Journal of Computational Mathematics, Vol.11, No.4, 1993, 350-364.

PROGRAMMING*)

; He Bing-sheng
(Nanjing University, Nanjing, China)

Abstract

A linear programming problem can be translated into an equivalent general
linear complementarity problem, which can be solved by an iterative projection
and contraction (BC) method [6]. The PC method requires only two matrix-vector
multiplications at each iteration and the efficiency in practice usually depends on
the sparsity of the constraint-matrix. The prime PC algorithm in 6] is globally
convergent; however, no statement can be made about the rate of convergence.
Although a variant of the PC algorithm with constant step-size for linear program-
ming [7] has a linear speed of convergence, it converges much slower in practice
than the prime method [6]. In this paper, we develop a new step-size rule for the
PC algorithm for linear programming such that the resulting algorithm is globally
linearly convergent. We present some numerical experiments to indicate that 1t
also works better in practice than the prime algorithm.

1. Introduction

This paper presents an algorithm for linear programming problems based on an
iterative projection and contraction method for linear complementarity problems [6].
The algorithm makes a trivial pro jection onto a general orthant at each iteration and the
generated sequence contracts Féjer-monotonically to the solution set, i.e., the Euclidean
distance of the iterates to the solution set decreases at each iteration. Usually the
matrices describing the constraints for large problems will be sparse, but often no
special structure pattern is detectable in it. The projection and contraction method for
linear complementarity problems 1s an iterative procedure which requires in each step
only two matrix-vector multiplications, and performs no transformation on the matrix
clements. The method therefore allows the optimal exploitation of the sparsity of the
constraint matrices and may thus be an efficient method for large sparse problems (16]
and [7]).

* Received May 12, 1992.
1) The Project Supported by National Natural Science Foundation of China.

Further Developments in an Iterative Pro Jection and Contraction Method for Lirsar Programming 351

In this paper, we work on the ideas in 6] and [7], and obtain a faster algorithm.
The directions generated by this algorithm are the same as generated by the algorithms
presented in [6] and [7]. However, we get a new simple step-size rule and are able to
obtain global linear convergence without estimation of the norm of the matrix describing
the constraints. Moreover, the new algorithm also works better in practice than the
prime algorithm.

Our paper is organized as follows. In Section 2, we quote some theoretical back-
ground from [6]. Section 3 describes the new algorithm and its relation to other PC |
algorithms. Section 4 proves the convergence properties of our new algorithm. Section
9 gives an extension-the scaled algorithm. In Section 6, we present some numerical
results. Finally, in Section 7, we conclude the paper with some remarks.

We use the same notations as in [6]. The i-th component of a vector z in the real n-
dimensional Euclidean space R" is denoted by z;. A superscript such as in u* refers to
specific vectors and k usually denotes the iteration index. Pq(-) denotes the orthogonal
projection on the convex closed set Q. Specifically, 2 denotes the projection of z on

nonnegative orthant R7 | i.e..
»

(z+); :== max{0, z;}, 8 =1 e 9

I - || and || - [Joc denote the Euclidean and the max-norm, respectively. For a positive
definite matrix G, the norm)| is given by (uTGu)%.

2. Theoretical Background

We consider the pair of the standard form linear program and its dual

min f::T.-I:,

(P) (1)

st Arx=4b, z>0,

max by,

(D} (2)

st ATy <e

‘where A is an m x n-matrix and b, c are vectors of length m and n, respectively. Let
O = {u = (z,y)|z is a solution of (P), v is a solution of (D)}. (3)

Throughout the paper we assume that Q* £ @. It is well known 2] that u = (z,y) € O*
if and only if it solves the following general linear complementarity problem:

{:r: >0, —Aly+c¢>0, et (—ATy + g} =0,

(LCP) |
Azx — b= 0.

(4)

Let o (A —AT) | . (fb) : Q:= {u=(2,9)|z > 0}. (5)

352 HE BING-SHENG

"Then (4} is also characterized by
uy 2 O:I

(Mu+q)r 2 0,
(LCP)

(Mu+q)ryy =0,

where I = {1,...,n} and L = {1,...,n+m}. The projection & = Pglu| of u onto 2 is
simply given by

E.T

T =Ty, y=1y.

It is easy to see (see e.g. Mangasarian [9]) that u* is a solution of the LCP if and only

if it is a zero of the function
e(u) := u — Pplu — (Mu + q)]. (6)
We will measure the “distance” to such a zero by the function
é P(u) = |le(u)||. (7)

The relationship of a violation of the optimality conditions above and the function ¥
can be illustrated by the following table in which we assume that only one of four
conditions of the LCP is violated in each case:

ur = 0 |leerlf?,
(Mu +q); <0 (Mu + q)71?,
If then % (u) = ‘ 5
uf (Mu + q); > 0 min{us, (Mu + q)1 }H|*,
2
((Mu+q)p\g #0 (Mau+glagll
Let
o) = e(w)T(Mu + g) (8)

We have the following basic lemma.
Lemma 1. Let u € {}. Then

w(u) > Y(u). -~ (9)

A simple proof of Lemma 1 can be found in [6]. From this result we obtain imme-

diately the following
Theorem 1. Let ¥(u) and ¢(u) be defined as in (7) and (8), respectively. Then

i) @(u) > ¥(u) > 0 for all u € (2,
ii) u € Q and p(u) =0 -{:}‘w(u):(l “=> u € 0" .

For v € £, the functions (u) and ¢(u) are continuous and can be viewed as
measures for the distance of u from the solution set §2*. Moreover, one can show that

Further Developments in an Iterative Pro jection and Contraction Method for Linear Programming 353

for LCP’s with a unique solution u* there exists a constant MM, q,r) > 0 such that

n(M,q,r) < le(w)] < ||M| +2

Tl T

is true for all u € § := {u € Q|||lu — v*|| < r}. In our algorithm below we take the
vector

g(u) := MTe(u) + (Mu + q) (10)

as the search direction. The following theorem plays an important role in the projection
and contraction method.
Theorem 2. Let u € Q, u* € Q* and g(u) be defined as above. Then we have

(v —u") g(u) > p(u). (11)

The proof of Theorem 2 can also be found in 6]. For u € , the direction —g(u) is a
profitable direction, i.e. a descent direction of ||u — u*||°. As a consequence of Theorem
2, one can build a prime PC algorithm (see 1] and [6]), which is globally convergent
whenever (1* # ﬁ.i

3. The New Algorithm and Its Relation to Other Algorithms

First, we state our new algorithm.

PC Algorithm 1.

Step 0. Assume A; and As are fixed constants satisfying 0 < A; < As < 2. Let
e>0and u’ € Q. Set k:= 0. "

Step 1. Compute e(u*). If G < &, stop.

lgfoa
Step 2. Calculate g(u*). Set

{M T e(u®)||?
(¥ = , 12)
le(w)] (
1
2 1
P g (13)
and take
Tk € [Ag, As]. (14)
Step 3. Set
&° = uk — e prg(u®), (15)
uw = p,lg*). (16)

Set k:=k+ 1 and go to Step 1.

Jo4 HE BING-SHENG

The number ;. is a factor for the step length, similar to w of the SOR-method. For
linear programming, the best choice of ¥ may be a number very close to 2. The main
difference between our new algorithm and PC algorithms in [6] and [7] is that they take
different step-size rules (how to choose p). For convenience, we fix v = 1. In the prime
algorithm [6], for w € (1, one denotes |

N(z):={i|x; =0and (gz); = 0},
B(;I:) i {1y« oo\ N{2)

Correspondingly, denote

;EB Q:::E g—’ﬂB 0
u=|zy |, glu)= =y |+ 9Ib (v) = 0}, gn(u)= Yoy
Y Gy Gy 0

It is easy to see that for u € 2 and u* € 2%,

(u—u)gy(u) 2 (u—u') g(u) 2 p(u).

The choice of the Iﬁrime algorithm [6] is

o plu)
FPprime — ||QH(H)”2 | (17)

This choice guarantees that the generated sequence {u*} satisfies
o — u*? < Jju® — (1~ pprime[le(u®)]’

and converges globally to the solution set {2*. However, in the worst case, pprime mMay
be very small and the algorithm exhibits a slow convergence behaviour.

In the variant of the PC algorithm with constant step-size [7], one needs first an
estimation of | A|l, say 8 > ||A4||, and then takes

1
Pconst = 14 ,@2

(18)

as step-size in all iterations. The generated sequence {u*} satisfies
|]uk+1 - u’:“”2 < ”uk _ r“'m”‘2 o pcnnst”ﬁ(uk)”z -

and the algorithm is globally linearly convergent since py = peonst 1§ bounded below.
Unfortuately, in practice this algorithm converges much slower than the prime one.
In [7] we suggest choosing p = max{pprime, Peonst } SO that peonst serves as a safeguard
against a “too short” step length.

The step-size ppew in our new algorithm is chosen by

1
1 + o

Pnew —

Further Developments in an Iterative Pro jection and Contraction Method for Linear Programming 355

and ay is calculated in every iteration by (12). In the next section we will prove that
the sequence {u*} generated by this new algorithm satisfies

[— w12 < fluk = w2 ~ puewlle(u®))2.

From (12) and (5)
ar < [MII° = |Af? < 82

It follows that
Fnew '2 Pconst - (19)

Therefore the new choice of the step length may offer a faster algorithm with the same
worst-case bound as the algorithm in [7]. We note that the projection on the general
orthant € is trivial and in all PC algorithms the main work at each iteration is the
computation of Mu and M Te(«). For linear programming, each iteration requires two
matrix-vector multiplications of the form Az and two multiplications of the form ATy,

4. Convergence Results

We begin this section by stating the main result.
Theorem 3. The sequence {u*} generated by the PC Algorithm 1 for linear pro-
grams n standard form satisfies

[= u*ff? < [k — w12 — (2 — ye)rleut))|2 (20)
FProof. The proof of Theorem 3 is divided into two steps. First we let
Ok = [lu® — w*I? — b — w*|? — 31(2 — v) oule(w®)| (21)

and rewrite Oy, in a convenient expression. Then we show the equivalent assertion 6, >

0. In the sequel we shall write briefly p, v, u, 4, % and © instead of Ok Vi, u®, @k, yFt+1

and ©y. Since & = Py(%) and u* € Q,
12— u*l|* > fja — w*||® + ||z — &))?, - (22)
and from (11} and (15) follows
o — ™ |I* — [l — w1 > Jlu - w*||? - [|a — u*||? + [ja — a2
= 27p(u — u") g(u) — v*p?||g(u)|? + ||z — |2
> 2vpp(u) — v p?llg(w)|? + ||z - &||2. (23)
It follows from (23) that

6 2 2vpp(u) ~ 72 = Nelle@ - P lgw)l? + Iz — 5% (24)

356 HE BING-SHENG

Denote
z ;= Ax — b, vi= Aly — ¢, w:=—A'z.
Then AToy +
—Aty+c —v
Mg = (Axr — b) :(2z)1
u— Polu— (Mu+q)] = (:c - (i+ vh) ,
o(u) = {u — Polu— (Mu+@)]}T(Mu+q) = [(x+v)4 —z]Tv+2"2 (25)
le(u)l? = |lu — Palu - (Mu+@)l|I* = l(z +v)+ — 2l + 2" 2 - (26)
TIy — Polu — (Mu = e
- MT{u - Palu— (Mu u = S
ofu) = MT{u— Palu— (Mu+ o)t + (v = (o 707"), @D
and . &
lg@)li2 = [lw + v||? + | Al(z + v)s — 2]l + 2Tz = 2[(@ + v)s — 2] w. (28)
Note that
IMT{u— Pafu - (Mu+)P _ w"w+ Al +v)s - 2|1
lu — Palu — (Mu + g)]||* 2Tz + (@ +v)+ —
and
HA[(z + v}y — 2| = @z’ 2 + af(z +v)4 — zl|? — wlw. (29)

It follows from (28) and (29) that

o) = [l -+ ol?+ (L +)T 2+ al| (@ + v)5 — ol — wTw =2z +v)s — T (30)
From (24), (25), {26) and (30) we obtain
0 > 2vp{(z + v)4 — 2]Tv + 272} — (2y — V)p{ll(z + v)+ — @l® + 2" 2}
— 2o llw+v|P+ (1 +a)z z+al(z+v)s — z||? — wlw
2z +)4 — 2w} + |5 - 3.
By ap® = p— ¢ (from (13)),
0 > 72 p*wTw + 2vp|(x + v)4 — 2] v + 29%0%[(x + v)+ — 2] w
_ @vp = Vo)l(z + v)4 — 2| — 72Pllw + o2 + 12 — &2 (31)

Now we are ready to prove the second step © = 0.
Proof of © > 0. Without loss of generality we may assume that z,v and w are
scalars. We distinguish the following cases:

Further Developments in an Iterative Projection and Contraction Method for Linear Programming 357

(1) (x +v)+ = z+ v. In this case (31) yields
0 > v p*uw? + 2vpv® + 297 pvw — 2vp0? + ¥2p*0? — 420w + v)? = 0.

(2) (z+v)e =0+ 24w,
(2.1) (z+v)+ = 0 and ¢ < O(& = 0): Note that in this case & = z+yp(w+v) <
0, ie., ||z~ Z||* = ||z +vp(w + v)||*, and (31) gives

e > szzwz ~ 2vprv — 2’}*2921“1&? i (E’TP — ’YZﬁE)xz
— v (w + v)? + 2% + 2ypx(w + v) + V203 (w + v)?
=% p’w® + 2yp(1 ~ vp)aw + (1 ~p) e

= [ypw + (1 — vp)z]® > 0.

(2.2) (z+v)y =0and £ =% > 0. Note that (z + v);, = 0 implies z + v < 0,
and T > 0 means x + vyp(w + v) > 0. So it follows that

0<z+yplw+v) <z+yo(w+v)—yp(x +v) =vpw + (1 - vp)z.
Then from (31) and the above relation we have
© > v?p’w? — 2vpzv — 293 p aw — (2vp — ¥ p?)2? — VPP (w + v)?
= [yow + (1 = yp)z]® — [z +yp(w + v)2 2 0.

Therefore in all cases © > 0, and the proof of the theorem is complete.

1
Because Theorem 3 is true for any u* € Q* and p > TrA] in fact we have
proved
. . A1(2 — Ay)
dist? («*t1 Q*) < dist?(u*, Q* e(u®)||?, 32
(1,0 < dist*(ut, @) - LI ()] (32)
where

dist(u, Q") = inf{||u — «*|| | " € Q*}.

Especially, if A; = A, = 1, then we have

1 k(12
'L ||A“2“E(u’ JIs

dist* (w1, %) < dist?(u*, ") (33)
The function |le(u)|| measures how much u fails to be in 2*. (32) states that, if ||e(x*)||
is not too small, then we gain a ‘big’ profit from an iteration; conversely, if we get a
very small profit from an iteration, this implies that |e(u*)|| is already very small and
u® is a ‘sufficiently good’ approximation of a u* € Q*. In fact, from (32) it is possible
to prove that, if £2* is nonempty, then the convergence speed of Algorithm 1 is linear.

358 | HE BING-SHENG

5. An Extension—The Scaled Algorithm

In this section we will briefly describe how a scaled PC algorithm can be obtained
by using a quite similar approach as described before. Let

G.
G:(Gy)’

where G, is an n x n diagonal matrix and G, is a symmetric m X m matrix, and both
are positive definite. Note that the value of the measure function ¢ is not invanant
under transformation of the form

M— M= G'%MG-%,
qg— ‘j — G_%‘%
u-—&E=G 3,
The resulting LCP however with M and g is equivaz.lent to the LCP(M, q). In particular,
since our method is baged on the function %, it is sensitive to such transformations of M.
To find the best transformation @ (preconditioning) is the subject of further research.

Here we state the method for a given preconditioning matrix G. From (6) follows that
u* is a solution of the LCP if and only if it is a zero of the function

é(u,G) := u — Polu — G (Mu + q)]. (6")
Similarly we set |
¥(u,G) := [|&(x, G)I& (7')
and - |
o(u,G) = (u, Q) (Mu+q). (8)

Then we have . E
el e Pu,G)=0

and | |
P(u,G) > P(u,G) ~ forall we. (%)

We take
g(u,G) = MTé(u, G) + (Mu+ g) (10")

as the search direction and have the following assertion:
(u — v §(u,G) > $(u,G) for all w € Qand v € . (11')

From the above relations, we have the fﬂllomng scaled PC algorithm:

PC Algorithm 2.

Step 0. Assume A; and As are fixed cnnstants satisfying 0 < Ay € Ay < 2. Let
e >0and u® € Q. Set k :=0. -

Further Developments in an Iterative Projection and Contraction Method for Linear Programming 359

[é(u*, G)ll
lgloo

Step 1. Calculate e(uf, Q). If < g, stop.

‘Step.2. Calculate §(u*, G). Set

_ G M e(w”, G)lI%

g - : 12

|&{u*, G)|IE -
1
” !
B 3 (13')
and take
Tt € (A1, Al (147)
Step 3. Set

@* = u* — oG 5(u*, @), (15)

w1 = Pylak). (16')

Set k := k + 1 and go to Step 1.
For this scaled algorithm, we have the following result.

Theorem 4. The sequence {uk} generated by PC Algorithm 2 for linear programs
in standard form satisfies

1w+ — w*|E < lu* —u*llE — v (2 — w)eellé(w®, G)IE. (20)
This theorem 1s the analogue of Theorem 3 applied to the system

£ — Polé — (ME+§)] =0,

1

where £ = G%u, M=G :MG % and qg= _%q. Note that

__ G2 MTe(uk, @)

- < |G MGz
IGze(uk, G)|?

1

Because Theorem 4 is true for any v* € * and p; > 7 —, in fact we
| 14 [|GT2MG™ 2|2
have proved
; 8 ; i Q{3 — 24 2
distg; (w1, Q") < dist(u”, Q) uC-2a) st o0, (32)

1+ [G-E MG 2|2

where

distg(u, ") = inf{||lu — u™||¢ | u* € Q*}.

360 - HE BING-SHENG

6. Numerical Experiments

In this section we compare the efficiency of our new algorithm with other similar
algorithms—our prime algorithm in [5] and [6] and the extra gradient method by Ko-
rpelevich [8]. As a test problem we consider the transportation problem with random
richt hand side. The transportation problem is a linear program of the form

T TL
min E E CijLij,

=1 9==1

T
S‘t' -E :Ir'iJ:Si} i:l,---?m}
i=1

m
inj:dja jzl,”',ﬂj
=l

il?ij:}ﬂ, 1 =1,---,m, ﬁ?:la'”}n-

where

¢ C.
m= number of sources, mn= number of destinations,
s;= supply at source i, d;= demand at destination j.

For feasibility, it is necessary that we have

41 n
E 8; — Z dj.
=1 =1

We generate random test transportation problems as follows: we take

s; =50 % ran(*)+50 fori=1,-.-,m,

d; =50 x ran(*) +50 forj =1, -,n,

and set |
dj=tdjzr j:]-?“'ans

where ran (*) denotes a random variable in (0, 1) and

Then, the system is balanced in the sense that the total supply equals the total demand. |
Further, we choose the components ¢;; of the vector ¢ randomly in (0,100).

All codes were written in FORTRAN and run on a VAX 8810 computer of the
Computing Center of the University of Wiirzburg. The calculations were started with

«? := 0, and stopped as soon as

| Az — bllos ||z — [z + (ATy —)]+l
max ’ < £
{ {20]l o }

Further Developments in an Iterative Projection and Contraction Method for Linear Programming 301

for some £ > 0. The termination criterion was checked at everv tenth iteration. The
CPU-times refer only to the runs with the highest accuracy € = 1075,

6.1. The prime PC algorithm

The iterative scheme of the prime PC algorithm in [5] and [6] can be written as

u™! = Polu® — prg(u¥)]

where pj is calculated in each iteration by (17). The numerical results with prime PC
algorithm are given in Table 1.

Table 1. Prime PC Algarithmfﬁ]

orig. # dest. # var. # iteration for ¢ = CPU
Im n mn 0.1 0.01 0.001 - sec
40 50 2000 30 100 510 15.80
75 80 6000 20 180 810 79.88
80 125 10000 o() 280 740 125.17

6.2. Korpelevich’s method

As pointed in [7], in the case of solving linear programs, the PC method with
constant step-size (p;, is given by (18)) can be viewed as an extension of the extra

gradient method proposed by Korpelevich 18]. Korpelevich’s iterative scheme is the
following

= Pg[’uk = A(M’uk &3 q]], uttl = Pﬂ[uk = /\(Mﬁ-k + q)].

It is proved (in [8]) that for all 0 < A < 1/||M|), the sequence {u*} satisfies

[+ — |7 < b — w1 = (1 - X% M) b — k)

and it is linearly convergent. Note that for linear programming, ||[M]l = ||A]l. The
constraint matrix of a transportation problem with m origins and n destinations is an

(m + n) X mn matrix of the form

362 " HE BING-SHENG

Because
n 1 1
o A e n 1 1
- 1 1 m ’
1 1 m

1t 1s easy to see that

min{m, n} < Anez(AAT) = [|A||* <2 - max{m,n}.

We take 7 := -%(Jmin{m,n?%— V2 - max{m,n}) as an estimate for ||A|| and as in [8] we

choose A = as t}}.e constant step-size. The numerical results with Korpelevich’s

2
method are in Table 2.

Table 2. Korpelevich’s Algorithm (8]

orig. # dest. # var. # iteration for € = CPU
m I mn 0.1 0.01 0.001 sec
40 ol 2000 50 410 2740 69.27
70 &0 6000 60 570 2930 231.69
80 125 10000 60 750 3390 444.02

6.3. Our new PC algorithm—PC Algorithm 1 The iterative scheme ot our

PC algorithm 1

uF 1 = Pou® — yepeg(u®)]

where py. is calculated in each iteration by (13) and 0 < Ay < v £ Az < 2. In our test
problems we take v = 1.95 and the numerical results with this algorithm are given in
Table 3.

Table 3. The new PC algorithm

orig. # dest. # var. # iteration for ¢ = CPU
m n mn 0.1 (.01 0.001 sec
40 o0 2000 20 90 400 12.38
75 80 6000 20 160 650 62.69
80 125 10000 40 150 530 89.61

Further Developments in an Iterative Projection and Contraction Method for Linear Programming 363

Because in practical problems the data of b and ¢ come from experiments or from
statistics, a threshold £ = 0.001 is sufficient for most practical applications. Qur nu-
merical results show that both our prime PC algorithm and new PC algorithm converge
much faster than Korpelevich’s extra gradient method. For ¢ — 0.001, our PC meth-
ods require 70-80 percent fewer iterations than Korpelevich’s method. In general, our
new PC algorithm is more efficient than the PC algorithm with constant step-size; the
reason 18 that pnew > peonst (see (19)). Comparing Table 3 with Table 1, we conclude
that the new PC algorithm also works better than the prime one at least in some cases.

7. Conclusion

For fixed precision, the number of iterations of our PC algorithms is rather in-
sensitive to the increase of the size of the problem (number of variables). In view of
the moderate nt}'mber of iterations and the low cost of each iteration, the PC method
seems to be an efficient method for solving large sparse linear programming problems.
Moreover, since the PC method is easy to parallelize, it may be even more favorable
for parallel computation.

We point out however that the methods are convergent only if Q* # @ and the
convergence results of our new PC algorithms are proved only for linear programming
in standard form. If * = @, we conjecture that the iterates diverge to infinity.

Acknowledgement. Thanks are due to F. Jarre for his comments on this paper.

References

[1] E. Blum and W. Qettli, Mathematische Optimierung, Econometrics and Operations
Research XX, Springer-Verlag, Berlin, Heidelberg, New York, 1975.

2] G. B. Dantzig, Linear Programming and Extensions, Princeton University Press,
Princeton, 1963.

[3] V. F. Demyanov and A. B. Pevnyi, Numerical methods for finding saddle points,
USSR Comput. Math. Math. Phys., 12 (1972), 11-52.

4] L. G. Gubin, B. T. Polyak and E. V. Raik, The method of projections for finding
the common point of convex sets, USSR Comput. Math. Math. Phys., 7 (1967),
1-24.

15} B. S. He, A saddle point algorithm for linear programming, Nanjing Dazue Xuebao,
Shurue Banniankan, 6 (1989), 41-48.

6] B, S. He, A projection and contraction method for a class of linear complementarity

problem and its application in convex quadratic programming, Applied Mathematics
and Optimization, 25 (1992), 247-262.

364 HE BING-SHENG

7] B. S. He, On a class of iterative projection and contraction methods for linear
 programming, JOTA, 78 (1993).
8] G. M. Korpelevich, The extragradient method for finding saddle points and other
problems, Fkonomika i matematicheskie metody, 12 (1976), 747-756.
[9] O. L. Mangasarian, Solution of symmetric linear complementarity problems by it-
erative methods, JOTA, 22 (1979), 465-485.
[10] H. Uzawa, [terative methods for concave programming, 1n: Studies in Linear and
“Nonlinear Programming (K. J. Arrow, L. Hurwicz and H. Uzawa, ed.), Stanford
University Press, Stanford, 1958.

	File0001.jpg
	File0002.jpg
	File0003.jpg
	File0004.jpg
	File0005.jpg
	File0006.jpg
	File0007.jpg
	File0008.jpg
	File0009.jpg
	File0010.jpg
	File0011.jpg
	File0012.jpg
	File0013.jpg
	File0014.jpg
	File0015.jpg

