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Abstract

In this paper we show that, if a problem of (0,1, --,m — 2, m)-interpolation on
the zeros of the Jacobi polynomials ples }(m) (a, 3 > —1)} has infinite solutions,
then the general form of the solutions is fo(x) + C f(z) with an arbitrary constant
C, where fo(z) and f(z) are fixed polynomials of degree < mn — 1. Moreover, the
explicit fnr;n of f(z) is given. A necessary and sufficient condition of quadrature
regularity of the interpolation in a manageable form is also established.

1. Introduction and Main Results

Let us consider a system A of nodes
l:jxl?iz}'**}:ﬂﬂz—l, n > 2. (1.1)

Let P, be the set of polynomials of degree at most n and let m > 2 be a fixed integer.
The problem of (0,1, ---,m — 2, m)-interpolation is, given a set of numbers

Yk kEN:z{]—:g:"':ﬂ}} jEM:: {0,1,,"',??1*2,?71}, (12)
to determine a polynomial R,,,_1(z; A) € Ppn—1 (if any) such that
RY) _(zk;A) =y, VkEN, Vi€ M. (1.3)

If for an arbitrary set of numbers y; there exists a unique polynomial Ry,-1(xz; A) €
Pran—1 satisfying (1.3), then we say that the problem of (0, 1, - -, m—2, m)-interpolation
on A is regular (otherwise, is singular) and R,.,—1(x; A) can be uniquely written as

Roym—1(z; A) = Z YkiThi(T; A) - (1.4)
ke N
jEM
where ri; € Py satisty

Tg;)(:ﬂy) = 6ku6jp: k,b’ e N, .?:u#’ € M. (15)
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In particular, for convenience of use we set

Pl ) i=ln ), R= 1D vy (1.6)

On the problem of (0, 2)-interpolation Turan raises in [5] an open problem as follows.
Problem 29. Find all Jacobi matrices P(a, 3), a # 8, for which (0, 2)-interpolation

problem does have a unique solution.
By a Jacobi matrix P(a,(3), Turdn means the triangular matrix whose nth row

consists of the zeros of the nth Jacobi polynomial P?E,a‘ﬁ )(::r:) (a, 32 —1).
Chak, Sharma, and Szabados [1] have given a necessary and sufficient condition of
regularity of (0, 2)-interpolation in a manageable form on all Jacobi matrices P(e, 3).
Recently, the author generalized in [3] their important result and proved the follow-
ing theorem, in which

yi=gm=1)a+1), &= _(m-1)B+1) (1.7)
Sk:=2_n(:'ii)(n;€)? k:{]#l:"'an' (18)

Theorem A. The problem of (0,1,---,m — 2, m)-interpolation on the zeros of
P,E‘*"’BJ () (e, 8 > —1) is reqular if and only if

Dy(a,B) # 0 (1.9)

where

gﬂ (—D*@) (a2 ) s

() |

Du{a, B) = (m+1)(i)—(m—1)(n+ﬁ+é), a#—l, 3> —1, (1.10)

n
(—1)"Dn(—1, a), a>-—1, §=-1,
14+ (-1)", = = =1,
In particular, when a = -1, 3 > —1 or a > —1, 8 = —1, the problem is always
reqular; when o = 3 = —1, the problem is regular for even n and singular for odd n.

Remark. In [3] we also gave the explicit forms for the fundamental polynomials,
which are very complicated and omitted.

If the problem of (0,1, ---,m — 2, m)-interpolation on A is not regular, then for a
given set of numbers y;; either there is no polynomial R,,,_1(z) satisfying (1.3) or
there is an infinity of polynomials with the property (1.3). The possibility of an infinity
of solutions raises the question on the dimensionality of their number. The first result
concerning this question, to the best of the author’s knowledge, is given by Suranyi and
Turan in [4, Sections 6 and 11| for « = 8 = —1: in the case of infinitely many solutions
for n > 3 the general form of the solutions is

1(z) = fo(®@) + Crin()[Pa-s(z) — 3
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where fo(z) is a fixed polynomial of degree < 2n — 1,
(@) = (1 — %) P,y (), - (1.11)

Prn—1(x) stands for the (n—1)-th Legendre polynomial with the normalization P,_;(1) =
1 and C is an arbitrary number.
The first object of this paper is to generalize this result to all Jacobi matrces P(a, 3).
Theorem 1. If the problem of (0,1,---,m — 2, m)-interpolation on the zeros of
Pnﬂ‘ﬁ)(:r) (o, 8 2 —1) is not regular, i.e., Dy(a,B) = 0, and if for a given set of
numbers yi; there is en infinity of polynomials with the property (1.3), then the general
form of the solutions is

Roon—1(2) = fo(z) + CIPP) ()™ gn_1 (=) (1.12)

with an arbitrary number C, where fo(z) is a fized polynomial of degree < mn — 1 and
gn—1(x) € Pn_1 is of the form
(1 —:1:)7(1—}-:1‘:)‘5, a, 3> -1, n>v+46,

v, = integers

n—1\E) == ¥ 1.13
gn—1( ) | (1-2)7(1 +$)6{d_l_f Péa’ﬂ)(t)(l - t)-—*r—l(l +t)_6_1dt}, ( )
otherwise,
0, a, 3 > —1,
= { ’ (1.14)
1, a=0=—1,
n—1
Z(—l)kﬂ:k, D:,,B > —1, :
d={ k= (1.15)
1 .
= = —1
n{m —1)’ AP :
ks n—-ﬁmw‘;t:—l 3
Z ((.',_ ;c)? )kj) ; v # an integer or k < 7,
=0 \k—s/\T —
I S 1=y (1.16)
Z n_g_k'?__lk_l e —, b # an integer or k > n — é.
j=k+1 ( F—k~1 6 —n+ )

Theorem 1 suggests the following plausible.

Conjecture. If the problem of (0, 1,---,m—2, m)-interpolation on A is not regular
and if for a given set of numbers yy; there is an infinity of polynomials with the property
(1.3), then the general form of the solutions is

f(z) = fo(z) + C fi(=),
where fo(z) and fi(z) are fixed polynomials of degree < mn — 1 and C an arbitrary
number. . |
The second object of this paper is the quadrature regularity of (0,1, --,m — 2, m)-
interpolation. According to the general definition!?, the problem of (0, 1 ,m—2,m)-
interpolation on A will be called quadrature regular (or q-regular) if there exists a set
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of numbers
Cuy HEM, vEN (1.17)

with the property

f_ll Flalde = 3 eud ) (1.18)

peM
veEN

for all f € Ppn_1. In this paper we also give a necessary and sufficient condition of
g-regularity of (0,1,---,m — 2, m)-interpolation in a manageable form for all Jacobi
matrices P{a, 8) (o, 3 > —1) as follows.

Theorem 2. If a,F > —1, then the problem of (0,1,---,m — 2, m)-interpolation
on the zeros of PL" (x) is g-regular if and only if (1.9) holds or

@n(a,8) = [

1
gn—1(z)[PL*PH ()™ Yz = 0, (1.19)
1

where ¢,_1(x) is given by (1.13).

Ifa=-1, 8> -—;1 ora > —1, 3 =—1, then the problem is g-reqular.

If a = 3 = —1, then the problem is not g-reqular if and only if both n and m are
odd.

In particular, when a = 3, the problem is g-regular if one of the following conditions
is valid: (i) n is odd and m is even,; (ii) n is even and v = § # an integer; (iil) n is
even and n < 2v. If vy = & = a positive integer and if n > 2v and m is odd, then the
problem is not g-regular.

The proofs of these two theorems are rather complicated and are put to Sections 3
and 4, respectively. In the next section some useful lemmas of g-regularity for general

(0,1,---,m — 2, m)-interpolation are given.

2. Auxiliary Lemmas

We first prove some lemmas which are of independent interest. To this end we
introduce the fundamental polynomials of (0,1, - -,m—1)-interpolation. Let Ay;, By €

A z,) = 6kbiu, kv =1,2,---,m, Gu=0,1,---,m—1 (2.1)
and
Bl v o ol = %(a: o L k= LB v, m, (2.2)
where
Lhiz] = wﬂ(:c?, +wn(:1r) =clze—z1)(z—22) - (x—x,), c¢#0. (2.3)

Then we have
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Lemma 1. The problem of (0,1,---,m — Q,m)—interpolatz’oﬁ on A is ¢-regular if
and only if

1
rank [B{™ (.1 = rank [B{"(@,), [ Be(e)dalg,-, (2.4)

Proof. The problem of (0,1,---,m — 2, m)-interpolation on A is g-regular if and
only if, by definition, (1.18) with some numbers (1.17) holds for all f € Pp—1, which
is equivalent to that (1.18) holds for all Az;, k=1,2,..,n, 7 =0,1,---,m — 1. That
is,

1
Z C#VAEG?}(H:F) o _/ Akj(ﬂf)dﬁ, k = Ly 9 iy J =0,1,---,m—1. (25)
—1

peM
velN

With the help of (2.1) and (2.2), (2.5) becomes

ik + Zc""-“ (m) :J:y) [ Api(z)dz,

v=1
- k=1,2,~~-,n, i=01-.--.m— 2, (2.6)
n 1
Y ey B (20) = f Bi(a)dz, k=1,2,,n. (2.7)
=1 i .
As we know, the system of linear equations (2.7) has a solution ¢,,,,,, ¥ =1,2,---,n, if

and only if (2.4) is true. Then the other c;x, £ =1,2,---,n, 7=0,1,---,m —2, can
be determined by (2.6).

This completes the proof.

Lemma 2. The problem of (0,1,--,m ~ 2, m)-interpolation on A is g-reqular if
and only if for every polynomial Ry 1(x; A) € Pmn—1 satisfying (1.3) with yi; = 0,

.1
/ Royn-1{x; A)dz = 0, (2.8)
= |

Proof. Let us show the sufficiency only, the nece;.isity being trivial. |
Assume that R(z) := Ryn-1(z; A) € Pmn—1 satisfies (1.3) with yz; = 0. Using the
polynomials Ag,(x), R(z) can be uniquely written as

n m—1
R(z) =Y Y RW(z,)A.(z) = Z R (z,)B,(z). (2.9)
=1 pu=0 =1

The condition R (zx) =0, k=1,2,---,n, yields

Y R W2, ) B (ag) = 0, k=1,2,---,n. (2.10)

=1

Meanwhile, (2.8) can be written by (2.9) as

ZR(""“I)(;:: )f B, (z)dz = 0. C(2.11)

=1
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Thus, every polynomial R(x) satisfying (2.10) implies (2.11). This, in fact, is equivalent
to (2.4). Therefore by Lemma 1 this is equivalent to the q-regularity of the problem.
This completes the proof.

3. Proof of Theorem 1

The main idea of the proof can be found in [1].
Theorem 1 will be obvious if we show that in our case every polynomial R(z) €
Pmn—1 satisfying (1.3) with yz; = 0 is of the form

R(z) = Cwp' ™! (2)ga—1(x), (3.1)

where C' is an arbitrary constant, w,(z) := PP )(:r:) and ¢,—1(z) € P,_1. Then, it
satisfies all the conditions, except for

R™(2)=0, k=1,2,---,n. (3.2)
Using the formula (34) the requirement (3.2) yields
Wl @)1 (@), =0, k=1,2,,n. (3.3)
It is easy to see that
- 1 o
@), = 2 (m — Dmle, (@)™ 2l ()

and

W N @)D = (m — 1), (i)™,

Then (3.3) becomes
1
E(m — Dwp(@k)gn—1(2k) + &, (xp)d_1(z2) =0, k=1,2--. T (3.4)

The Jacobi polynomial Pfgﬂ’ﬁ)(:ﬂ); a,3 > —1, satisfies the differential equation!!

(1-2%)y" + [(B—a) - (B+a+2zly +n(nta+B8+1)y=0 (3.5)
and the normalization
Pl (1) = (”‘ Z “) . (3.6)

It follows from (3.5) that
(1 — zi)wh(zs) = [(a+ 1)1 +z4) — (B +1)1 — 2 )]wn (@), *=1,2,::,n (3.9
This, coupled with (3.4), gives
(1 —2g)gh_ 1 (zk) + [¥(1 + 25) — 6(1 — zx)lgn—1(zx) =0, k=1,2,.-.,m. (3.8)
Denote by D the differential operator |
Dy = (1- %)y + y(1 + &) — 6(1 — a)y. (3.9
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Then (3.8) implies
Dgn_1(x) = Cwyn(z), (3.10)

where C is a constant. Solving this differential equation we get

dn-1(2) = (1 — 2)(1 + 2)*{d + C f " wa(E)(1 = £)™7(1 + £)~51dt)

with the constant d to be determined.
To determine d let us put

n—1
() = Y ap(z — 1)z + 1)~ 1%, (3.11)
k=0
Thus .,
Gn— 0) = —=] kﬂ ’ ﬂ'::ﬁ > _11
S L OEDC I -
n-1(1) = 2* ey, a=f0=—

We distinguish two cases o, > —1 and & = 3 = —1, because by Theorem A the

problem is always regular for the other cases.
Case I (a,3> —1). It is known [1, (2.2)] that

PO (g) = 27 Zﬂ: (:.J—r:) (” o ‘3) (2 — 1)*(z + 1)~*

k=0

= Zn: sp{z ~ 1)*(z + 1)"%. (3.13)
k=0

Using (3.11) and (3.13) and comparing the coefficients of (z — 1)*(z + 1)** on both
sides of (3.10) we obtain the system of equations

6 —n+klap1+(y—klapy=Cs,, k=0,1,.-- n,
{( Jak—1 + (v )k k (3.14)
a1 =as = 0
Let us calculate ayg. If v 3 an integer or k < ~, then
1 L (ﬂ; E—_;{—I)Sj
Qp = {n—6—klag_1+Csp}=C Z (3.15)

=t o Dy —-4)

and hence we get the first formula of (1.16) with a, fH.CtDI' C'. Similarly, we can prove
the second one of (1.16) with a factor C'. This proves the second formula in (1.13) for
a,3 > —1.

Let both v and é be integers, and let n > v + 6. In this case the equation corre-
sponding to k = v in (3.14) yields

Cs,
= ; 3.16
-l Y+6—-n ( )
On the other hand, it follows from (3.15) that
. v—1 n —6— j-»l) ~—1 n b—4— 1)3

Qg1 = Cz E_;*j 3 . C‘Zﬂ 7*1_3
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We note that s ((y+ § —n) < 0 and

v—1 (ﬂ—ﬁ—j—l

Z ~y—1—1 )SJ

=0 17

> 0.

Hence we conclude C = 0, which gives the first formula in (1.13).

Case II (o = 3 = —1). In this case D,(a, 3) = 0 means that n is odd. Meanwhile,
1 =1,2, = -1,y =68 = sy = s, = 0. Then the equations with £ =0 and ¥k =n 1n
(3.4) become identities. But by [1, p. 441] we have

wp(z) = PUL"D(g) = ¢(1 — 22)P._ (z) = cn(x)- (3.17)
Thusl? | S1) 1
w:(l) —= -én.(n —1). (3.18)
It follows from (3.4) that
4, (1) + (m — D)n(n — 1)ga_1(1) =0, (3.19)
On the other hand, b},; means of (3.11) we obtain
g _{1) =2"?[(n - ey + ] (3.20)
and
gn-1(1) = 2" ayg. (3.21)

Therefore (3.19) becomes
1
oy + i(n — 1)[(m — 1)n + 2]ap = 0. (3.22)

Adding this equation to the one with &k = 1 in (3.14) we get

%(m —1)(n — )nag = Csy = C27"(n — 1)

and hence by (3.12)

“ C
d= geall) = 8% mg = e

This completes the proof.

4. Proof of Theorem 2

(2.8), coupled with (3.1) and (3.11), yields (1.19).

First we point out that, if the problem is regular, then it must be g-regulari?. So,
according to Theorem A the problem is g-regular if (1.9) holds. In particular, the
problem is g-regular if one of the following conditions holds: (i) @« = —1 and 3 > -1,
(ii) « > —1 and g = -1, (iil) @ = 8 = —1 and n is even.

In the case o = 3 = —1, according to Theorem A the problem is g-regular for even
n. Let n be odd. |
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First by (3.13) we can determine the constant ¢ in {3.17)

—1,—1
—fm @) 1
T—} (1 T $2) ;_1(:13) 271!
1.e.,
= 1
athm=m£%@y

Hence it follows from (1.13) that

B 1 I 7. _ m++1l 1
9n-1(2) = n{m — 1) 2n./; Fo1 ()t = 2n(m — 1) ZHP“_I(E:)'

Next, using the formula =, (z) = —n(n ~ 1)P,_1(z) [2, (12.1.2), p. 170] and by
integration by parts we conclude

L 1
/_1 T {x)m, 1(:B)d:1r = —(m — 1) /;1 '?Tn(ﬂ?)’ﬂ'n (m)dm

Hence

and .
f Pp_1(z)n Y z)dz = 0.
-

50, the problem is not g-regular if and only if

1 - om+1 b e
[ Riedde = s | oM z)de £ 0

which is equivalent to that m is odd. 5
When o = 3 we claim that ¢,_;(2z) must be either an even function or an odd one.

In fact, if R(x) in the form (3.1) satisfies (1.3) with yx; = 0, then so does

R(~2) = Cwm Y (~2)gn_1(~2) = Cuw* ()| gn_1(-2)].
By Theorem 1 we have, with a constant c,
Gn-1(—) = cgn-1(2).
But replacing x by —z leads to
gn-1(2) = cgn-1{—) = gn_1(z),

1.e., ¢ = +1. This proves our claim.
Now let n be odd. Then w,(x) is an odd function and hence by (1.13) ¢,—1{(z) is
an even one. Thus for even m, R(z) is an odd function and hence

jiR@Mmz& (4.1)

This by Lemma 2 implies g-regularity of the problem.
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Let n be even. Then w,(x) is an even function. In the case v = § # an integer or

n < 2v we have
, 0 T 1
tn-1(=2) = (1= 2 {d+ [ PO - 27 d - [* P - )7},
a 0
which 1mplies g,_1{—2) = —gn—1(2), Tor otherwise this leads to
f Ples@)(4)(1 - ¢2)~7"1g¢ = 0,
0

a contradiction. Then R(z) is always an odd function and hence (4.1) holds. That is,
the problem is g-regular.

When v = & = a positive integer and n > 2+, we have ¢,,_1(z) = (1 — z*)” and the
problem is not g-regular for odd m.

This completes the proof.
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