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L>* CONVERGENCE OF CONFORMING FINITE ELEMENTS
FOR THE BIHARMONIC EQUATION"V

Wang Ming
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Abstract

The paper considers the I.°° convergence for conforming finite elements, such as
Argyris element, Bell element and Bogner-Fox-Schmit element, solving the bound-
ary value problem of the biharmonic equation. The nearly optimal order L*°
estimates are given.

’ 1. Introduction

The author has considered the L°° error estimates of the nonconforming finite el-
ements for the biharmenic equation (see [3]). This paper will discuss the case of con-
forming finite elements.

Let £ be a convex polygonal domain. The Dirichlet boundary value problem of the
biharmonic equation is the following

Ay = f, in O
Ju (1.1)
“1o9 = 5 lan =
where NV = (N_, N, ) is the unit normal of 9.

For p € [1,00] and m > 0, let W™P(Q2} and W3 "(Q) be the usual Sobolev spaces,

and || - ||m,pn and | - |mpa be the Sobolev norm and semi-norm respectively. When
p = 2, denote them by H™(Q), H*(22), || - llm.o and | - |m.0 respectively. Let H~™(§2)
be the dual space of HJ*(2) with norm || - ||—m .

It is known that for ¥f € H~1(Q2), problem (1.1) has a unique solution v € HF{2)N
H3(f), such that |

ull3.0 < Cllfll-10; (1.2)

with (' a positive constant.
Define, for Yu,v € H?(f2),

2 2 2 2 2 2
o(u, v) = /(auau g O%u Bv_,_ﬂuav)dxdy' (1.3

Ox2 9z?2 T OzOy OxBy = Oy? Jy?
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Let f € L%(Q2). The variational form of problem (1.1) is to find u € H§(f2), such that
a(u,v) = (f,v), Vv € HE (), (1.4)

where (-,-) is the L? product.

For h € (0, hy) with hy € (0, 1), let T3, be a subdivision of {1 by triangles or rectangle.
Let hp =diam T and p the largest of the diameters of all circles contained in T'. Assume
that there exists a positive constant n, independent of h, such that nh < pr < hr < h
for all 7 € 7. Let V3, C HZ(2) be a finite element space associated with 7j,.

The finite element approximation to problem (1.1) is to find u, € V}, such that
a(up,v) = (f,v), Yv € Vp. (1.5)

This paper will show that the estimate of v — up|1.00.0 i8 O(h°|1n h|) for Argyris
element, @(h?|In h|) for Bell element and O(k?|1n h|} for Bogner-Fox-Schmit element.

The remaining of the paper is arranged as follows. Section 2 will give the L
estimates for Argyris element and its properties. Section 3 will give the proof of the
L™ estimate for Argyris element. The last section will consider the case of Bell element

and Bogner-Fﬂx—Scﬁmit element.

2. Argyris Element

From now on, let 75, be a subdivision of § by triangles and V3 C HZ(£2) be Argyris
finite element space associated with 7. Then V;, = {v|v € H§(Q),v|r € P5(T),VT €
T }. where P,,(T) is the set of all polynomials with degree not greater than m for
nonnegative integer m. Denote Q,,(T) as the space consisting of all polynomials with
degrees, with respect to x or y, not greater than m. | |

Let % be a solution of problem (1.1) and uh that nf problem (1 5) If u E Hg ()N
H®(£2), the following estimate is true: - - | &

HH—“hHm‘iCh lulea.- - (21

Throughout the pa.per C always denotes the posxtlve consta,nt mdependeut of h with
different values in different places. For L®° estimates, we have

Theorem 1. Let'V}, be Argyris finite element space, u the solution of problem (1.1)
and up, the solution of problem (1.5). Then |

U — upl1 oo < Gh?\ In h.|_;|'u'|ﬁ,m,ﬁ (2.2)
when u € W%=(Q), and | - "

lu — uplo.coa < Ch5|In h|1”2|u\ﬁ,n I : - (2.3)
when u € H®(Q) N HE (). o | -- . .

The proof of Theorem 1 will be given in Sectmn 3. Now we list some prcrpertles Df
Argyris element space. | |
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For T € T3, let Il be the interpolation operator of Argyris element. For v € H®(Q),
let ITpv|r = Ilpv for all T € 7. The following estimates are well known:

v — Igv|mr < CAE ™|vler, 0<m<6,v€ HYT),T €T, (2.4)

From [2,4], the following inequalities are true for v € Vj:

2
Y |vlia + V0,000 < Clol2a, (2.5)
i=0

[v]1,000 < Clln B[V |v]2 0. (2.7)

Let P, : L2(Q)) — V4 be the L?(Q) orthogonal projection operator, i.e., for Yw €

(Phw,v) = (w,v), Yvé& V. (2.8)

The following is similar to Lemma 1 in [3]:

Lemma 1. If 0 <m < 2, then for w € HJ'(£?),
P

w — Prwlon < CR™ |w]m,a, (2.9)
lphwlm,ﬂ < Clwlm,ﬂr (2.10)
Now we want to show that the error bound of » — w in norm || - ||1.o is one order
higher than that in || - []2, 0. To do it, we need to construct an interpolation operator
I1;, : H3(Q) N H5(N) — V}, with some interpolation properties.
Op

For T € Ty, let Po(T) ={ p|lp € Ps(T) and an © Py(F) for each edge F of T }.

Let W} be a finite element space associated with 73, which is determined as follows.

4, ow
For w € W, wip € P3(T') and w, a_w and 5, ore continuous at the vertices of 7, and
€T Y

vanish at the vertices along f1.
For T € T, denote its vertices by AL, A%, A3. and its center point by Al. For

v € H¥(T), let TI3.v be the interpolation polynomial of v, such that II3.v € P3(T) and

3 . o ', Oov ov
3w equals v at A%, 0 <7 < 3, and ﬁﬂ%ﬂ, a—yﬂ%v equal 9z’ By
respectively. For v € H3(Q), let II3v be determined by II; v|r = I (v|7), VT € Ty,

For an arbitrary vertex A, let N4 be the number of elements containing point A.

Obviously, N4 is bounded. For v € H3(Q)N HZ(Q), v € V}, is determined as follows:
1) For each T' € T, yv|r € PYUT).

at vertices A%} to A%

y i 0 - J
2} I, Eﬂhv and —II;v equal v, ?E and i at the vertices respectively.
oz Oy Ox dy .
3) Let A be an arbitrary vertex. If A € (2, then
s 1 i
—Tipv(A) = — ——TI3v(A). i+7F=2. 2.11

AeT



376 - WANG MING

If A is also a vertex of 2, then
e

Szioy Hhv(A) 0, 243 =2 (2.12)
If A is on an edge of 8 and is not the vertex of 2, then
32
542 ——IIv(A4) =0,
% =
gsan 1hv(4) =0, (2.13)
i 1 i
—Iv(A) = ’U(A)
2 ’
oN Na rer. ON2
AeT

where s is the tangent vector of Of2.

Lemma 2. Let T\ and Ty be two triangles with common edge F, and let A1 and

Ag be the endpoints of F'. Then there exists a constant C independent of T1 and Ty,
such that

o2 0%
Z Zz ’amiayj H%&'v(}lk‘) BziBy II%Z-U(A;C) < Clv|snum (2.14)
=li1+3=

for allv e H3(Ty UTy).

Proof. If p € Po(Ty UT3), then I3, (p|1y) = plny, I3, (|73 ) = pl7,. Hence
FaY: | 52
—II7. p(A
Frioy NTPAk) = DBy’
By Bramble-Hilbert lemma and the affine technique, we get (2.14).

Lemma 3. Let T be a triangle, and F be an edge of T with endpoints A1 and As.
Denote the tangent vector of F by 8. Then there exists a canstmnt C mdependent of T,

Hsz A), i+j=2 k=1,2.

such that e de g JUCEPI - | .
' s ' # ' | 2.}
-’ = ()| + | Tl o( ) ) < Cllyr (15
3 ., ov ov
for allv € H*(T') with ﬁ(“"l“’) —(Ak) =0 fork=1,2.
Proof. From the deﬁnition of TI3.,
% 0 s
B:EHTU(AI;) 0 a—yHTTJ(Ak) == D,-_ k-—— 1,2

Hence, by the afhine technique, we can get

: ;R 2. —_—
- ( San, TV (AR)| asayHT“(A’“) ) < C|ITywla 7.
k=1 % |

(2.15) follows from |[[I3w|37 < Clv|s..
Lemma 4. For Vv € H*(Q2) N Hg(ﬂ),

v — pvlma < CA* ™ulzq, 0<m< 2. (2.16)
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Proof. From the interpolation theory (see [1]), we have
lv — Hiﬂm‘g < ChE_mlﬂfgyg, D<m <2 (2:17)

For each T' € 7}, , we can show that the following inequality:

3
s, d
Ipll6.r < Ch* ) [Ip(AF)[* + B o-p(AT)[* + hglap(ﬂ"{")lz
k=1

4 kyl2
+h +Z2| miay_.,. p(A7)[’]
i4+7=

for all p € P{(T). Using II3v — Mpv|r € PY(T) and the definitions of [} and II;, we
have

Mgy — T = Y {[Iiv — Myvl|2;
TeT,
D SD S ) Bl Wy
= L 1 : 11, v( A7) ; [Ihv(AT)| . (2.18)
» TET k=1i4j=2 dz* oy’ ox* Oy

For T' € 7} and Ak 7, we consider three cases.

Firstly, AT 1s 1 £2. Let T3,.--,T; be all elements containing Affa, such that Ty = T,
T;NT;41(1 < j <1—1)is the common edge of T; and T;,1. From Lemma 2, we have

9 - 2
113 k k
H;_ |6:1:“3y hv(AT) &mz‘ayj HhU(AT)‘
&2 2l—mn
k 3 k 2
< c+22_: o ayj 7 0(4F) = 5oip T 0 (AR ()
<C Z lols.7, - (2.19)
n=1

Secondly, A%. is also a vertex of 8. Let the number ! of elements containing A%

be greater than 1. There must be two different elements 7’ and 7", such that an
edge F' of 7' and an edge F” of T" are along 80 and A% is an endpoint of both F”

and F". Let N',N" and &', 8" be the unit normals and the unit tangents of F’, F"
respectively. Let Tj,---,1; be the elements containing Ai}! and 77 = 7,7, = T’ and
I; NTj41(1 < j <1—1) be a common edge of 7; and 75,;. Then, from Lemma 2, we
get

62 13 k 32 kv (2
3 [ ot - 5ot ab)| H;_J i ]

32
< C v( AE I (A
! EQE\BMJ 17, v(AF) — goigei W V(AD)
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54
+C 22|a 571 (AR
i+y=

(Z vlan, + 2 152 H%r'v(fl%)lz)- ‘ (2.20)

1.+3=2
On the other hand, we have

o° 2
Su(An)| < C T3, v(A%)|
H%;ﬂ‘a:r By-? ‘L"( T)I Ezlasnasrm T'U( T)|
where constant C is dependent on the angles at all vertices of Q. From Lemmas 2 and
3, we have
k|2 2 1.9 3 Nk
;Jasﬂagﬁj T*’U(AT)} = G(|1’|3,Tf ' ’BSHQHT’U(AT)‘ )
j=
o2 2 o? 52
2 k . k k
< (v a1} o(Af)| - ol v(AL) asﬂzﬂTuv(AT)t )
2
sC 2. )3,
TET;,,
Ak eT
Hence, from (2.20), we have
52
. 1 e u(Ak) T, v(A% )| <c'Y |ul24 (2.21)
% yd i
1+3=2 oz 3‘9 Oz 3 TeTh
AkeT

If A is a vertex of 80 and only element T contains A"“' then the three vertices of

T are all on 85. Hence II3v|r = 0 and (2.21) is also true.
Thirdly, AT is on an edge of 80 and is not the vertex of 2. Denote the unit normal
of the edge by N and the unit tangent of the edge by s. From the definitions of Il;v,

we have

&% 2
1§2|3m"8y3 A7) Ozt oy? Hhv(AT)‘
52
Ctzj_:_g‘aNtaﬁjﬂhv( T) BN*GJ‘HW(AT)‘
“C(|§:2 hv(A‘f*)‘z ,aNasﬂiﬂ(ﬂ%)i

32 4 " 52
g2 v AT) — pi
As in the second case, we can show that

0% 3 k|2 o

2 Mo(A8)| + |soThe(ah)] <C T oz,
TeT;
AkeT

hv(4%)] ).
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and in the way for the first case, we can prove that

0° g 0 - Nk 2

WHhU(AT) aNBHhU(AT)I SC -Z |‘U!3j;-.
TeT;
AkeT

It follows that (2.21) is true for the third case as well.
Combining the discussion of three cases and (2.18), we get

v — Myv)on < Ch3|v|sq. (2.22)

Lemma 4 follows from (2.17), (2.22) and the inverse inequality for polynomials.
From Lemma 4 and the Aubin-Nitshe technique, we can prove the following lemma.
Lemma 5. Let u be the solution of (1.1) and uy the solution of (1.5) with V}, the

Argyris element space. Then
fu — upllmo < CR* uls0, m=1,2 (2.23)

when f € H1(Q), and
|lu — unlli0 < ChJulsgn (2.24)

»

when u € HS(Q) N H2(Q).

3. The proof of Theorem 1

In this section, we will prove Theorem 1. Firstly, let the solution u of (1.1) be in
H®(?). From (2.6), Lemma 5 and the interpolation theory, we have

|l — unllo,00,0 <||u — Hpullo,ce,n + [Hre — uaflo,co.0

iC(h5|l’|ﬁ,n + |1n B2 Tpu uhlm)

<Ch®|In k|2 |uls q,

ie., (2.3) is true. What remains is to prove (2.2). Assume u € W%®((2). By the
interpolation result (see [1]), we have

Iﬂ' B uh‘l,m,ﬂ < |?.L T Hhu‘l,m,ﬂ -+ IHhH — uhll,m,ﬁ
(3.1)

< Chﬂulﬁ,m,n + [Hpu — uhll,m,ﬁ-

So we must estimate [[Ipu — up|1,000. Let T € 73 be the element such that |IIyu —
Up|1,00,0 = [IIp2 — un 1 00,77 Without loosing generality, suppose that

oI, u — up
Mas ~ wnly 0,m = |20 Y0,
! . x
Let (zo,y0) € T” be the point such that
B(Ilhu e uh) 3(Hhu o uh)
| ox 0,00,7" | or (:ED’ yﬁ) ‘ '
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To prove (2.2), we need some results about the weight function and the regular Green
function. For (xg,y0), define the weight function p as

o(x,y) = (z — o) + (¥ — yo)* + A*R?,
with A a fixed positive number. For integer o and a bounded domain G € R?, define

[¥lm (a)6 = ( s f

'1+J"“"m &

; 1/2
da:dy) (3.2)

81: ay

when v € H™(G). When G = (, | - \m(ﬂ}g is replaced by | - |, (). For the weight
function, the following inequalities are true:

Iylm,(‘r) < (Ah’)_ ’Y_ﬂ),vlm,(aja T2 a,UE Hm(ﬂ)r (33)

[v]o, 1y £ C|ln A Hi Yv € L), (3.4)

|/mu da:dy‘ < |v]o,a) v,w € L*(Q), (3.5)
.

“U = HT’”|k,(g),T < Chﬁ*klvlsjta);! 0 < k < 6,“{? = HB(T), T e 7}; _ (3.6)

Lemma 6. There exists a constant C such that, for v € HZ(Q) N H3*(Q), the.
following inequalities are true:

lv — ﬁhv]m1(a) = ChB_mltJIg’(ﬂ), 0<m< 2. (3.7)
Proof. Let 0 < m < 2. Then
o — TIpv|2, (o) = E v — Ta2ly, (yr < D o %lloco7lv — Mpv|Z, 7. (3.8)
TeT,; TeT,
For T € Ty, let Si(T) = {T € T;,; T NT # #}. From the proof of Lemma 4, we see
v — Ipol2, p < (12 =) N, |uls 3.7 (3.9)
TES&(T)

For YT € 7}, we have

_max p(z,y) <C min p(z,y).
TeSh(T) T€SH(T)
- (=zy)ET (z,y)ET

Then from (3.8) and (3.9), we get

v = Mol o) =< CREE™ 3 3 olys
T€Th Tesu(T)

Because the number of the elements in Si(7T') is bounded, Lemma 6 is proved.
Now we turn to the regular Green function. Let ¢ € Ps(T") satisfy

0

/quﬂrdy = (o0, Yo), Vp € Ps(T").
Tl
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Define 8, € L?(QQ) such that

6.’1(3:1 y) = {

Let g be the regular Green function determined by
A%q = 6, in £},

| L
9162 = gl ~

and g be its finite element solution by Argyris element, i.e.,

q(mﬁy)i (may) = T’._.
0, otherwise.

ﬂ(gh,vh) = (6;,,,1};,,), Yup, € Vi
For &;, ¢ and gn, we have the following estimates:

|5h lon < s,

6pll-1.0 < CRTY,

HQ = Qh”l,ﬂ + hlg — 9h|z,ﬂ & = hz|9|3,ﬂ < Ch,

»

gll2,0 < C|In h172,

gls(—1) < C|ln h|'2,

which are similar to those in {3].

Lemma 7. "
|9 ~ gnlo(—1) < Ch|ln hit/2.

Proof. By simple computation, we have

9 - onlln < [ &) +af -] +[ oo
g—grla-1)< [P || 5.2\9~ 9h Bzoy I Ik 5y2 9~ 9n

$ o

(g — gn) _gh)‘Jr‘(@z(g—gh)

< la(g—gn, p(g — gn))| + ‘( 5z Y

+C Y f|aj;yj(9*gh)\p”z‘a(gamgh)‘dmdy

i+i=25
H* o{g —
+C Z j'aa:i@ j(Q—Qh)lﬁUB} (ga - )ldmdy
t+j=2 o

From (3.5) and Green formula, we get

9 — gnlz -1y < lalg — gn, p(g — gr))]| + Clg — grl2 (-l — grlre

8$2 . -.-g—gh)‘-l-' 972

(32(9 = Hh),g B Qh)|

381

(3.10)

(3.11)

(3.12)

(3.13)
(3.14)
(3.15)
(3.16)

(3.17)

(3.18)
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< |a{g — gr,p(g — gr))| + Clg — gnla-1)lg — gnh 0

o 0
g0 — o + 159~ anloe.

By (3.15), we have

9~ gnl5—1y < lalg — gn, p(g — gn))| + Chlg = gnla—1) + Ch>. (3.19)
From (3.3), (3.5) and (3.7), we have

la(g — gn, p(g — Tng))| < Clg — gnla—1)le(g — TIng)la )
< Clg — gnla,—1)(lg — TTngla, -1y + lg — Tngli 0y + 19 — Mrglo )

< Chlg — gnla—1)(|9]3,(=1) + Plglan + h2|9|3,(1)J

< Chlg — g 2?(—1}( gla(-1) T hf§|3,n)-
From (3.17), we get
lalg — gn, (g — [1ng))| < Ch|ln h|'/2|g — ghlz (). (3.20)

For v € L*(T), let Pjv € L*(T) be the orthogonal projection of v in Py(T). From
(1.4), (1.5), (3.5) and (3.6), we have

la(g — gn, P(TThg — g1))| = lalg — gn, p(TIng — gn) — Ma(p(Mag ~ gn)))}

. . 2 1/2

< Clg - gh|2,(_1)( Z Iﬁ(th — gr) — Hp(p(Ilng — gh))ig (1) T)

TETh ; 1

. _ s . 1/2

= Clg— glag-iy( 5 (o~ PRo)(Tlag — 9n) — Tal — PRo)(Ting — an)B (i)

Tel,

) R . 1/2
< Ch%|g — gn 2,(—1}( E (0~ Prp)(1lng — gh)lﬁ,(l),T) '
TET,

On the other hand,

> o= PRo)(Tlag — gn)3 1y < € S (R3Ming — gnld s
TeT, TeTy

+ [Mhg — grlz r + |pg — ghli,(l),T) <Ch™® > [Tag — gal3 ¢
TeT,

= Ch™%llhg — gnl59 < Ch~°
by (2.16), (3.3), (3.15), the inverse inequality, and the inequality
dpi2  10p)2
i5e] *lagt <08

Hence

la{g — gn, p(TIhg — g1))| < Chlg — gn 2,(—1)- (3.21)°
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Combining (3.19) to (3.21), we get

lg — 9‘h|§,(-1) < Chiln h|1”2(|9 B thz,(—-l) + h).
Inequality (3.18) follows.
From (1.4), (1.5), (3.5) and (3.10) and (3.12), we have
TThu—unl1,00,0 = [(8h, oy — up)| = |a(gn, Thu — uy))|

=la(g — gn,u — IThu) + (&29,Hhu — )]

SC(IH — grl2,-nylu — Maula ) + [8afo, 1)l — Hhﬂ-ln,(l))-
By (3.4), (3.6), (3.10) and (3.18), we get

lﬂhu e uhlL*é‘-’Gﬂ S Gh5| In h|1f2|uf6,(1} S Ch5| In h]|u|5|m,g. (3.22)

Inequalities (3.1) and (3.22) imply (2.2). Theorem 1 is proved.

4. Bel] Element and Bogner-Fox-Schmit Element

First, let 7;, be a subdivision of §2 by triangles and Vj, € HZ(Q) be Bell finite
element space associated with 7;,. Then Vi, = {v|v € H2(Q),v|p € P (T),VT € T, }.

Similarly to the analysis for Argyris element, we can prove the following.

Theorem 2. Let V), be Bell finite element space, u the solution of problem (1.1)
and up the solution of problem (1.5). Then

v — al1,00,0 < CRYIn hljuls,c0,0 (4.1)

when u € W>*(Q), and
[ — unlo,0,0 < Ch*|In 2| |ulsq (4-2)

when u € H>(2) N HZ(Q).
From now on, let § be a rectangle with its edges parallel to z or y ax1s respectively.
Let 75 be a subdivision of by rectangles with their edges parallel to z or y axis,

and Vi, C HZ(Q) be Bogner-Fox-Schmit finite element space associated with 7;. Then
v € V,, 1f and only if the following are true:

1) vlr is in Q3(T') for all T € T;,.
g 0 2

2) v, sl @'v and 925y
along 0f2.

v are continuous at the vertices and vanish at the vertices

For this element, we have
Theogén 3. Let Vi, be Bogner-Foz-Schmit finite element space, u the solution of

problem (1.1) and uy the solution of problem ( 1.5). Then

[ — unf1,000 < Ch%|In Afug,00,0 (4.3)
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when v € WH®(Q), and
4 — Uhloen < ORI kY2 [ulen (4.4)

when v € H*(Q) N HZ(Q).

The proof of Theorem 3 is similar to that of Theorem 1. The orders of h and the
Sobolev norms should be changed relevantly, and the operator I1;, should be replaced
by the following.

For T € Ty, denote its vertices by A7, A%,,A%-,A%. For v € H3(T), let P%v be the

interpolation polynomial of v by Adini element, i.e., P&v € P3(T)}+ spann {z’y, zy’},

?, d ov v
and let T2y, — T1%v and —I1%v equal v, — and — at vertices A7 to A} respectively.
250 B Sy 1 : Ox oy + s d

For v € H3(1), let TI%v be determined by IIfv|y = [I%{v|r), VT € T4.
For an arbitrary vertex A, let N4 be the number of elements containing point A.

Obviously, N4 is bounded. For v € H3(Q2) N HZ(Q), Iyv € V}, is determined by the
following:
i) For each T € Ty, Mxv|r €-Q3(T).
" O - 0 -~ % o
2) llpv, —Ilv and —II,v equal v, Y and 22 at the vertices respectively.
Oz oy ox vy
3) Let A be an arbitrary vertex. If A € {2, then

32

84 . 1
IIv({A) = — St A, 4.5
AeT
If A 1s on 652, then
s al
11 =1 4.6)
5207 pv{d) =0 (4.6)

For the operator I, defined this way, Lemmas 4 and 6 are also true.
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