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A new derwatmn is gwen for I.he Quotmnﬁ Smgulm; YalhiﬂDemmpmltmn (QSVD)
of matrix pair (A4, B) having the same number of columns. Certain properties of
the quotient singular values are prmred The relatmn betwcen the QSVD and the

_‘..

SVD is analyzed in some detail: -~ + 7 .4
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§1. Introduction

In this paper, we: will discuss some properties of the Quotient Singular Value De-
composition (QSVD) of a matrix pair (4, B). The QSVD was first proposed by Van
loan’®, who used the name the B- smg-ular value decomposition, and further generalized
by Paige and Saunders(t?], where the name the generahzed singular value decomposition
was used. We adopt in this paper the name QSVD in accordance with the standardized
nomenclature proposed in [5]. Numerical algorithms for computing the QSVD were de-
veloped in [10], [15], [19]). Pa.rallel unplementatmns can be found in [1]. There are
quite a few papers discussing apphcatmns of the QSVD, for example [3], [9], [11}, {14],
[17]. As pointed out by Speiser, the QSVD together with matrix-vector multlphcatmn,
orthogonal triangular decamposltmn (QR decomposition) and the SVD forms the core
linear algebra operations reqmred in most signal processmg.,.pmblemﬁ [13]. Despite all
those efforts, there are still some questlms associated with the QSVD that deserve
further investigation. This paper will analyze some theoretical problems concerning
the QSVD: in Section 2, we give a new constructive proof of the QSVD, which, when
properly adapted, forms a basis of a rinmerical algorithm for computing the QSVD’J
In Section 3, we propose an algorithm for computing the orthonormal basis of the max-
imal common row space of two matncgs having the same number of columns, and we
will show how this problem is mtunately connected with the QSVD; we also touch on
the pmhlem of computmg the orthono:m:lal basis Of the ma::lmal common row space of

Remved Scptembcr 4, 1990 % -
1) Part of the work was suppurted by NSF grant DRC-MIZSH
7) ‘We will not elaborate on the algonthnuc aspect of the QSVD in tlua paper; the reader is referred
to [1], {2, [21] for more details.



S.ome"':Pmperﬁes of the Quotient Singular Value Decbmjibﬂitinn e " | 51

an arbitrary number od matrices; in Sectlon 4, we generahze the Eckart- chng—lv[lrsky

matrix approximation theorem to handle the case of the quotient smgula.r values; in
Section 5, we analyze the relation between the QSVD and the SVD in some detaii
A certain form of generalized inverse of ma.tnces generated by the QSVD will also be
discussed. ' it

Notation. We also use the following _abbreviations in this “paper:

B

Throughout the paper, matrices are' denoted by capitals, vectoss by lower case
letters. The symbol R™*" represents the set of m x n real matrices. || - | is the spectrum
norm and || - [|7 the Frobenius norm. Ahe identity matrix of order j is denoted by I;;
we will omit the subscnpt when the t':lunensmn is clear fmm the cnntext. A zero matrix
is denoted by O with w.u'mus dlmensmns _'We alsu adapt the foﬂ0m3 convention for
block matrices: whenever a dJmensmn mchcatmg mteger in a block ‘matrix is zero,
*the correspond.mg block row or column’ should be- onntted and all- dxpressmns and
equations in which a blac.'lc matrix of that block TOW Or bluck cnlumn appears can be

discarded.

ra = rank(A), rp=rank(B), r4sp = rank (A) .

,52. A New Constructive Proof of the QSVD

In this section, we will give a constructive proof of the QSVD using the SVD and
the Gaussian elimination techmque The presentatmn of the theorem is a dual and
slightly generalized version of Theorem 2.3 in [11], where the case of two matrices
having the same number of rows is dxscussed The techniques used in our proof are
quite different from those in [12] and {18]. Extension of the techniques to handle the
case of matrix triplets can be found in [20]. As a further generalization in (6] we have
provided a systematic and unified treatment for a tree of generalizations of the SVD
for any number of matrices with compat:tble dimensions. |

Theorem 2.1. Let A€ R™ " and B ¢ RPX™ Kave the same number of mlumns
Then there ezist orthogonal matﬂces U,V. and Q such that

UTAQ = £A(L,0), VTBQ = 2p(L,0), (2.1)
with M. e
L1 E 1 2 8
1(I 0 oV (o 0'0 _
Pa=2|0 C 0O, Bp=2{0 S 0| - (22)
3X0 O e g o "0‘”?:.*%
_ ) wf Y e i 1 J& : - £ iy
where Fee w0

C d'lag(af-i-h tﬂf'l'l)l | S = d.lag(ﬁ.-ﬂ,-ﬂaﬁ“)‘ _
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1>ap12 2 04s>0, 0<Prp1 < - <Brsa<l,

a?+pF=1, i=r+1,-,r+s. . - (23)
The block dimensions of £4 and Tp are as follows: ' |

block columns of 4 and Tp blodc-rows of £, blccii rowsl of g

| 3 8 3
3 k—r—38 m—r—38 _I k—r—s

where - | |
r=1TAB — 7Th, _J='I'A+1'B—'I'".I[B, k=1"..-lB_?

Fhe structure of L is the following: L = (Li;)};—y is lower triangular with Ly, and
L.a diagonal matrices of order r and k —r — s 'r‘é.gpectit}ely. The diagonal elements of
L1y and Lss are positive and are ordered in ﬁoﬂin&éﬂ&iﬁjmdgnitude.-' "Speciﬁcdllj; let
0; = 0rpifBryi (=1, ,$) and CS~! = diag (03, sy, ,ar;',;.f,,),'wher-e Ty > o > oy,
with S_, 8; = 8, represent the distinct elements of the diagonal entries of CS-Y. Then

1=—1

the (i,i) diagonal block L € R**% of Lys(i = 1,---,1) are diagonal matrices with

positive diagonal entries arranged in nonincreasing magnitude. -
Proof. The proof donsists of four recursive steps, each of which brings us closer to

the desired form in (2.1). In each of the first three steps, the transformation to the

next step is of the following form:
Arir = UTALPe, Biy = Vil By P, (2_-4)

where U, and V; are orthogonal and P; is nonsingular. The matrices Ay and By are
the transformed results of A and B at step k, which are initially set to

A1 — A, Bl = H.
Step 1. Applying the SVD of B, we can decompose B as

T gy = [ © _O)
where £, = diag(s;,--+,s¢) and 8 > -+ > 8¢ > 0, and we have t = rank (B). Set
U, =1, V3=0%, P =vW® diag(l,E7"),

and recall equation (2.4) with k = 1. The pair (4, B} is transformed to
n—t t ' O O |
Az = (Agz), Agz}] and Bz = ( § ) ‘
, | 0 1
- Step 2. Let the SVD of A?) be o ae

(21T 2(2y/(2) _ (zz' 0) E
(U ) Al V O O L)

where Xy = 'diag' (ty,---,tr)and g 2 - 24 > 0,i.e., r = rank (—A(f))'. Setting
| U, =U®, Va=1I, P, = diag(V®,I)disg(S7',1)
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lJeads to
1 2 3 * A
1/1 0o AD\ XL 5. 2
Az = e row |[r| m—-r |
cauan:_n—r—t 4

The block dimensions of A; are shown in the tabular on the right.
remains the same B3 = B,.

3
Step 3. Let the SVD of ALY be.

Moreover, B3

where X3 = diag(wy,---,w,) and wy > +<- > w, > 0, with s = rank(Afa]). Further-

more, let o; = wi(l + w2 and Bi=(1+w?) VY2, i=r+1,---,r+s, and

C= djag (a‘l‘-l-ll iy af-l-l)*l. §= diag (ﬁf'i-li mime ;ﬂf-l-l)'
It is easy to chegk th'at'a;,ﬁ,:(i =r41,--- ,‘r + 5) satisfy (2.3). Setting
Uy = diag(I,U?), V3 = diag(,(Vv)T),

"
P (I Ais ) diag (I, V®) diag(Z, 8, I)
= e ) sty d 3y
, 0 I .

gives rise to

1 2 3 4
1/I 0 O © 2 jL[ 2 | 3 4
A= 2|10 O C 0|, TOW r 8 m—7r— 8
3\0 0 0 O calumnlr n——r—tw s {—3
and similarly
1 2 3 _ |
. 1{0 0 O 1 ]2 3
B =20 § 0|, row |p—k+r|s|k—r—s
3\0 0O I columm | n~t |s t—s

After applying certain suitable permutations II; and II;, which of cause are orthogonal
transformations, and setting & = t + r, we obtain

A,ﬁ = Agll; = (EA,O) Bs = H2A4H1 = (EB,O)
where L4 and Xp are of the form in (2.2).

Step 4. We ﬁrst a.ccumu]ate all the transforms applied to the nght -hand side of

| _(A Byin the prev‘iauﬁ steps to a single m'ai:rm = P1 P3P3H1 Usmg a mant nf the-
QTf ’ﬂecompmtlo’il ‘We can factorize P as |

_'I" e :-. qi'?i I §

% e !.'-I I“ : e alieee s o T - __H.i-. o i_, -
- k‘l“- : ER '!j!.- _].'.{.-, P Ql - E-" -;_ JLARTE ] 3 -r_ r l-:.- +..|F "- - 1 LI P} B * : :' A, i% d-|. o g I.-l-h .
d 5 . ’ % ' i - b . ; .
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where L( } € R*** is lower triangular, and @, is orthogonal. Let Lgll) = (Lm : ;=1 De
pa.rtltmned compatlbly with the block column partitioning of X4 and Y g, and let the

SVD of L,y and L33 be

where Ly, and L33 are dmganal matrices with pnmtlve d.lagnnal entries arranged in
nonincreasing order; similarly let the SVD of Lm ¢ R**% _the (%,1) diagonal block of-

Ly (i=1,--+,1), be of the following form
(U )TL(:]“ L(z] ‘ .= 1'....‘] |

il L

where L[ ) is diagonal with positive d.lagﬂnal entries arranged in nomncreasmg order.
Let ., __
' 0 = diag{Bh,<-, ), V= ding (-, W),

and accumulate orthngonal transformations: » |
U7 = diag((U3*)7, 7, (Ué“’)“‘)nzvsvzvh N
vT = diag (US)T,7,(U; 4})T)V3V2VL
and the nonsingular transformations: .
F Q= a7,V

Then, we obtain the desired decomposition. The expressions for the integer indices can
be derived from
ra=r+s, rp=k-r, rap=2=k.

With a little more elementary calcula.tiun, we can also obtain the block dimensions for
Y4 and Xp. |
Remark 1. Let b — Q diag (L~1,I). Then P is nnnsmg'ula.r and
UTAP = (24,0), VTBP=(%p,0).

We will use this variant of Theurem 2.1 to simplify the presenta.tmns in the proofs of

some of the later results in this paper.
According to Paige [12], corresponding fo each column in (2.1) is ‘ascribed a quotient
singular value pair (a;, ;). Referring to (2 1) we take for the first k of those as

a; =1, ﬁt"ﬂ PR Lyeey®y
o, B, 331110 a.nd S, t '="I"'!"11."'"-.-';_""*.'I';"!'i,.e | (2'5)
sl g g e B el e B4 g
- NOg = 0 g‘ ;_ 1 oy E}‘-;?= rn-l:*'?+1’ '-""k’

and ca.ll them the nontnwal quotlent smgula.r yalue pairs ¢ of (4, B).. 'I‘he quotients a; /5;
(¢ =1,.-+,k) are called the quotient singular values ofi(.é B) The other n — k pairs
correspondmg to the zero columns in (2 1) are ca]led trmal quntlent singular pairs of
(A, B). They also correspond to, the common column rrull space of A and B.

i e pem—m gl de’s sT " Frmm "
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§3. Computing the Intersection of the Row Spaces
of Twn Matrlces ;

.' It is readily seen from Remark 1 that if we par,tition the rows of P-1 compatibly
with the block column partitioning of (£4,0) such that

P-1= 3 2
k—r—s| Ps b
) ﬂ—k ' P4 -

then the rows of Pz fc-rm the basis of the ma.nmal common row space of A and B, or
the intersection of the row:spaces of A a.nd B “However, the QSVD providesa Ticher
structure than a basis of the mtersectlpn ‘Basically what the QSVD does is to regroup
the rows of A and B by applying ortﬁognnal transformations to the left of A and B,
which results in three groups: (i) thosé tow' vectors that are in the row space of A4, but
riot in the row space of B;;(ii) those row vectors that are in.the row spaces of both A and
B; (iii) those row vectors that are in the row space of B, but not in the row space of A.
The quotient singular. values or the quotient. smgular values. pairs come from employing
a special arrangement of the vectors in group (ii), i.e., each of the row vectors of VB
is a posxtwe scalar multiple of (or parallel to) the corresponding row vectors of U TA
in this gmup, and the scalar multlphers are exactly the quotient singular values of
(4, B) As a matter of fact, it is not necessary to compute the full QSVD of (4, B) in
order to obtain a bisis of the intersection. Based on the idea in the constructive proof
of the QSVD in Section 2, we will present an algorithm for computing the maximal
common row space of two matrices having the same number of columns. In contrast
to the algorithm in [9], which is based.fon the constructive proof of the QSVD due to
Paige and Saunders [12], and the algorithm proposed in [4], the following algorithm
can be implemented using only the QR. decn_nipositinn.- On the other hand, whenever
doubts arise as to the rank decision of certain submatrices, the QR decomposition with
column pivoting, the rank revea.]mg QR decnmpos:tmn, or even the SVD can be used
to enhance the ability to detect the ra.'n]: de.ﬁclency in the following algorithm.

Given A € R™*":and B € RP"“ let Ryow( - ) denote the row space of a matrix.
Then the following algorithm computes an urthonormal basis of Rm,(A) N Reow(B).
Cﬂmpress the columm of B such that =

o - B={0,B)W, .
where Bz haa fu]l column rank and V1 is orthogona.l Partition -
AV S (Ardg)

;:ompatibly with the cqlu;qn block pa.rtltmmng-of B, and compress the rows of-4; such
that o - '

R
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where U is orthogonal and A;; has full row rank; write
r Al A2
— Vi.
A=UTU ( 0 An) )
Cnmpress the columns of A, such that
Az = (45,02,

where Am has full column rank and V; is orthogonal. Let V = diag(J, Vz)Vl and write
the final form as

LAD AW
g=pr (A A v." B=(0,B®, BV
0 A(” o) |

Parl:ltmn the rows 01' V campatlbly mth the black column partltmnmg of A suc.h that

Then the rows of Vm form the orthonormal basis of the max:lmal TOW space of A and

‘The correctness of the above a]gnnthm is proved in the fu]]awmg thenrem It can

also be extended to-handle the case of an arbitrary number of matrices.
Theorem 3.1. Using the notation as in the above algorithm, we have

Proof Smce bﬁth matrices Agz] and B( ) have full colunm rank, it is not difficult

ovenfythat L i @ .
Roon(V®) € Rron(A) N Erom(B). (3.6)

Now let z€ R,“(A) al Rrow(B ). Then there exist row vectors z and y such that

A A(l} A(l)
- B = :BA i (El,nﬁ.g) O A(l) 0O vV

z=yB= y(O BB

- -

s

Cﬂmparmg the nght-ha.nd gside of the above two equations leads to
e 21An =0, ZzA( ) = - y B2, 3‘33 — 2114( )

Therefore o
%1 = 01 iy.BSI = 'ﬁ,
a.nd' el A e ¢ AR TlE LR SR
s z=yB = (yB:)V(’) 3 R,O.(Vﬂ))
Hence- wetonclude that - LR TR b DA i #t84 ,k :

Rm..(A) n RM(B) c Rm(vf”)
Combme this with (3.6), and the thaurem is proved.
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Remark 2. The above algorithm can be readily extended o the case of computing
the intersection of several linear subspaceu As an illustration we cnnslder the case of

three matrices: A, H,C having the same number of columns. Sm:ula.rly to the above

algorithm, we can construct orthogonal matrices Uy, U B, Uc and V such that -

Ay A1z Az A
O A Az Az

UAAVT \ Rl
UsBVT | = e i B
“ToCVT | Bu Biz Bis By

0 0 By By
- o Cg Cy Cy
where (C2,Cs,Cy), (523,334) and A34 are ‘of full column rank, while (B;;, B12), 411

and Ajs are of full row rank. Let "A3; have column dJmenslon r. We can similarly prove
that the last » rows of ¥V -form the 0rthunormal basis of

Rro-(A) N Brow(B) N Rm-(C)

Extensmns tn the general case is strmghtfurwardﬂ ;_

§4. Rank Inequallty Characterlzatmn of the Quotlent
Smgular Values

In tl:us sectmn, we prove a genera.hzatmn of the Ecka:rt-Young—ersky theﬂrem

We only consider the case of spectrum norm, although generalization of the case of
orthogonally invariant norms is straightforward. We first cite the well known result:

Lemma 4.1 (Eckart-Young-Mirsky). Let the singular values of A be
N RN ¥ 1}

Then
T E||rank(A+ E)<i-1}, i=1,--,n,
oi = min {|E]||renk(A + E)<i=1}, §=1,0m
and there ezists a matriz E; (not necessanly umque) samﬁ;mg | E;|| = o; such that

rank (4 4+ E;) =i—1, i=1,--

The above result is the theoretical basis- of the totall least squares methods and the
truncated SVD method. The fauouung thearem generalwea the above result to the case

of quotient singular values. - .. ..

| Theorem 4.1, Let the QSVD afA and B begwen as :n Theorem 2 1. Then _

h"" WEY R Shatat

(a.) The guottent smgular ‘valuds can. characterized as

.-.3:.*;,_,.- i

galfs = min_ {IEissak (A4 EB)S -1}, i=1o b

(b) Let l=rap— rB and u = min{m, r4B). Thenfar any E ¢ R"""F we have

el wl b 4 'Q Iank(A-]- EB) < W e ny , s TERSME 27 M
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and for any integer i satisfying | < i < u, there exists E; € R™*P such that
. ra.nk (A + E; B) ity . .

Mf Using the notation in Theorem 2.1 and Remark 1, for arbitrary £ € R"‘"F,

let UTEV = (E;;)} ;=1 be partitioned compatibly with the partitionings of £ 4 and Zp.
Then ‘

rank (A”Jr EB) = ;}ank(UTAP'+ vTEVVT BP)
I  Ei3S. Ejs O
. =raki|o0 C+EnS En O
|  Wo EazS | Esa 0/

CS = O Eaz - Fa3
rank _
i {( o - O-)+(Eaz Eaa)}
Applying Lemma 4.1 to the .th matricés in the above leads to the assertion in (a.)
Part (b} is a consequence of the following expressions: o |

k=rap, r=rap-—rg,

which are estﬁb]ishe& 111 T’heorem 2.1.

Remark 3. The above theorem is also a generalization of the main theorem in
8], where application to the total least squares problem with partial exact columns is
discussed; see also the algorithm in [17].

§5. Relation Between the QSVD and the SVD

It is easy to check that the quotient singular values of (4, B) are just the singular
values of AB}, if B is nnnsmgiﬂa.r Iu this section, we will further discuss the case

that Bis a genera.l matrix.

Theorem 5.1. Use the notation in Theorem 2.1 and assume that rag =n. Then

I L A
Bt:=pP|O-§*: 0 |VT
0 O O

is umquely deﬁned and the smgular ua!ues of AB i cantam the nomnﬁmte quot:ent
P i Jy&i}ﬁ '1 e e . . S
singular values of (A B). J
Proof. Since r4p° = n, we can venfy that 3 anjr two sets of transformatmns in QSVD
satisfy the following equations: .

‘l «a}. :'-.‘ ".':3_';:- : ""':"E X

Pl Pﬂ dlaE(Ulh U221V33)1 Ul Uz dl&g(Uu:Uzz: U33) ‘fl = V'zT di&g (Vili "EE:VH)-
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Hence
o O 0
Rlo s 0 |\V¢ . _
0 0 Tiew) SR I s
0y O O O O O Vli; 0 O
= Py 0 Uz 0O 0 3—1 O %) U%nz 0 IJ’ZT
O 0 U33 o o F A O O .Vai;
0 0 s, .
=Pl0O0 St O vr.
0.v8 Bl .

Therefore B} is uniquely determined. We a.'lso ﬂbse:rve that
UTABYV = diag (0, cs5-1,0),

and only the infinite quotient smgjla.r va.lues ef (A B ) are changed to zero ordinary
singular values of AB}; the others are preserved v

Corollary 5.1. Let Bt be the Meere-Penmse inverse of B. If B has full column
rank, then the ordinary smgular values ef AB‘*’ contain the noninfinite quotient emgular
values of (A, B}. ‘ . -.

Proof. The cgrollary is a consequence of Lemme. 5.1 and the fact that BY = B*, if
B ha.s full column rank. . -

Corollary 5.20, Let X be ef full eelumn mnk and z;. (z"') be the j*th column
(row) of X. Then the smallest perturbation e; tn. z; . that will make X collinear (1.e.

rank deficient) setwﬁee
e
el _ -1,
”3:"

where k; = ||z;]| ||e+|| :s eeued the 3- -th collinear mdez efX o
Proof. The result fe]lewe fmm the above eero].lary and ’I‘heerem 4.1.
The following theorem comperes the quotient singular va.lues of (A, B) and the

singular values of AB* and BA*,

Theorem 5.2. Let the QSVD of the matriz pair (A, B) be given in Theorem 2.1,
and write 0; = Qy4i/Beii (E = ., 8); let the ordinary singular values of AB™. be
ordered in nonincreasing' magﬁitude, while the smguler ualues ef BA"' are ordered in
nondecreasing magnitude. Then o _ T -
S 1/0;(BAY) < o0; < a;(AB"') af = 1

Proof. Using Lemma 4.1, for e.ny mteger 3 eetlefymg 1 <3< .s, we can find an

' 1
a .,
1- E_ F

E; € R"”‘P satm,fylng "E." Efmsuchsthat Aty 7:1,'ﬁ;'%1e-?'-.f 55 e s, o et
s e e r&ﬁl (AB+ F E ) =" "“5’? i e S e B B AT DI
T Eg w0 hileress e f“ e ; - % \ '
Then o E"a' ﬂ_
‘&f 1 E. e g '{,,_. I. .

rank (A + E; "B);k_i ({AB+ +&. )Be;A(I B+B)) L4 Ldh
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Using Theorem 4.1, we obtain
cr.(AB'*“) = || Ei|| 2 oi-

Interchange the roles of A and B we can prove the other part of the mequa.ht}r
Corollary 5.3. Let the ﬂonzem ﬁmte quotient singular values of the matriz pairs

(A1, B}) and (AQ,BZ) be

(”::- >a-m>0- P >...>a® >0
And the smgular values of AlB"‘hand A BY (BlA"' and BgA+) are arranged in non-
tncreasing (nondecreasing) order. Then j

oi(B2AT) cr,(Al.B+)

g = l,l* A ,mjll(ﬂl,Sz).

Proof. The inequalities fuﬁomec‘tly from the a.bﬂve theorem |
We can similarly define A% v P R B
_ ,ﬁ I 0 o
A§=P g, o B P
S X 0 0

g « R -"f':'.. 1,‘5"‘{%‘{' ;
The relation of A and B is.given by the fo]lnwmg interesting relations:

(AE)-'-" = 4, (B+) + = B.

They follow directly from the deﬁmtmns and can be consxdered as a generahzatmn of
the relation (A~ o = A. The QSVD of (A, B) is equivalent to the QSVD of (A}, B})
in the sense that we can denve*m“’é from the other.

To conclude the section, 3 j:uss some properties of B} . It is easy to check that
BT satisfies the following equatloﬁs.

BB}B =B, B;BB} =B, (BB})T = BB].
Therefore B} is a {1,2,3}- mverse of B. We give the following two results which indicate
how to umquely characterlze Hmm the class of {1 2,3}-inverse of B.

Theorem 5. 3. Ifr AB —i-ﬂ;f, ftfwn B+ is the unique solution of the fa!lowmg con-

stmmed mtmm:zatwn pmblem‘m“ iaabedl.
Sl 1
R ! HJIER-H: min [|AX|F
subject to - -« . %giﬂﬁii.h}-- - - - |
- -~ BXB=B;»XBX=X, (BX)'=BX. - - (5.7)
The minimum value is \/z;;‘j:_l_l(m?ﬁ;)z. . = =
Proof. Since rgqg =n, wefcamwrite' |
e wa pnn s e bos oo “.__“:‘eB SVEgPT, - « whmen T TS T
.Partmon P 1X V tﬁpatlbly with the part:tmnmgs nf I}A and ¥ B.- We-
can venfy that X must be of tﬁ- llowing form Gl
(0 Xz -XIS

el g T

a Tl
i

- -_i! 9, =

‘ XP 0 s' o |v _
Si3 FES '-~-§=}£ M A B bl Bhd =
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in order to satisfy the constraints (5. 7) Since ;
i I o O ; O xlz . Xlﬂ 1 2;:’_:;;:"_‘:..'
|AX| = [UTAPPT'XVIE =[O0 € 0] |0 s 0 | -
' 0 0 0J\O0O O "Li. ./J|g'"
r4s | o mRT 5.

= || X12, Xa3)llF + ”03-1"1? 2 "05*1”1*" = Y (ei/B)?,
t=r+41

the equality is siafiod 5 anit only if Xu = ¥ sind Xis = = 0, namely X = B+ _
 In plain English, this thearem tell; us that Bj is the unique {1, 2, 3}—mverse of
B that minimizes |[AX || over all { 1, 2, 3}-inverse of B. In the following, we give
another characterization of Bt a- 1tis gene.ra.hzatmn of the Moor-Perose equations.
Theorem 5. 4. If TAB = N, then .q fts the unique solution of the followmg four
equatwns - -

BXB=B, XBX=X, (BX)'i=BX. (ATAXB)T 'ATA-X - (5.8)

“r Proof. As in the proof of the above theorem, X must be of the fo]lcrwmg form
{0 X2 X3 -
X=PlO §? 0 V
O 0 Ly,
in order to satisfy the first three constraints in (5.8). Since
I. 00\ (L O O\
ATaAx=pPTl0 c olvut|Oo ¢ O |P'P
o 0 0/] \0o o0 0]
O X1z KXis I, 0 O
=10 st o |vwT{o s o|@Q"?
O é, ".In—r—l | O 0 0
O X9 X13
=Q-T O S§-1 - 'O Q—-l
3 o 0 I,

(ATAXB)T ATAXB is and nnly 11'}[1; = 0 and X313 =0, i.e., X BA

Remark 4. The four qua.rtmns in (5 3) are a special case of the four equations in
" [1]." So the acbve theorem answers the open question of the uniqueness of the solution
of the four equatmns in’ [7] under the cmdltlm that (K % LT)T has full column rank

and M = I.
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[1] T Ba.l, The dueciszSVD algonthm an‘diits para.llel mplementatlon, CS-TR-IQOI .
_ 19087, University of Maryland. -~ % 071 0 SR IPI SER L £

[2] Z. Bai-and J.:Demmel, Coniputmg the- genera.hzed singular va.lué decompmtion,'5
| Research Report 91-09, Dept of: Matllmﬁni# of Kentucky. .~ & i wingaeod




62 7HA HONG-YUAN

3] A. Bjorck, Least squares method, in Handbook of Numefical Analjsis Vol.2, Edi- |
tors, P.G. Ciarlet and J.L. Lions.

1) L. Ryorer and G. Golwb, Nuroencal ﬁe’&hm for tomputing angles betwm linear

subspaces, Mathematics of Computation, 27 & 123, (1973), H79-594.

5] B. De Moor and G. Golub, Generalized singular value decompositions: a proposal
for a standardized nomenclature, NA-89-05, 1989, Stanford University.

6] B. De Moor and H. Zha, A tree of generahza'cmns of the ordinary singular value
decomposition, Linear. Algebra a:nd Its Apphca.tmns, 147 (1991) 469-500.

(7} L. Eldén, A weighted pseudﬂm\rerse, generallzed smgular values, and constrained
least squares problems, BIT, 22 (1982), 487-502. ' |

8] G. Golub, A. Hoffman and C. Van Loasi, A ‘generalization of the Eckart-Young-
Mirsky matrix appronmatmn theorem, Lmeai'“’}llgebm and Its Applications, 88/89

(1987), 322-327.
[9] M. Moonen, B. De Moor, L. Vandenberghe and J. Vandewalle, On-and off-line iden-

tification of linear state space models, Intemtwml Journal of Conirol, 48 (1989),

219-232. | y LB S

[10] C. Paige, Computing the generahzed smgular va.lue decomposition, SIAM J. Scien-

tific and Statistic Cﬂmputmg, 7 (1986); 1126-1146.
[11] C. Paige, The genera.l linear model and generalized singular value decomposition,

Linear Algebra and Iis Applications, 70 (1985), 269-284.
[12] C. Paige and M. Saunders, Towards a. generahzed singular value decomposition,

SIAM J. Numerical Analysis, 1!.8 (1981) 398-405.

[13] J. Speiser, Linear algebra pmblems arising in signal processing,
3, STAM Annual Meeting 1989. ’

[14] J. Speiser and C. Van Loan, S1gnal processing using the generalized singular value
decomposition, SPIE Vol. 495 Real Time Signal Processing V1L, 1984, 47-55.

[15] G. Stewart, A method for camputmg the generalized singular value decomposition,

in Matrix Pencils, Lecture Notes in Mathematlcs 973
[16] G. Stewart, Collinearity and the Jeast squares regression,

(1987), 68-100.

[17] S. Van Huffel and J. Vandewa.ﬂe,
least squares pmblem AX =~ B when some
SIAM J. Matriz Analysis and Apphcatwm,

[18] 'C. Van Loan, Generalizing the smgular value decomposition,

Analysis, 13 (1976}, 76-83.
(19] C. Van Loan, Computing the CS a.lulg j1'.]}%«&F generahzed singular value decompositions,

Y Numerische Mathematik, 46 (1985); 479-492. .
[20] H. Zha, Restricted singular value dngsltm for: matnx tnplets SIAM J Matm

Analysis and Applications, 12 (1991), 172-194. ¥ BT vy s R
(21} H. Zha, Computing the restricted: singular value. ﬂgcompomtmn nf matnx tnplets,

- "__-tl __.".‘- "'I* .:.u
¥ L ]

to appear in Linear Algebra: and Its Applications. : ey el

Invited presentation

Statistical Science, 2,

A.na.lysls and propert;les of the generahzed tnta.l
or all columns of A are sub ject to errors,

10 (1939), 9_4-315 _
SIAM J Numencal



	File0001.jpg
	File0002.jpg
	File0003.jpg
	File0004.jpg
	File0005.jpg
	File0006.jpg
	File0007.jpg
	File0008.jpg
	File0009.jpg
	File0010.jpg
	File0011.jpg
	File0012.jpg
	File0013.jpg

