 3) + ¥y el — )],

I,_o=W [‘I’,._g c(r—2,r—3)+ ¥, _gclr—2,7r — 2)]
I 1=Wc(r— lfr'— 2)

Thus the result is established.

For the sake of clarity in the presentation we recall some concepts and properties
of rational matrix polynomials that may be found in chapter seven of [9]. A rational
matrix €P*? valued function W(z) is a matrix function

_ [Pii(2)
. [Q£j(2)]lﬂi;jﬂp
where p;;(z) and g;;(z) are scalar polynomials and g;;(z) are not identically zero. 1f the
degree of each p;;(2) is less than or equal to the degree of g;(z), we say that W(z) is
finite at infinity. If W(z) is a p X p rational matrix function with det(W (z)) £ 0, then,
in a neighborhood of each zy € €, the function W(z) admits the representation, called
the local Smith form of W(z) at zg ,

W(z2) = Ey(2) diag|(z — 20)"* -+ (2 = 20)"7 | Ea(2) (2.13)

where FE1(z) and E3(z) are rational matrix functions that are defined and invertible
at 29 , and v, -, v, are integers that are uniquely determined by W(z) and zg up to
permutation and do not depend on the particular choice of the local Smith form (2.13).
The integers vy, - - - , v, are called the partial multiplicities of W(z) at zo . The complex
number zg is a pole of W(z), i.e., a pole of at least one entry in W (z) if and only if Wi{z)
has a negative partial multiplicity at zo . Also, 29 € € is a zero of W(z) if 2o is a pole
of [W(2)]~! and this means that W(z) has a positive partial multiplicity. In particular,
for every zp € €, except for a finite number of points, all partial multiplicities are zeros.

The following result is a direct consequence of Lemma 7.1.1 and Theorem 7.2.3 of

9.
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Theorem 2.2[%, Let A; € CPP for0 < j < k-1, and let us consider the rational

| y
matriz function W(z) = [zkf + Ap_q2F 14+ 4 AU] . A complex number zp s a
pole of W(z) if and only if zg is an eigenvalue of the matriz

o I 0 .- 0 |
0 o I -+ 0
C = : : : : (2.14)
0 0 0 --- I
L — Ay —Ay —Ag s —AL |

and then the absolute values of negative partial multiphestres of W/ ) at 2 —
with the sizes of Jordan blocks with eigenvalue zg in the Jordan form of C, that is, with

the partial multiplicities of 2y as an eigenvalue of C.
From the fact that for a rational matrix polynomial W{(z), z0 € C is a pole if 25 is

a pole of at least one entry of W(z), from (2.13), Theorem. 2.1 and 2.2, the following

resuit is proved working component-wise.
8

Lemma 2.3. Let us consider a matriz polynomial L(2) = 2XT+2F"1A,_1+-- -+ Ag

where A; € CP*? | 0 < § < p— 1, are such that the matriz C defined by (2.14) is of
class v and p(C) = 1. Let the matriz coefficients C,, € CP*P be defined by

-1
[L(z)]_l == [I+ Ap_12+ -+ Agzk:l = Z EM y ‘E‘ < 1.

(2.15)
n>{
Then there exist constants pg, p1, p2, -+, Pr—1 Such that
Cal < po+npr+nipe+- 0" p_1, n>0 (2.16)

3. Multistep Matrix Methods

Multistep methods with matrix coefficients have been considered in [15], [18] to solve

first order differential systems. Let us consider the initial value problem (1.1) under

the hypothesis (1.2) and let £ > r+ 1. A linear k-step matrix method for problem (1.1)
1s a relationship of the form

Yitn + Ak—1¥esn-1+ -+ AoYn = h"{ Byfori + -+ + Bofa},

k>r+1 (3.1)

where A > 0, A; € CP*P, B; € CP*?, ¢,

=a+nh and fp, = f(tm,Yn), for 0< i<k,

The method (3.1) is said to be consistent if the matrix coefficients A; , B; satisfy
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the conditions

Ag+ A1+ A+ -+ A1 +1=0
Al +243+ -+ (k—-1)Ap 1+ kI=0
Ay + 2240+ -+ (k- 1)2Ap1 + k2T =0

(3.2)

A1+ 27 YA+ oo+ (k= 1)1, + Kk =0
LA+ 2 4s+ 4 (k- 1) gy + KT - [Bo+Bi+-+++ Bi| =0

We say that the method (3.1) is zero-stable if the matrix C defined by (2.14) is of class
r and its spectral radius is one, p(C) = 1. |

Remark 1, For the scalar case, i.e., p = g = 1, the previous definition of zero-
stability coincides with those given in [15], or in chapter 6 of [12] for the case r = 2.
In fact, from [19}, for the scalar case, the eigenvalue 2z of the corresponding matrix C
defined by (2.14), are such that if the multiplicity of z is m, then there is only one Jordan
block associated with 2z, and it is of dimension m. Thus for the scalar case the above
definition of zero-stability means that all the roots of p(z) = 2* + ag_12* "1 + -+ +ag
are on the unit disk |z’i < 1 and those with modulus 1 are of multiplicity not exceding
r. -

Let us associate to the method (3.1) the difference operator £, which for a positive
number h and a high order continuously differentiable €P*? valued matrix function is

defined by
LIY)Lh =Y+ kh)+ A 1Y+ (k—1DRh)+ -+ AsY (3)

— W {BY Ot + kh) + B YOt + (k- 1h) +--- + Boy (1)}
Expanding the last expression in powers of i, we obtain |
LY (1), k] = MoY () + MiY'(D)h + MoYP(R2 + .- + MY (£)R° +---  (3.3)

where the coefficients M, € €P*P, are independent of Y (¢) and may be computed by
the equations |

My =Ag+A1+As+ -+ Ap_1 + 1,
My =A1+2A2+'--+(k—1)44k__1+k1,

M, 1=A4;1 4+ 2r-—1A2 + .- (k - 1)T_1Ak_1 + kr-l.{,
M, = ﬁ[Al +2"As+---+ (b~ 1)"Ag—y +krf:| — [BU-I-B] T +Bk], (3.4)
1
M, = A1 +2°Ag + -+ (b — 1)* Ay + k1|

1

%)

[0 By + By + -+ (k= 1) By + k7

3=nr+Lf+&uu
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In an analogous way to the scalar casel!?. the order w of the difference operator £
and of the method (3.1), is defined as the unique integer w such that M, = 0, s =
0,1,:--,w+r—-1, M,,, # Q0. |
The following result provides a class of (r+1)-steps consistent and zero-stable matrix
methods.
Theorem 3.1. Let A be a matriz in CP*P of class r such that

1 ¢ a((-1)*4), p(A) <1, k=r+1 (3.5)
and let us consider the method
Yn+k = Ak-—IYn-I-—k—l s R AUYﬂ = hr{kaﬂ.-i-k + Bk—lfn+k—1 o R Bﬂfn} (3-6)
where
Ap = A,
A k-1 ' b —q
Ay =171 A —1*’-1( )I,1<:'<:k--1 3.7
j= (17 () A+ ((T0) 1 s 3.7)
and B; € CP¥*? | 0 <i <k, salisfy
' |
Bo+By+---+ By = F{AI +2"A2+ 3" A3+ +{(k— 1) Ax_1 + krf}. (3.8)

Then the method (3.6) is consistent and zero-stable.
Proof. From the definition of the matrix coefficients A; and B; given by (3.7) and

(3.8) respectively, the consistency conditions (3.2) are verified. In order to prove the
zero-stability we have to show that the matrix C given by

0 | I 0 0
| © 0 1

: : : ;
I;«I::;}A-Fnbd[::ﬂr-wﬁzg]aupﬂbd[::ﬂ:-umbqfaq?;l]ﬁ+[*;1fj
has spectral radius 1 and that C is a matrix of class r. Note that the matrix polynomial
Llz) = 2™ 4 2* e toonr 4 Ag

= 21+ {(-1)F [k 0 1] A+ {—-1f [k . 1] e

I ==

O =

+ {(—1)"""2 [k'l*l] A+{-1) [kgl] I}z""_2 + e

R {(—1)1 [::;} A+ (—1)*1 [‘:: i] I}z+A

= (=l )" {zI —(=1)FA).
From [9] it follows that
~a(0) = {1}uo((-1)*4). ' (3.9)
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First we prove that the index of 1 as an eigenvalue of C is smaller than or equal to
r. It is straightforward to show that matrices (C — I)*~! and (C — I }* have a block

structure of the form

k—1 'k —1] 1
=] Y  f e [ ]I oo (=100 I
k—1 'k — 17
] L P = L P
(-1) (-2 |7 |a 2 ol Y
(C—DF = (—1)k142 (—1)F2 [k" 1] A7 ... (1) [k ~ 1] A% |
1 k—1
k—1 : k—1
(_l)k-—lAk—l (_l)k—z [ ] Ak—l : (_1)0 [ B ] Ak—l
; 1 k—1 .
(C—- D) =
(0 + (14 (-nk—? [";1] 14 (-1)? kI_,,l A o (=t [ﬁ:i] I+ (-1F [t:’;] A ]
(-1)24 4 (-1 43 (~1}3‘[";1] A+ (—ppF—2 "";1 A? - (=1)kH] [t:;] A+ (-1)0 [:: i] A%
(—1)% A2 4 (~1)a®  (~1)F2 [";‘] A% 4 (-1)2 [’“;‘1] A% (-1t [::}] A% 4 (-1)b [:: i] A3

l{—l)hﬂk*1+{_1)Ah (_l}l:—l [EII] Ak—l_l_{_l}ﬂ [k-i“l] Ah - (—1}1 [::i] Ah_l‘-‘l—{—l)h [::1] Ak_l

The block matrices (C — I)*~1 and (C — I)* can be written in the following compact
form |

(C - I+ = (M) My e CP*P 1<i,j<k
(€ — D) = (Py) Pye @ {dijdb
Mi,jz(—l)j[}?_fll]A"‘l ,1<1<k ,2even
J ————
Mi,j=(~1)k—f[?_ﬂm-l ,1<i<k ,iodd
Pij = (-1 [0 |4t (cap Tlatisice ieven
Tk — . ¢ Blue ]
Pi j = (—1)+1-3 [f ﬂ Aty (crp [F T A 1<i<k ioud
[ -J — !
(3.10)
From (3.10) it follows that
Py =—(I+(-1)*4)My, 1<i,j<k (3.11)
or
(G — 1 =Dl = Iy (3.12)

where Dy, is the block diagonal matrix in C*P*kP defined by
Dy = dia,g[ = (I +(-1)F14), -, -(I+ (—1)’=—1A)]. (3.13)
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Hence
_ml,
¥ k 3:2 ’ k__l
Ker(C—~1)]"=<ea=1 ., melP,15i<k, DR(C—-1)""2=0 3. (3.14)
| Lk

Since from the hypothesis (3.5) the matrix Dy is invertible, from (3.14) it follows that
Ker(C — I)* = Ker(C — N)*L. (3.15)

Equation (3.15) means that the index of 1 as an mgenvalue of C' is smaller than or
equalto k — 1 = 7.
Let w be an eigenvalue of the matrix (—1)*A with w # 1 and |w| # 1. Since (-1)*A
is a matrix of class r and p((—1)*A) < 1, it follows that Ind(w, (—1)*A) < r = k — 1,
and
Ker(wl + (—1)¥14)*1 = Ker(wI + (—1)*"1A)*. (3.16)

Let us denote by fi-('g), 1 <1 <k, the i-th block-row of the k& x k block matrix (C —wl)?,
where s is a pBsitive integer, and let us consider the matrix in €P** defined by

3 i e S el g 8 e k—1 5
F = } 41 1)1[ ]f() ,+(_1)k1[k_1] ) (3.17)
Using an induction argument we show that
(3) __ ¢_q1ykts—1 _vk—1 qne [ k““l] [k—l] k—1 [ 1}
e A R Co VetV VS LA ] VA i § SRSVl i B |
g > 1 (3.18)

In order to prove (3.18)} for s=1, note that C-wI takes the form
G el =

_---u|f ¥ CCati )
0 ] ¢ 0

0 D (0 I
= [::;]A—r(—l)k [::1]1 | ['“'1'1],4—{_1)1 {"‘El] r (-1¥ [kEI]A—l- ["’Il]f—wf

if F( = (Fﬁ),Fé;),- -,FJ,E?), note that from the definition of F,ES) , for s = 1 one
gets

e

(~wl) = —(A+ (-1 wl) = (-1)*(Iw + (-1)* 1 4)

- . k—1
Fal —— A4 (1) [ }

R = o Za) A+ [ 1] r+ corren + cor [F 1]

= (0 T [ e (capa)
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T P LR RS YR e [

ke i
e |

k

+ (~1)fIt [ ] I=(-1)# [k j ;] (Tw+ (—1)*14), 2<j <k

Hence
1 1 1
F( ) = (FPEI)'-"“!FJSk))

o=l [ e [f2a et [ ]4

_ (Hl)k(lw+(—1)k_lﬁ)[la_ [:i;] Tosm e (1352 [k;—l] I]

and the equation (3.18) holds for s = 1.
Let us suppose that equation (3.18) holds for 3 = h. From the relationship (C —
wI)** = (C — wI)(C —wI)t , it follows that

ft'(h+1) = wl fi(h) f:(-ti)l: 1 < z < k — 1: (3'19)
k—1
D “Affh)“L{[k—z]A ot 1)"[ ] 1}

+{_[’;j;}A+(—1)*-1[ ] 1+ -+{(—1)*[§j¥]a 3.20)

Féhwl-l) [k ]fh+1}+( 1)! [kzl

— 1

Tk—1 : k—1
1Yk (h+1) | ¢ 1yk—i+l (h+1)
+=1) [k—i]f" +=1) [k—-z+1]f

ff— 1)k_1[:_1] (h+1) _ [ "'1]{ A(h)+[[;::;]A

+{~1)* [k ]I]f“‘) A+ |(-1) {z_l.]A

-

+(—-1)""“*+2[kf;il]f]ff‘w- + (- 1)"[ I]A

R i L R W L S A DR
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Lo 4 £

+(_1)k-—i+1 [ki:—l{l] {-—»wff(h) -f—f(h')}—k

k—1 |
_yk—1 (h) {h) 3 91
+(-1) [k_l]{ wlfi? + 3"} (3.21)
Note that the matrix coefficient of f(h) 2<i:<k-—1,in {3.21) takes the form

e i Y RN e PR P L B S W 07 2

k—1

+ (_l)k—i-'i-l [k ey

] _( 1)&: t+1[w1'+( l)k—lA]
The coefficient of f, (R ig

173 1] A+ (14 [T w= (0l + (-0Fa

and the one of f; (% is

[ ] [(-—-1)*‘= [ 1] A+ [kzl} I—-wI] (Ul + (~1*14),

From these expressions and (3.17) we can write

FMD < (I + (1)1 ) [(-1) £ +Z( k- =+1[: ] £ 4 (-1 5]

= (~1)(wl + (=14 [ 4 (- O L e P P
= (1wl + (~1)F 1) FM = (—1)*h(wl + (—1)*14)

x(wI_l_(._l)k—lA)h[I’_ :“;] . (=1)F1 [k—l]f]

= (—1)b= 1AL 4 (___‘1):;~1A)h+1 [—T,-— “: - ;] =1y [k = 1] I]

Thus 83 .18) holds for s = A+1, and for every positive integer s > 1. From the definition
of FUIi and f( ) we can write

M® r oo | [M® M®

(=T = | ws = locwsio s =W .- |, (2.22)
ORI . (R 7lh)

where g is the block matrix in CP**? defined by

g = [( I s 10 o 1)“ 2 [:_2‘1‘ (—1)F~ 3[2:;11,.”,(—1)01] (3.23)
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and M" is a matrix in ¢k Lpxkp

From (3.22)(3.23) and the invertibility of the matrix W appearing in (3.22), the
system

[ i k—']_ = .
0=(C—whf le=W M C*? 3.24
=0} = plk=1) x, XE (3.24)
 Tle i
can be written in the equivalent form
B
Figkml_} r =0 (3.25)
Considering the system
(C - wlfz=0; z € C, (3.26)
writteu in the form
I ﬂ,f(k} -
j{_‘(k} £ == D . (3.27)
» s e

note that from the definition of ¥ és) given in (3.17), it follows that

k=1 NE
piE o 8, (3.28)
From (3.16), (3.18) and (3.28) the algebraic systems

Iﬂgkm]']n: =, F,gk)m =4, Be kP

are equivalent, Furthermore if T' is the invertible matrix in CFP*Rr defined by

—a{ 7 Co 0 0
0 e - 0 0
T = : : : : (3_29)
k-1 k—1
__1)\k _1yk-1 L e
(—1)%T (—1) 1{ : } kal} w|1 1
; 0 {) ‘e 0 I_

one gets the cquation

g F.é’lfz’““"]-"} B {MW
' | Ii—}gk--wljl “- Fékt] ; ’

From the previous comments the systems (3.25) and (3.27), as well as the systems
(3.24) and (3.26) arc equivalent. In particular

Ker(C —wi)* ! = Ker(C — wl)*

and Ind(w, C) < v =k — 1. This proves that method (3.6)—(3.7) is zero-stable.
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4. Convergence and Error Bounds

We begin this section with a result that will be used below to study the discretization
error of multistep matrix methods.
Theorem 4.1. Let us consider the matriz difference equation

Ltk + Ak 1Lmik—1+ -+ AgZm = hr{B"""mHZ’“""“:“ T B’“‘limHZmH"IH

oo+ Boge o]} + A, m >0, (41)

where A; € OP*P for0< j<k—1, B;n € CP*? for0< i<k, A, € CP*P  _m >0,
h > 0 and let N be an integer with Nh = c. Let B, , B and A be positive constants
such that '

|Busn|| + [Bosym| + - + | Bom] < B, 0<m< N

[Bum| < B, [An]| <A, 0<m<N;0<h < B, (4.2)

and let us suppose that the method (3.1} is zero-stable.
If {Z } i5 a4 salutzan of (4.1) for which

”ZmHEZ,[lgmﬁk—l; (4.3)

then
||Z.,._H < Kyexp(nh™Ly), 0 <n < N, (4.4)
where
BZ;-—[} pi- _ .
L,=Z5=l0 A_1+“Ak.h1|l+'--+‘|Ag , (4.5)
’ (KAZ + AN) YI2l oiN
K* = 1= ? :
1—-h"B Vb)
and pg,- -, pr are given by lemma 2.3.

Proof. Let us write equation (4.1) form=n—k — 3
Zﬂ—j T Ak—lzn—j—l s Ak—ZZn—j—ﬂ it i AUZﬂ_k_j = hr{Bk'n_k_j "ZH_JII

+ Bk—l,n-—k-—juz T, H oo o b B i kg ‘.‘Zn—k—j”} + Apiege (4.7)

If C; € CP*P is defined by Lemma 2.3, premultiplying equation (4.7) by C; , for
7 =0,1,:--,n — k and adding the resulting equations, it follows that the sum c:-f the

left hand side takes the form
Sn = CoZn + [C1 + CoAg—1]Zn—1 + [C2 + C1Ax_1 + CoAg 3] Zpn_a+ -
+ {Ckv1 + CrAp-1+ -+ CoAg|Zpp-1+ -+ [Cpnp + Crp—14-1 + - --

+ Cﬂ_gkAD]Zk +- +[Cﬂ,_..kAk_1 +---+C _2k+1Au]Zk_1 + o+ Cr_rAgZyp.
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Taking into account that Cp = I, we can write

Sn=Zn+ {Cn—kAk—l c e Cﬂ—ﬂkAU}Zk

{Cn—kAk—l s o Cn—2k+1A0}Zk—1 4 oo+ Cp_r Ao Zp. (4.8)
From (4.8) and Lemma 2.3 it follows that

|Sn — Zn| < kAZ > PN, (4.9)

The sum of the right hand side of the resulting equations after premultiplying equation
(4.7) by C; , for 7 =0,1,---,n — k, takes the form,

To = 0" { Bunei||Za|| + [Bi-1.nk + C1Brni-1]|Zns |

+-- 4 [Bopei + -+ + CiBenail|| Zns| + -+ Cn-kBoo|| Zo] }

+- + Apk + CrAng—1+ -+ + Cngho. (4.10)

From lemma 2.3 we cam write
n—k r—1

“An—k o &7 MR R Cn—kAUH <A Z [Z ﬁ:‘.‘fi]
§=0  i=0

n—k
<A Z (Pu +p1j +p2i’ + -+ Pr—ljr_l)
7=0

r—1

< AN pN. (4.11)
=

Since expressions Sy, and T}, given by (4.8) and (4.10) are coincident, it follows that
Zﬂ e (Zn o n.) + Ih. (4.12)
Taking norms in (4.10) and using (4.11) we have

r—1

|Ta|| < h"B.|| 20| + 1" B. (E i) ( nf |Zm])) + ANS- iV, (4.13)
_ =0 m=0 1=0
From (4.9), {4.12) and (4.13) it follows that

“Zn” < h“BIZﬂH +HB, ('i:piN'i) ( ZV_‘_; "Zm") + kAZ E o N + Nﬁi 0N
i= | me: - i=

t=={)

o &

1-wmfa] <1p. (5 0) (5 2] + (47 + N0 E
=l m= i=0

B Xl gl ol (kAZ + AN)( izt piN¥
o < XEE ) (R ) SAZEAEEAY) g
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From (4.5), (4.6} and (4.14) it follows that
2] < L. 3 |2 + K. (4.15)
m=0

from (4.15) and [12], the scalars {”Zﬂ”} satisfy

|Z.|| < K1+ KLY, 0<n < N, | (4.16)

and using the inequality (1 + h"L,)" < exp(nh'L,), from (4.16) one gets (4.4). Thus
the result is established.

The global truncation eiror of the method (3.1) at the point ¢, = a + nh denoted
by ey is the difference e, = Y(t,) — Y, , where Y(¢,,) is the value of the theoretical
solution Y(t) of (1.1) ut ¢,, , and Y,, is the approximate value provided by the method
(3.1). We discuss a bound for the discretization error under the assumption that the
exact theoretical solution Y(t) has w + r — times continuous derivatives in [a,b], where
w is the order of the method (3.1).

Thinking of applications, we shall drop the assumption that the sequence {Yn} is

an exact solutwn of the difference equation (3.1). Instead, we shall assume that {Yﬂ}
satisfies

Yoo+ Ap 1Yok 14+ -+ AgYn = hr{kan_l_k + .-+ Bﬂfn} + 0. K R, (4.17)

where K, and s are non-negative constants and 8, € €C?*? with Hﬁﬂll < 1. We shall

assume that the starting values Y, = Q,,(h), 0 < n < k — 1 are matrices in €P*? such
that |
”Yﬁ_Y(tn)” <h % n=012- - k—1. (4.18)

Substracting from (4.17) the quantity L[Y (¢,), h| defined by (3.3) one gets that e, =
Y (t,) — Y, verifies |

€ntk + Ak-1€nib—1 + -+ + Agen — h""{ Be (Y7 (t, + kh) - fat| + -+
+ Bo [Y(r)(tn) = fn}} = entk + Akt1€ntk-1+ -

+ Aoen = K { Be[f(tn + kb, Y (tnik)) = fri| + -

+ Bo £ (ta, Y(tn)) — f]} = L[Y (tn), h] — B K1 h*FT. (4.19)
Now let us consider the matrix sequence in €P*9 defined by
t Heall* , if :
p _ [ UFlm Y Dllleall , if e #0 i
0 , if e, = 0.

From (4.19)-(4.20), we ¢an write
entk + Ap_1€n4k—1 + -+ Age, = hr{BkPn+k||En+k” t e
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+ BoPallen||} + LIY (t1), ] — 6n K1 (4.21)

Let us denote Z,, = e,, A, = L[Y(t,),h] — 0K 1h*TT | and let us suppose that the
method (3.1) is of order w > 1. In an analogous way to the scalar casel!?, it is easy to
show that |

Hz:[}’_(tn), )| < b6 D, (4.22)

where G and D are positive constants satisfying

D > max {‘ Y*‘“”(t)”, a<t<b}, G= ”M,.+w -, (4.23)
and M, .., is defined by (3.4). Hence,
e ) B - bK< BTGD + Kok (4.2

From (1.2) and (4.20) one gets “P"H <L, ‘BkPﬂ+k‘| < L”BkH . Taking Z =h""1§ and
A = h¥tTGD + K1h**t" , by application of Theorem 4.1 with h > 0, Nh = (t, — a)/h,
it follows that

e
— k
where |
L*_Lf(_i;—;p=‘L), P T P OO T R P

Note that from the equations Nh = t, —a, 0 < n < N, it follows that nh < t, —a, and

LBnh [Puh"*l + p1h™ 2 (tn —a) + - + pro1(tn — @)™ 1]

nh' L, =
Bk”L

1 — A"

LB[tn — a][poh™ + prh™2(tn — @) + -+ + pro1(ta — @)
1 s P Bk“L

Thus as h — 0, nh"L, tends to LB(t, — a)"p,—1 < LB(b ~ a)"p-_1 and the following
result has been established. |

Theorem 4.2. Let us consider a consistent and zero-stable method (3.1) of order
w>1and let h > 0 wzthl—thHBkH > 0 where L is given by (1.2),a <t < b, N =
(t, —a)/h integer. Then the discretization error e, = Y (t,) — Y, satisfies the inequality
(4.25)—(4.26), where po, - - - _p,_1 are given by lemma 2.3, A is given by Theorem 4.1,
and 8§ is e positive number determined by (4.18). |

Remark 2. As a direct consequence of Theorem 4.2, it follows that a consistent and
zero stable method (3.1) is convergent. From a practical point of view it is interesting |
to obtain the starting values Yy, Y7,---, Yi_1 satistying (4.18). To overcome this
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- difficulty we transform the problem (1.1) into the equivalent prﬂblem[4]

. Y (2
r}/l | 2 0
; Y3 {
L= |17, & = ; . ki) = _ s aLtE D (4.27)
Y. : ;
= Pl X)) {2y
Then we apply the one-step method
’ ; I :
& A Yfa T 8 5 QU
Y ’ ¥
1,n+1 1 Y, 1,0 - .
: =h"" " Ipxq + : : : = : ¢ Tl (4.28)
Yen ' Y. |
gl N _f(ttru }’r'l,ﬂ)_J i T:’U“ _ﬂr-l _
where I, is the matrix in €777 with all its entries equal to one.
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