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ON A CLASS OF ELLIPTIC PROBLEMS AND ITS APPLICATION
TO HEAT TRANSFER IN NONCONVEX BODIES*

Rogério Martins Saldanha da Gama
(Laboratério Nactonal de Comuptagao Cientifica, Brazil)

Abstract

This work presents a procedure for constructing the solution to a class of prob-
lems with application to heat transfer processes in which the energy reemission is
not negligible. Such problems are characterized by a Poisson equation subjected
to certain nonlinear boundary conditions. The solution is constructed from a se-
quence whose elements may be obtained from a minimum principle. Some practical
situations ar@ presented.

1. Introduction

There exist many situations, in engineering design, in which the temperature dis-
tribution is an important consideration in the determination of the geometry, the di-
mensions, the material, etc., --- of a given part of a body.

The most common mathematical model, for describing the energy transfer phe-
nomenon and obtaining the temperature field in a body, is the linear one represented
by a Poisson equation subjected to Dirichlet/Neumann boundary conditions!!2, This
well known mathematical problem is present in almost all books on partial differential
equations as, for instance, in [3].

In spite of its “popularity”, the above mentioned model is not adequate for some
important and complex phenomena such as the ones in which the temperature levels
are so high and/or the ones in atmosphere-free space. Examples of such phenomena
can be found in [4, 5, 6]. |

When some subset of the boundary of a body is at high temperature, the radiative
energy transfer from the body to the environment can not be neglected. In addition,
when the body boundary is not convex, the reemission phenomenon {a radiant emission
from the body to itself) must also be taken into account.

The radiation heat transfer is, due to Stefan-Boltzmann law, an inherently nonlinear
phenomenon!?].

Besides the radiative transfer, if there exists an atmosphere surrounding the body,

the convective transfer from/to the body must be taken into account!>84l.

* Received May 7, 1991.
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Combining the above mentioned energy transfer mechanisms from/to a body with
the conduction heat transfer, which takes place inside the body, we have a large and
interesting class of nonlinear mathematical problems.

The main objactive of this work is to study the above mentioned class of prob

lems, providing a way for constructing the solutions and presenting some of the most

important physical applications.

2. Governing Equations

Let us consider a rigid and opaque body B represented by the bounded open set
Q2 C IR® - with the cone propertiesl? ) with regular boundary 9€2. The steady-state
energy transfer process, inside B, is mathematically described bym

Au=—r in (1)
in which r represents’an energy source. When (1) represents a real heat transter process
we have that r is a piecewise continuous and bounded function that may depend on
the position X and on the temperature u(u = a(X), X € §2). Here, we shall suppose
that

r=7u(X),X) forall X €1,

o 1

(b,X) < #(a,X) if b >a forany X € {}, (2)

lim #(a, X)=#(X), = =#(X), r*el¥ Q).

At OO

The main objective of this work is to construct the solution to (1) subjected to the
following boundary condition:

-g—2=f—£[g]_h an 850 (3)

in which 8/0n indicates differentiation in the direction of the exterior normal to 9}, h
is a known piecewise continuous and bounded function, f is a function, such that

f = fla(X),X) for all X €89,

f(6,X) > f(a,X) if b> a for any X € 90" C 812,

.f(b,X)Ef(-ﬂ-,X) if b6 > a for any X € 0f1, (4)
Jim [f”—‘f(a,)f:)] — oo for any X € 8Q* C 89,
i|—oc LI

—m<a<mH—m<f(a,X)<oof0rany x € Ofl,
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g i1s a function such that
g = g(u(X), X) for all X € 81,

g(b, X) > g(a, X) if b> a for all X € 8Q,

) : (5)
(b, X)—- fla,X) 2 §(b,X) — g(a,X) if b> a for all X € 89,
0 < §(a, X) < [f(a, X))+ for any X € 90

in which [ ]; denotes the “positive part of” and the linear operator £ is defined as

follows:

£Llg] =/ g(u(Y),Y)K(X,Y)dS, z € 9Q; g¢g=3(@(X),X), Xe€Q (6)
Yeofd

where the kernel K(X,Y') satisfies the following conditons:
0<K(X,Y)=K(Y,X)<oo forall X €99 and Y € 89, (7)

/ K(X,Y)dS <6 <1 for all X € dQ. (8)
Y €812

The boundary condition (3) is a generalization of the equations which represent the
conduction/convection /radiation heat exchange on the body’s boundary. The operator
L represents, in practical problems, the therma) radiant reemission!”.

Some practical applications of model (1) + (3) will be discussed later. Now, the
objective is to construct the solution to (1) + (3). This solution will be reached from
a sequence of problems in which the reemission term is known (in other words, L[g] is
known).

3. An Auxiliary Problem

Here we shall consider the following auxiliary problem:
Ay =—r in
du

=f—h on 80 (9)

in which h is a (known) piecewise continuous and bounded field.
The solution to (9) is the field which minimizes the following functional:

Tw) = f VW 'e ViodV — / pdV + | s (10)
in which
h BX) o o
6=H@(X),X) = [ f€ X)dg +HOBX), w=d(X), h=hX) (11

and

| (X)
p=p@(X),X) = [ #6,X)dE, w=a(X) (12)
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Taking the first variation of I, employing Green’s identity and imposing that 6/ = 0

we obtain

Ou
on

in which 5 is any admissible variation. Equations (13) and (9) are, in a weak sense,

o f (AutrindV + [ {f—F+ 2= ndS =0 (13)
a8}

equivalent.
Taking into account the properties of f and r we have that 7[w] is a strictly con-
vex functional. Therefore, 6 = 0 corresponds to a minimum and the field «, which

minimizes I|w], is unique.

In addition, defining || || as the usual norm of H'(2), we conclude that (coercive-
ness)
Tios
lim L = 400 (14)
ol —oe |||

and, hence, the minimum exists and belongs to H!(2) (existence of the solution u). A

detailed discussion on coerciveness can be found in [10, 11].
Since r € L2(Q), we have that the field u belongs to H%(2) and is a strong solution
to (9)12l, In addition/since 2 has the cone properties, u is continuous in Qe

4. Constructing the Solution to (1) + (3)

The field u, solution to (1) + (3), is the limit of the sequence [vo, v1,v2, V4, V5, - -]
in which vg = 0 and v;(v; = v;(X),i =1, 2,3, ---} is the unique solution to
Ay =~y M §} =70 X); X )
Jv;

on
in which h;_1 is, for each ¢, the known field given by

hio1 = hi—1(X), hi-1=Llgi—1]+h on 892, gi1=§@_1(X),X). (16)

 fi—higoon 89, fi = J(m:(X),X) (15)

Problem (15) is, for each 2 > 1, a problem llke (9). Hence, the fields v; are continuous
and the fields A; are bounded.
From (15), we may write the following

[irs=rie}dv = [ {fi= fior = Llgi — gial}as (17)
Since {2) holds and {see Appendix I)
O=m < <y<yy< - <18y < for all X € Q, (18)

we may conclude the following
[ fi=fildS < [ |Elgia - gialldS (19
o5l o1

Since, from (5),

fi—fi-129i—gi-1 forall X € 0Q (20)
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we have that, from (6), (7) and (8),
[ i~ fildS <8 [ Ifii~ fialds, 0<8<1. (21)
() o5t

Since f; € L1(89), the sequence [fi, fa, f3, - - ] converges in Ll(ﬂﬂ)[lgl.
Therefore, taking into account (7), we may define the bounded field k., as

oo = hoo(X), hoo = lim k; = lim LClg;] +h, X €89 (22)
 Sm v T—+ 00
Hence, the field v defined by
v=v(X), v=limv; in (23)

is the solution to
Av=—r in Q, r=#wX),X),

S ) ) (24)
_%zf"hm on 99, f= f(v(X),X).
Since, from (21),
oo =Llg]+h, g=§T(X),X) for all X €0 (25)

we have that v is a solution to (1) + (3), being a continuous field as well as v;’s.

5. Uniqueness

In order to prove that v is the unique solution to (1) + (3), let us assume that w,
solution to (1) + (3), is different from v. Since u is a solution to (1) 4 (3), we have

Alu —v;) = —(F(a(X), X) - #@(X), X)) in Q,
0 - -
—5;(“—%)=f(u(X)aX)—f(vi(X):X) (26)

= f {5(w(Y),Y) — §(@,_1(Y),Y)}K(X,Y)dS on 6
Y eof}

in which 4 = ¥(X) and v; = v;( X).
Employing a procedure analogous to the one presented in Appendix I, we conclude
that

u>v; in 2 for any ¢ (27}

and, therefore,

L

u>v in (. | (28)

Since u > v in §}, we have that #(a(X), X) < #(¥(X), X) and, once » and v satisfy
(1) + (3), we may write

/xean{f (@8(X), X) - f(5(X), X)}dS

<[ [ {a@(¥),Y)-g@(¥), VIK(X,V)ds]ds.  (29)
X €01l Yean
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Therefore, from the properties of K(X,Y), f and g, we have that

f {[f@E(X), X) - f(5(X),X)}dS < 8 f {§(#(X), X) - §(¥(X), X)}dS
Xedtt X €041

<6 {f@(X), X) - f(#(X), X)}dS. (30)
Xeanl

Since (28) holds, f satisfies (4) and 0 < é < 1, we conclude that

[ (a0, -0, X)}ds = [ {F@(x), X)~ f#(X), X)}ds = 0. (31)
X €01l X eo0

Consequently, combining (4) with (31), we have
u=wv on IN. (32)

Taking into account that  and v are solutions to {1) + (3) and that (28), (31) and
(32) hold, we have that u and v must satisfy the following conditions:

Alu—v) >0 in £,

%(u —v)=0 on 99, (33)
P

u—v=0 on Q% C 9.

Hence, employing the result of Appendix II, we must have (uniqueness)

v=v in (34)

6. An Application—Energy Transfer in Black Bodies
Surrounded by Vacuum

In order to present a physical application, let us consider a rigid and block body

with unitary thermal conductivity.
In such a case, the steady-state energy transfer process is described by (see Appendix

I11)
Au=—r in {2,
(35)
" —— f ca(Y)K(X,Y)dS on 89
on an

in which o is the Stefan-Boltzmann constant!%l and K(X,Y) depends only on the
shape of the body!™. The kernel K(X,Y) is given by
(X —Y)onx][(Y — X) ony]

(X —Y)o (X —Y)]2 if X and Y can be connected
VAN PR

by a straight line which does
not intercept the body,

FIRY = (36)

0 otherwise

in which nx is the unit outward normal at X € 99 and ny is the unit outward normal
at Y € 0fl.
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Actuﬁlqu (35) is not a problem like (1) + (3). But, consider, instead of (35), the
following problem!®!:

Au=—r 1n ),

ou

on

The above problem, if r satisfies (2), is a problem like (1) + (3). However, (35) and

(37) are not, mathematically, the same problem. Although mathematically different,

(35) and (37) are physically equivalent, since © makes physical sense only when it 1s

nonnegative for all X € Q (because u represents an absolute temperature [15]). Hence,
from a practical viewpoint, (35) can be substituted by (37).

Since (37) has one, and only one, solution, we conclude that this solution is the one,

with physical sense, associated to (35}, provided (35) represents a physically admissible

process.
It is to be noticed that there exists infinitely many bodies for which (36) satisfies

(7) and (8).
Condition (7) 1 for instance, is satisfied for any body with regular boundary.
Condition (8) is satisfied for any body such that any point X € 8Q can exchange,
directly, thermal radiant energy with the environment.

(37)

- fy . olEY)LK(X,)dS on 90,

For instance, if §} is given by
(= {(z,y,2) € IR*such that 1 < z? + y* + 22 < 2 and 2 > 0},

conditions (7) and (8) are satisfied. The kernel K(X,Y’) is, in this case, given asl”:

1
— for z*+4*+2°=1 and 2 >0,
4

K(X,Y)=1 0 for 22+ +2°2=2 and z >0, (38)

0 for 1 <z?+y*+2° <2 and 2=0.

7. An Application—-Energy Transfer in Black Bodies
Surrounded by Atmosphere

When there exists atmosphere there must be considered, besides the radiative losses,
the losses due to convective heat transfer!®8
Considering the losses by convection, the energy transfer phenomenon is described

by (see Appendix III)

Au=—r 1n §1,

—_ . (39)
% it f (Y YAK(X,Y)dS + B(u — tref) on 992,
on Y €30

in which 8 is a positive valued feld (called “convection heat transfer coefficient”) and
.o is a temperature of reference (usually the temperature of the environment).
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Problem (39) is physically equivalent tol]
(Au=—r in £2,

ou
an

once u represents an absolute temperature.
Problem (40) is a problem like (1) + (3), provided (2) is satisfied.

(40)

= o|ul*u — f}"eaﬂ ola(Y)|2 K(X,Y)dS + B(u — uref) on 5

8. Final Remarks

This work presents an interdisciplinary contribution which involves a solution pro-
cedure for a given class of problems and its applications to some practical heat transfer
processes.

The procedure employed for solution’s construction consists of an efficient algo-
rithm for simulating problems like (1) + (3). In particular, when employing a finite
element method!!% or a finite difference method!1?], this algorithm allows effective stor-

age schemes since, at each step of solution’s construction, £[g] is known.
’

Appendix 1. Proving That v;.; > v; in Q

Let us consider the following problem:

AV =~—R in Q,
5 (AL1l)
——V=F~G on 80
on
in which the fields V, R, F and G are such that
RV <0 forall X €1,
FV >0 forall X € 69, (AL2)
G >0 forall X € o9.
We shall demonstrate that V', solution to (Af — 1), is a field such that
V>0 in S (AL3)
In order to demonstrate that (AI.3) holds, let us assume that
| inf V = inf V < inf V. (AL4)
0 2 a5
The above inequality holds if, and only if, there exists a subset Q* C Q such that
R<0 in Q" and iélf W = ing. (AL5)

Since, from (AlL.2), RV <0 'in (), we conclude that
V>0 inQ (ALS6)
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and, therefore,

infV=inf V =infV > 0. (AL.7)
0~ §2 0
Now, let us suppose that
infV =infV < inf V. (A18)
(2 ot Q

The above inequality assures that there exists a subset 90" C 92 such that

oV
— <0 on 80 and inf V =inf V. (AL9)
on a0 an

If (AL9) holds, we have, from (AI1), that f

F—-—G>0 on 00" (AI.10)

Since ¢ > 0 on J52, we conclude that F' > 0 on 8Q*. Hence, from (Al.2), we may
write

V>0 on 80", (Al.11)
Therefore,
inf V=infV =infV > 0. (A1.12)
a0+ 80 )
Inequalities (A7) and (AI.12) allow us to conclude that
nfV>0-V>0 in 4. (AL.13)
Q
Since (15) holds, .the difference v, — v; will satisfy
A(viy1 —v) = —(rip1 — )  in Q,
d
= a(’b‘iﬂ — %)= fiy1— fi— Llg: —gi—1] on 89 (AL14)

Begining with i = 1 we have

A{vg —v;) = —(ra—1r;) in £,

— *a%(vz —v;) = fo— fi — L[g1] on O9. (AL15)
Since L{g1} > 0, Problem (AI.15) is like problem (AL1). Thus from (AL13)
vo > v L. (A1.16)
From (AL16) we have that
Llgs — 1] 20 (AL17)
Therefore, taking ¢ = 2 in (AL 14), we have - .
vy > vy (1. (AL.18)

The above procedure may be successively employed for proving that

VWSV Sv - <y € Vit in 2. (AI.19)
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Appendix II. On the Solution of (33)

Here we shall consider the following problem:
AZ >0 in {1,
oz
on
Z =0 on 00" C o0.

=0 on 89, (AIL.1)

From Green’s identity we have that

AZdV = f Ll (AIL2)
g 3

and, hence, from (AIL1) and (AIl.2), we may ‘write

/ ‘9st U—r/&de-D—r&Z—Dmﬂ (AIL3)
an on

Since AZ = 0 in Q and 8Z/8n = 0 on 0%, the field Z must be constant in Q.
Hence, once Z =0 dn 80*, we have

Z=0 in Q. (AIL4)

Appendix III. Physical Meaning of the Boundary
Conditions of (35) and (39)

In this Appendix we shall present a brief discussion concerning the physical meaning
of the terms appearing in the boundary conditions of (35) and (39).

Begining with (35), we have that ou? represents that amount of thermal radiant
energy leaving, per unit time a,nd unit area, the point X € Ofl. This term arises
directly from Stefan-Boltzmann law. The mtegral over Of) represents the amount of

energy that, coming from 0¢2, reaches, per unit tlme and unit area, the point X € 9%1.
A detailed discussion on radiative transfer can be found in {7, 14].

In problem (39) we have, besides the radiative loss, a convective loss. The convective
loss is usually assumed to be proportional to the ditlerence between the local temper-
ature and a temperature of reference (generally the temperature of the environment ).
The energy loss, by convective tra.nsfer (per unit time and unit area) is repesented by
B(u — ugef) ar each X € 8Q [8).

The exterior normal denvatwe Bu/ on, Wlth the minus sign, represents, for each
X € 89, the amount of energy (per unit time and unit area) that reaches the boundary
8 by conduction [2]. 3 -

The boundary conditions of (35) and (39) arise from the following energy balance:

losses by conduction = losses by radiation + losses by convection (AIIL.1)
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in which

[1]

6]

|7}
8]

9
10

11
[12

13
14

[15]

ou
on’

losses (per unit time and unit area) by convection = 3(u — urer), (AIIL3)

(ATIL2)

losses (per unit time and unit area) by conduction =

Josses (per unit time and unit area) by radiation

= g f cu(y)*K(X,Y)dS. (AIIL.4)
Yeon
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