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Abstract

In this paper the Generalized Pulse-Spectrum Technique (GPST) 1s extended
to solve an inverse problem for the Burgers equation. We prove that the GPST 1s
equivalent 1y some sense to the Newton-Kantorovich iteration method. A feasible
numerical iinplementation is presented in the paper and some examples are excuted.
The numerical results show that this procedure works quite well.

81. Introduction

In this paper, we shall consider an inverse problem of the Burgers equatiﬂn[ll

Ou ou O ¢ Ou

— — — —|v=—) = f. 1.1

ot » Y9z Oz (Fﬁz) f 1.1)
We assume f # 0 in order to obtain exact solutions which will be used to compare
with our numerical results. The coefficient function v = »(z) has practical senses

as conductivity or viscosity, etc/>®. Our purpose in the paper is to investigate the
identification of the coefficient v{z) through the Burgers equation and some initial and
boundary conditions. This inverse problem has obviously both theoretical interest and
practical importance.

In the next section we shall present an iterative algorithm for identifying numerically
the coefficient r(z) by using the Generalized Pulse-Spectrum Technique (GPST). The
GPST has been applied to many inverse problems and proved to be a versatile and
efficient numerical algorithm!*~¢. In Section 3, we consider the same problem as an
inverse problem of an abstract operator equation and prove that the algorithm presented
in the previous section is equivalent in some sense to the Newton-Kantorovich iterative
method. Numerical implementation of the algorithm is discussed in Section 4. Finite
difference methods are applied to both the direct and inverse problems, which result
in a linear system containing Ar, the improvement of the approximation of v, as its
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unknown. Some regularization methods are used to treat the ill-posedness of the inverse
problem. Several examples are given in Section 5, which show that the numerical
algorithm presented in the paper works very well, Finally, a brief discussion of the
algorithm and its perfoemance 1s given.

§2. The Numerical Algorithm

Consider the following jpitial-boundary value problem of the Burgers equation

Su du 3, du
at " "8z Oz (”(”}a_z) =/
u(z,0) = Uo(2), <2< )l O<cits T, (2.1)

u(0,t) = ro(t), u(1,t) = ri(t),

In order to identify v{z) through equation (2.1) we need some auxiliary condition which

we assume in the paper as follows
£

Bilz4) = é%u((},t) = L) (2.2)

The GPST algorithm is used to solve numerically the above inverse problem. First
choose a function, say ro{z), as the initial approximation of v(z) and then use the
procedure described below to obtain the first approximation vi(z).

Suppose that the nth iterative approximation of v(z), say vn(z), has been obtained
and that u,(z,t) is the corresponding solution to {2.1) with v(z) replaced by vn(2);
this means u,, is the solution to the following equation,

du,, ou,, 0 B
ot e @) =

u,.(z,0) = Up(z), (2.3)

v, {0,t) = mo(t), u,.(1,%) = r1(t).

Assume that the {n + 1)st approximation v, 41(z) and the corresponding u, +1{z,t) are
as follows

vair(z) = vo(2) + dva(2), (2.4)

Uns1(z, 1) = w2, t) + du, (2, t). | (2.5)

Substituting (2.4) and (2.5) into (2.1) and substracting (2.3) from it, we have

b, d6u,, Bu,, O6u, O ¢ Obu, S, dbu,
T E 6 ' DT 6 T R B T vl ‘5 Yi l = ri E
Ot T Oz = L Oz Oz [y Oz T o -

Oz Bz Oz | =2
Supposé that the magnitudes of terms év,, du,, and 86u,,/Oz are small and their prod-
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ucts can be neglected; thus we obtain a system for §-terms,

dbu,, d g ( 3511“) 0

Oun
%)

Bty = Uy (2.6)

Bl o = Btnlany = 0.

If u,4, is approximately regarded as the exact solution to equation (2.1), then we
derive an auxiliary condition for éu, from (2.5) and condition (2.2) as

08un(0,t) Ou,(0,1)

Oz = ) 8z
Let G,.(z,t;£, 1) be Green’s function of the differential operator on the left-hand side
of equation (2.6). Then equation (2.6) can be transformed to an integral relation

Su,(z,t) = /: f; Gﬂ(z,t;g;r)é‘% [6uﬂ(£)au“;§’r)]dfdr. (2.8)

(2.7)

For simplicity, we assume that v(0) and »(1) are known, therefore §1,(0,t) =
évy(1,t) = 0. Imkegrating the right-hand term of (2.8) by parts and using the aux-
iliary condition (2.7), the integral relation (2.8) can be changed to

: t 1 g2 | du, (&, T)  9u,(0,1)
[ | geaeCuotie =2 Dsu(ydedr = 220 e, (29)

(2.9) is a Fredholm integral equation of the first kind for unknown function 8v,,(§). In
general, it is ill-posed so some kind of regularization methods must be used to solve it.

Equations (2.3), (2.4) and (2.9) from the basic structure for each iteration in the
numerical algorithm of the GPST.

$3. The Operator Equation

We shall now consider the same problem from a different view-point. Let v_, v,
and # be three positive constants with v_ < v, and ¥y, X; be two sets of functions

defined by

Yo = {v(z)| v(z) € C[0,1], v. < v(z) < v}, (3.1)
£, ={v(z) € Zyn H'[0,1], ||V|| < #}. (3.2)
Here and afterwards “ , ” denotes the derivative w.r.t. # and || - || and || - ||c denote

the norms in spaces L*[0,1] and L>[0,1], respectively. We consider the generalized
solution to equation (2.1). Let

{ a(z,t) = (1 - z)rp(t) + zr1 (),

u({z,t) = v(z,t) + a(z,t)

(5.3)
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then v(z,t) satisfies the following equaiton

%% + oo’ + (av) — (w') = F + (va'y,

v(z,0) = Ug(z) — [Fo(0) + (r1(0) — r0(0))z], (3.4)
v(0,t) = v(1,¢) =0

where

F = F(z,t) = f(z,t) ‘Z‘t‘ aa’ (3.5)
Definition. If v € L?[0,T; H} ] satisfies the following equation
% (,0) + (v, w) — (av,0) + (0, ) = (Fyw) - (va',w),
Yw € H[0,1], (3.6)
v(-,0) = Ug — {ro(0) - (r1(0) — 70(0))z ] (3.7)

then v is called a generalized solution to (3.4) and u given by (3.3) is called a generalized
solution to (2.1}, (": ) is the inner product in space L*[0,1}.

Lemma 1. Suppose the following conditions hold

1° v(z) € Yo,

2° f € L?[0,T;L?0,1]], Uo € L*0,1],r0, » € H'[O,T].
Then there exists a unique generalized solution to equation (2.1). Moreover, u is almost
everywhere equal to a function continuous from {0,T] into L?{0,1] and that

u(-,t) — Uy in L?[0,1] as t — 0.

Lemma 2. Suppose the following conditions hold

1° v(z) € X4,

2° f e HY0,T; L*0,1]],Uo € H?[0,1], 7o, 71 € H?[0,T].
Then the unique generalized solution to (2.1) satisfies

du ”
ot
These two lemmas can be proved by using the methods developed in {7] or {8]. Due

L0, T; HY0,1}) n L>[0, T; L?[0,1]). (3.8)

to a lemma in [7], (3.8) implies that
we L>[0,T; H'[0,1]] (3.9.)

For fixed f, Uy, ro and r1, equation (2.1) defines a map from X or 2, into L*[0,T; H]

A(v) = u. (3.10)

Hence the inverse problem discussed in Section 2 can be viewed as the following non-

linear operator equation
T(v)=B: -A(v)=r. (3.11)
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We show now that the derivative of operator T exists in some sense. We have following
results.

Lemma 3. Suppose the following conditions hold
1* /1, ¥2 € El y
2° as 2° in Lemma 2.

Then

: ; 2 L J 2C;(t—r
18wl +v- [ 1a(n)Par < Zhavid, [ ) ee {20, @19)

where Av = vy — v, Au = us — uy, C; = esssup ||u1 |2, < .

¢€[0,T]
Lemma 4. Suppose the conditions of Lemma 3 hold, then

z
esssup [Av(0) < Callavl, [ IAVOIFd < Collavls,  (313)
tel0,T

where Av = dAu/0t, (4 is some positive constant.
Lemma 5. If the conditions of Lemma 3 are satisfied, then

3 esssup ||Au'(#)|]* < Cs||Av|Z, (3.14)
te[0,7]

with some constant C5 > 0.

From these lemmas we obtain the following continuity of map A.
Theorem 1. Suppose the conditions of Lemma 2 hold, then

[1A(r1) — A(v2 )L (o8 = A8 L0101 < Cal|Av||a (3.15}

where Cy is a constant independent of vy, and v,.

We shall now consider the differentiability of map A. Let function p(z,t) be the
solution to the following linear equaiton

0
2 +(up) = () = (av -,

p(=,0) = 0, (3.16)

p(0,t) = p(1,t) = O
where v, v+ Av € ¥ and u,u+ Au are the mrreépnndiug solution to (2.1), respectively.
Set g(z,t) = Au(z,t) - p(z,t), then ¢ satisfies the following equation

zt + (ug) — (vg') = (Av - Ad) — Au- AY (3.17]

and the homogeneous initial and boundary conditions. By using the same argument
we come to the conclusion that

esssup (Ha(2)] 1+u U+ 1gwn) < csllavi, (3.18)

and thus we obtain the following result.
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Theorem 2. Suppose that the conditions of Lemma 2 hold, v and v + Av € Sl,
and that p is the solution to (3.16). Then we have

JA(y + Av) — A(¥) = pllpepprian) = OIAVIS), as [|Av]lx — O

Since ¥, is an open domain In space H1[0,1] Theorems 1 and 2 imply that A(v)
regarded as a map from &, C H1[0,1] — L°[0,T; H] is uniformly Lipschitz continuous
and Fréchet differentiable on £,. More precisely, we have

A'(v)-h=p, YheHY0,1] (3.19)

where p is the solution to equation (3.16) with Av replaced by h. We can also regard
A(v) as a map from %, C C[0,1] —» L*[0, 1; H!). In this time A(v) is still continuous
and Fréchet differentiable on £;. However, £; is now not an open domain in ¢lo,. 1.
When applying the Newton-Kantorovich iteration method to the operator equation
(3.11), we get
| B-A'(v,) (Vg1 —vn) =7 — B - A(vn). (3.20)

By comparing (3.20Y with Section 2, one can see that this is just the algorithm of the
GPST.

Equation (3.20) should be understood in the sense of generalized function. In
order that it has the normal sense, one needs more regularity of u and p, e.g., u and
p € CHQ),Q = [0,1] x [0,T]. These properties can be acheived by increasing the
smoothness of v(z), f(z,t) and other datal®l.

§4. Numerical Implementation

In order to avoid the difficulties of calculating the Green funciton, the procedure in
(6] is adopted. Let h = 1/M,r = T/N. We use the following notations

ey = '};(‘-’fﬂ - ;) Vii = (v} — Vi1 ),
‘U'i i —1--(1.}"3 — ﬂ':.i ) 'Uj e }—(UJ+1 oo -u") (4_1)
T,t %h 141 1—=1/ t.3 oML 1/
o ; I ;
J(ul,v]) = §[vfu§:,i T (”“);,i]' (4.2)

(4.2) is the difference approximation of the nonlinear term.
For solving (2.3), the following difference scheme is used (for simplicity, all subscripts
n are omitted)

wlo+ 300+ ufth ud +uf*h) - 2l e 4 (T )es + (Vuz)aa + (ti)ed

= Y G190 M-l el N=1 (4.3)
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Scheme (4.3) is implicit, unconditionally stable and of the second order of accuracy.
For the §-system (2.6), we use the following scheme

6uh+ (u."""1 ful T + @l - Eu’)+ (HJH 5UJ+1 + uj 5“i,i) |
a E[(” w4 (v U )ag + (v Ul )as + (v - 8ud )]

- %[(5;; )+ (B - #)54),6=1,2,-- -, M = 1;5=0,1,--- ,N — 1 (4.4)

where ﬁf is the approximation of du(ih,jr)/8z, which can be numerically calculated
after solving (4.3). Equation (4.4) can be rewritten in the matrix form

A;butt = Bi6w + Cjbv, (4.5)

where o ‘
§ud = (6u§,¢5u‘;, - ,Eui{_l)T dv = (bvy,0v2,- - rﬁl’M-—l)T

3

and A;, B; and C; are (M — 1) x (M - 1) matrices whose elements are known after
solving the direct problem. Suppose that A; for all j are invertible, then one has

5'H-J+1 = J..}.]_él-" (46)

where
Ejy1 = A7 (B;E; +C;), j=0,1,---, Eg=0. (41

For 86u(0, j, 7)/0z, we use the following approximate formula 86u(0, jr)/0z =~ 51’—1-(—36ug+

46u! — §u?). Thus a linear system for év can be formed
M- '
Y (4el) — eNVoun = 2n[r(jr) - &), j=1,2,-,N (4.8)
h=1

or, in the matrix form Zév = b, e{" 5 (4.8) are the elements of E;.
Since equation (4.8) usually is ill-posed, some regularization technique is necessary1%.
Instead of the original system (4.8}, we try to find a vector §v* to minimize the following

functional

J(a,B') = ||Z6v — b2 + I|6vII2, + B'l16valiE, (4.9)
where o ,ﬁ’ are two regularization parameters and || - {j, is the discrete L*-norm:
,””12 h Z v;. The above problem is equivalent to solving the following linear
system = -

(Z"Z + al + BD)bv = 270 | (4.10)

where a = o’,3 = A'/h?, I is the identity matrix and D is a tric‘_liagm;nal matrix with
diagonal elements 2 and upper and lower diagonal elements —1. We shall consider three
choicesof aand 8 :a# 0,8 =0;a= 0,8 # 0;a = 8 # 0. They represent minimum
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L?-norm regularization, minimum H!-seminorm regularization are minimum H'-norm
regularization, respectively.

§5. Numerical Examples

In the following numerical examples, we take T' = 1,M = 10, N = 20, thus h =
0.1,7 = 0.05. The nonlinear algebraic equation (4.3) is solved by Newton’s iteration
method with u?, the solution of (4.3) at the jth level, as the initial guess of uwtl,
In order to compare the efficiency of the three choices of parameters, we bigin our
algorithm with the same value of a are / or 8, and for the next iteration  and / or {3
are always one tenth of the previous ones.

Example 1. The exact coefficient function, the right-hand side term and the

solution are as follows
v(z) = 10 — 27,
fle, )& 2(1 4+ t)2z3 + (10 + 9t)z*® + (23 + 20t)= — 10(1 + 2¢),

u(z,t) = (1+ t)z® + = + 10.

The other needed data can be reduced from the solution. Two initial guesses of v(z)

used in practical computation are
I. wv(z)=10-2%-322(1 -=2); II. w(z)=10- z2 4 32z(1 — z).

The numerical results are tabulated in Table 1, where the values of a;(8;) indicate the
starting values of these parameters.

Table 1
I. o (A1) =001 II. o (f3;) = 0.00001
aF LB=Vla=0,B#0|la=0F10 e #0,8=0la=0,8#00a=8#0
n 0 8 7 7 4 7 7
o = vli 2 |6.0249]  1.2653 0.0207 | 0.0212 o8| 0.1638 00354 | 0.0349
o —vllL~| 825 } 2.6379 0.0347 | 00352 | 7.75 | 0.3151 00638 | 0.0602

Example 2. The exact functions are as follows

viz) =
flz, t) = 2(1 — t)%2° + (2 — 3tH)2® + (2 + 2t + %)z — 20(1 — 1),

10,

u(z, ) = (1 —t)z° + iz + 2.
The initial guesses in this case are

I. wo(z) =10 + 322(1 — z); II. wo(z) =10 - 1322(1 — 2){({1/2) — =)
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The numerical results are tabulated in Table 2.

Table 2
f I. «i(B:) = 0.001 IL ay(B) =01
n#ﬂ.ﬁ:ﬂa:ﬂ,ﬁ#?a:ﬂ#ﬂ aZz0,8=0la=0,8#0|la=0#0
n D 7 8 8 0 | 10 9 9
e — V|2 [5.8424] 0.1846 0.0160 | 0.0173 [4.5544] 0.3556 0.0321 0.0345
lvm — 2flz=] 8 0.4097 0.0340 | 00368 |6.3500] 0.8019 0.0598 0.0644

Example 3. The exact functions are as follows
10+, 0<z<1/2,
v(z) =
11-2, 1/2<2<1,
flz,t) =2(1 -t)’2> + (2-3t3)z> + (342t - )z + (L + t + t*)+ g(=, ),
{41 —-t)z+ (19t —21), 0< =z <1/2
g(z,t) = ¢*
41-t)z+ (28t -21), 1/2<z<1,
u(z,t) = (1 - t)z® + (1 + t)z + ¢.
The initial guesses in this case are

10(1 —z), 0<z<1/2,
I. wvwi(z)=10—-322(1 —z); II. wp(z)= {

10z, 1/2< 2< 1.
The numerical results are tabulated in Table 3.
Table 3
I. a (A1) =0.001 II. oy(B1) = 0.01
aZ20,8=0la=0,8#£0la=68#0 a#z0,8=0la=0,8#£0la=08#0
n 0 7 5 5 0 7 9 9
lva — v|p2 [6.1278] 0.1037 0.0638 0.0633 |3.1754| 0.1302 0.1689 0.1686
|vn — vllpe| 8.5 (.1442 0.1189 0.1172 | 5.5 0.2633 0.3230 0.3226

§6. Some Remarks

Though only a few examples are excuted, all the results obtained do illustrate that
the GPST iterative algorithm works very well for solving the discussed inverse problem.
In addition, the method seems to work for a large range of initial guesses, even tnough
the initial guess is very far from the exact one. This property is important for practical

applications.
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These examples show that the results obtained by using H'-norm or seminorm
regularization methods are excellent and much better than those of using L%-norm reg-
ularization method. This phenomenon is reasonable, considering the analysis in Section
3 and the general properties of regularization methods!!®l. Another phenomenon ob-

served from these examples is that the final results depend not only on the smoothness

of the exact coefficients v(z), but also on the smooth property of the initial guesses.

One important problem which remains to be investigated is the optimal choice of
regularization parameters and we have not addressed here. In this paper, we restrict

ourselves to the feasibility of the GPST for solving nonlinear model and to comparison
between different regularization methods. However, we would like to point out that
more suitable choices of a, 3 will give better results and need less computational effort.
As an example, we give here one numerical result of example 1, case I using parameters
a=0 06 =2x1073 8 = 10~7 and B = 107, After only three iterations, the
method gives an excellent result with |[v3 — v|[z2 = 0.0467 and ||v3 ~ vi|L= = 0.0858.
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