L[∞] CONVERGENCE OF CONFORMING FINITE ELEMENTS FOR THE BIHARMONIC EQUATION*1)

Wang Ming

(Department of Mathematics, Peking University, Beijing, China)

Abstract

The paper considers the L^{∞} convergence for conforming finite elements, such as Argyris element, Bell element and Bogner-Fox-Schmit element, solving the boundary value problem of the biharmonic equation. The nearly optimal order L^{∞} estimates are given.

1. Introduction

The author has considered the L^{∞} error estimates of the nonconforming finite elements for the biharmonic equation (see [3]). This paper will discuss the case of conforming finite elements.

Let Ω be a convex polygonal domain. The Dirichlet boundary value problem of the biharmonic equation is the following

$$\begin{cases} \triangle^2 u = f, & \text{in } \Omega \\ u|_{\partial\Omega} = \frac{\partial u}{\partial N}|_{\partial\Omega} = 0 \end{cases}$$
 (1.1)

where $N = (N_x, N_y)$ is the unit normal of $\partial \Omega$.

For $p \in [1, \infty]$ and $m \geq 0$, let $W^{m,p}(\Omega)$ and $W^{m,p}_0(\Omega)$ be the usual Sobolev spaces, and $\|\cdot\|_{m,p,\Omega}$ and $\|\cdot\|_{m,p,\Omega}$ be the Sobolev norm and semi-norm respectively. When p=2, denote them by $H^m(\Omega)$, $H^m_0(\Omega)$, $\|\cdot\|_{m,\Omega}$ and $\|\cdot\|_{m,\Omega}$ respectively. Let $H^{-m}(\Omega)$ be the dual space of $H^m_0(\Omega)$ with norm $\|\cdot\|_{-m,\Omega}$.

It is known that for $\forall f \in H^{-1}(\Omega)$, problem (1.1) has a unique solution $u \in H_0^2(\Omega) \cap H^3(\Omega)$, such that

$$||u||_{3,\Omega} \le C||f||_{-1,\Omega},\tag{1.2}$$

with C a positive constant.

Define, for $\forall u, v \in H^2(\Omega)$,

$$a(u,v) = \int_{\Omega} \left(\frac{\partial^2 u}{\partial x^2} \frac{\partial^2 v}{\partial x^2} + 2 \frac{\partial^2 u}{\partial x \partial y} \frac{\partial^2 v}{\partial x \partial y} + \frac{\partial^2 u}{\partial y^2} \frac{\partial^2 v}{\partial y^2} \right) dx dy. \tag{1.3}$$

^{*} Received March 3, 1993.

¹⁾ The Project Supported by National Natural Science Foundation of China.

Let $f \in L^2(\Omega)$. The variational form of problem (1.1) is to find $u \in H_0^2(\Omega)$, such that

$$a(u,v) = (f,v), \qquad \forall v \in H_0^2(\Omega), \tag{1.4}$$

where (\cdot, \cdot) is the L^2 product.

For $h \in (0, h_0)$ with $h_0 \in (0, 1)$, let \mathcal{T}_h be a subdivision of Ω by triangles or rectangle. Let $h_T = \operatorname{diam} T$ and ρ_T the largest of the diameters of all circles contained in T. Assume that there exists a positive constant η , independent of h, such that $\eta h < \rho_T < h_T \le h$ for all $T \in \mathcal{T}_h$. Let $V_h \subset H_0^2(\Omega)$ be a finite element space associated with \mathcal{T}_h .

The finite element approximation to problem (1.1) is to find $u_h \in V_h$, such that

$$a(u_h, v) = (f, v), \qquad \forall v \in V_h. \tag{1.5}$$

This paper will show that the estimate of $|u - u_h|_{1,\infty,\Omega}$ is $\mathcal{O}(h^5|\ln h|)$ for Argyris element, $\mathcal{O}(h^4|\ln h|)$ for Bell element and $\mathcal{O}(h^3|\ln h|)$ for Bogner-Fox-Schmit element.

The remaining of the paper is arranged as follows. Section 2 will give the L^{∞} estimates for Argyris element and its properties. Section 3 will give the proof of the L^{∞} estimate for Argyris element. The last section will consider the case of Bell element and Bogner-Fox-Schmit element.

2. Argyris Element

From now on, let \mathcal{T}_h be a subdivision of Ω by triangles and $V_h \subset H_0^2(\Omega)$ be Argyris finite element space associated with \mathcal{T}_h . Then $V_h = \{v \mid v \in H_0^2(\Omega), v \mid_T \in P_5(T), \forall T \in \mathcal{T}_h \}$, where $P_m(T)$ is the set of all polynomials with degree not greater than m for nonnegative integer m. Denote $Q_m(T)$ as the space consisting of all polynomials with degrees, with respect to x or y, not greater than m.

Let u be a solution of problem (1.1) and u_h that of problem (1.5). If $u \in H_0^2(\Omega) \cap H^6(\Omega)$, the following estimate is true:

$$||u - u_h||_{2,\Omega} \le Ch^4|u|_{6,\Omega}.$$
 (2.1)

Throughout the paper, C always denotes the positive constant independent of h, with different values in different places. For L^{∞} estimates, we have

Theorem 1. Let V_h be Argyris finite element space, u the solution of problem (1.1) and u_h the solution of problem (1.5). Then

$$|u - u_h|_{1,\infty,\Omega} \le Ch^5 |\ln h| |u|_{6,\infty,\Omega}$$
(2.2)

when $u \in W^{6,\infty}(\Omega)$, and

$$|u - u_h|_{0,\infty,\Omega} \le Ch^5 |\ln h|^{1/2} |u|_{6,\Omega}$$
 (2.3)

when $u \in H^6(\Omega) \cap H^2_0(\Omega)$.

The proof of Theorem 1 will be given in Section 3. Now we list some properties of Argyris element space.

For $T \in \mathcal{T}_h$, let Π_T be the interpolation operator of Argyris element. For $v \in H^6(\Omega)$, let $\Pi_h v|_T = \Pi_T v$ for all $T \in \mathcal{T}_h$. The following estimates are well known:

$$|v - \Pi_T v|_{m,T} \le Ch^{6-m}|v|_{6,T}, \quad 0 \le m \le 6, v \in H^6(T), T \in \mathcal{T}_h.$$
 (2.4)

From [2,4], the following inequalities are true for $v \in V_h$:

$$\sum_{i=0}^{2} |v|_{i,\Omega} + |v|_{0,\infty,\Omega} \le C|v|_{2,\Omega}, \tag{2.5}$$

$$|v|_{0,\infty,\Omega} \le C|\ln h|^{1/2}|v|_{1,\Omega},$$
 (2.6)

$$|v|_{1,\infty,\Omega} \le C|\ln h|^{1/2}|v|_{2,\Omega}.$$
 (2.7)

Let $P_h: L^2(\Omega) \to V_h$ be the $L^2(\Omega)$ orthogonal projection operator, i.e., for $\forall w \in L^2(\Omega)$,

$$(P_h w, v) = (w, v), \quad \forall v \in V_h. \tag{2.8}$$

The following is similar to Lemma 1 in [3]:

Lemma 1. If $0 \le m \le 2$, then for $w \in H_0^m(\Omega)$,

$$|w - P_h w|_{0,\Omega} \le C h^m |w|_{m,\Omega}, \tag{2.9}$$

$$|P_h w|_{m,\Omega} \le C|w|_{m,\Omega}. \tag{2.10}$$

Now we want to show that the error bound of $u - u_h$ in norm $\|\cdot\|_{1,\Omega}$ is one order higher than that in $\|\cdot\|_{2,\Omega}$. To do it, we need to construct an interpolation operator $\tilde{\Pi}_h: H^3(\Omega) \cap H^2_0(\Omega) \to V_h$ with some interpolation properties.

For $T \in \mathcal{T}_h$, let $P_5'(T) = \{ p | p \in P_5(T) \text{ and } \frac{\partial p}{\partial N} \in P_3(F) \text{ for each edge } F \text{ of } T \}$. Let W_h be a finite element space associated with \mathcal{T}_h , which is determined as follows. For $w \in W_h$, $w|_T \in P_3(T)$ and w, $\frac{\partial w}{\partial x}$ and $\frac{\partial w}{\partial y}$ are continuous at the vertices of \mathcal{T}_h and vanish at the vertices along $\partial \Omega$.

For $T \in \mathcal{T}_h$, denote its vertices by A_T^1, A_T^2, A_T^3 and its center point by A_T^0 . For $v \in H^3(T)$, let $\Pi_T^3 v$ be the interpolation polynomial of v, such that $\Pi_T^3 v \in P_3(T)$ and $\Pi_T^3 v$ equals v at $A_T^i, 0 \le i \le 3$, and $\frac{\partial}{\partial x} \Pi_T^3 v, \frac{\partial}{\partial y} \Pi_T^3 v$ equal $\frac{\partial v}{\partial x}, \frac{\partial v}{\partial y}$ at vertices A_T^1 to A_T^3 respectively. For $v \in H^3(\Omega)$, let $\Pi_h^3 v$ be determined by $\Pi_h^3 v|_T = \Pi_T^3(v|_T), \forall T \in \mathcal{T}_h$.

For an arbitrary vertex A, let N_A be the number of elements containing point A. Obviously, N_A is bounded. For $v \in H^3(\Omega) \cap H^2_0(\Omega)$, $\tilde{\Pi}_h v \in V_h$ is determined as follows:

- 1) For each $T \in \mathcal{T}_h$, $\tilde{\Pi}_h v|_T \in P_5'(T)$.
- 2) $\tilde{\Pi}_h v$, $\frac{\partial}{\partial x} \tilde{\Pi}_h v$ and $\frac{\partial}{\partial y} \tilde{\Pi}_h v$ equal v, $\frac{\partial v}{\partial x}$ and $\frac{\partial v}{\partial y}$ at the vertices respectively.
- 3) Let A be an arbitrary vertex. If $A \in \Omega$, then

$$\frac{\partial^2}{\partial x^i \partial y^j} \tilde{\Pi}_h v(A) = \frac{1}{N_A} \sum_{\substack{T \in \mathcal{T}_h \\ A \in T}} \frac{\partial^2}{\partial x^i \partial y^j} \Pi_T^3 v(A). \quad i + j = 2.$$
 (2.11)

If A is also a vertex of Ω , then

$$\frac{\partial^2}{\partial x^i \partial y^j} \tilde{\Pi}_h v(A) = 0, \quad i+j=2. \tag{2.12}$$

If A is on an edge of $\partial\Omega$ and is not the vertex of Ω , then

$$\begin{cases} \frac{\partial^2}{\partial s^2} \tilde{\Pi}_h v(A) = 0, \\ \frac{\partial^2}{\partial s \partial N} \tilde{\Pi}_h v(A) = 0, \\ \frac{\partial^2}{\partial N^2} \tilde{\Pi}_h v(A) = \frac{1}{N_A} \sum_{\substack{T \in \mathcal{T}_h \\ A \in T}} \frac{\partial^2}{\partial N^2} \Pi_T^3 v(A), \end{cases}$$
(2.13)

where s is the tangent vector of $\partial\Omega$.

Lemma 2. Let T_1 and T_2 be two triangles with common edge F, and let A_1 and A_2 be the endpoints of F. Then there exists a constant C independent of T_1 and T_2 , such that

$$\sum_{k=1}^{2} \sum_{i+j=2} \left| \frac{\partial^{2}}{\partial x^{i} \partial y^{j}} \Pi_{T_{1}}^{3} v(A_{k}) - \frac{\partial^{2}}{\partial x^{i} \partial y^{j}} \Pi_{T_{2}}^{3} v(A_{k}) \right| \leq C|v|_{3,T_{1} \cup T_{2}}$$
 (2.14)

for all $v \in H^3(T_1 \cup T_2)$.

Proof. If $p \in P_2(T_1 \cup T_2)$, then $\Pi_{T_1}^3(p|_{T_1}) = p|_{T_1}$, $\Pi_{T_2}^3(p|_{T_2}) = p|_{T_2}$. Hence

$$rac{\partial^2}{\partial x^i \partial y^j} \Pi^3_{T_1} p(A_k) = rac{\partial^2}{\partial x^i \partial y^j} \Pi^3_{T_2} p(A_k), \quad i+j=2, \,\, k=1,2.$$

By Bramble-Hilbert lemma and the affine technique, we get (2.14).

Lemma 3. Let T be a triangle, and F be an edge of T with endpoints A_1 and A_2 . Denote the tangent vector of F by s. Then there exists a constant C independent of T, such that

$$\left| \sum_{k=1}^{2} \left(\left| \frac{\partial^{2}}{\partial s \partial x} \Pi_{T}^{3} v(A_{k}) \right| + \left| \frac{\partial^{2}}{\partial s \partial y} \Pi_{T}^{3} v(A_{k}) \right| \right) \le C|v|_{3,T}$$
 (2.15)

for all $v \in H^3(T)$ with $\frac{\partial v}{\partial x}(A_k) = 0$, $\frac{\partial v}{\partial y}(A_k) = 0$ for k = 1, 2.

Proof. From the definition of Π_T^3 ,

$$\frac{\partial}{\partial x}\Pi_T^3 v(A_k) = 0, \quad \frac{\partial}{\partial y}\Pi_T^3 v(A_k) = 0, \quad k = 1, 2.$$

Hence, by the affine technique, we can get

$$\left| \sum_{k=1}^{2} \left(\left| \frac{\partial^{2}}{\partial s \partial x} \Pi_{T}^{3} v(A_{k}) \right| + \left| \frac{\partial^{2}}{\partial s \partial y} \Pi_{T}^{3} v(A_{k}) \right| \right) \leq C |\Pi_{T}^{3} v|_{3,T}.$$

(2.15) follows from $|\Pi_T^3 v|_{3,T} \leq C|v|_{3,T}$.

Lemma 4. For $\forall v \in H^3(\Omega) \cap H_0^2(\Omega)$,

$$|v - \tilde{\Pi}_h v|_{m,\Omega} \le Ch^{3-m} |v|_{3,\Omega}, \quad 0 \le m \le 2.$$
 (2.16)

Proof. From the interpolation theory (see [1]), we have

$$|v - \Pi_h^3 v|_{m,\Omega} \le Ch^{3-m} |v|_{3,\Omega}, \quad 0 \le m \le 2.$$
 (2.17)

For each $T \in \mathcal{T}_h$, we can show that the following inequality:

$$\begin{split} \|p\|_{0,T}^2 & \leq Ch^2 \sum_{k=1}^3 \left[|p(A_T^k)|^2 + h^2 |\frac{\partial}{\partial x} p(A_T^k)|^2 + h^2 |\frac{\partial}{\partial y} p(A_T^k)|^2 \right. \\ & + h^4 \sum_{i+j=2} |\frac{\partial^2}{\partial x^i \partial y^j} p(A_T^k)|^2] \end{split}$$

for all $p \in P'_5(T)$. Using $\Pi_h^3 v - \tilde{\Pi}_h v|_T \in P'_5(T)$ and the definitions of Π_h^3 and $\tilde{\Pi}_h$, we have

$$\|\tilde{\Pi}_{h}^{3}v - \tilde{\Pi}_{h}v\|_{0,\Omega}^{2} = \sum_{T \in \mathcal{T}_{h}} \|\Pi_{h}^{3}v - \tilde{\Pi}_{h}v\|_{0,T}^{2}$$

$$\leq Ch^{6} \sum_{T \in \mathcal{T}_{h}} \sum_{k=1}^{3} \sum_{i+j=2} \left| \frac{\partial^{2}}{\partial x^{i} \partial y^{j}} \Pi_{h}^{3}v(A_{T}^{k}) - \frac{\partial^{2}}{\partial x^{i} \partial y^{j}} \tilde{\Pi}_{h}v(A_{T}^{k}) \right|^{2}. \tag{2.18}$$

For $T \in \mathcal{T}_h$ and A_T^k , we consider three cases.

Firstly, A_T^k is in Ω . Let T_1, \dots, T_l be all elements containing A_T^k , such that $T_1 = T$, $T_j \cap T_{j+1} (1 \leq j \leq l-1)$ is the common edge of T_j and T_{j+1} . From Lemma 2, we have

$$\sum_{i+j=2} \left| \frac{\partial^{2}}{\partial x^{i} \partial y^{j}} \Pi_{h}^{3} v(A_{T}^{k}) - \frac{\partial^{2}}{\partial x^{i} \partial y^{j}} \tilde{\Pi}_{h} v(A_{T}^{k}) \right|^{2}$$

$$\leq C \sum_{i+j=2} \sum_{n=1}^{l-1} \left| \frac{\partial^{2}}{\partial x^{i} \partial y^{j}} \Pi_{T_{n}}^{3} v(A_{T}^{k}) - \frac{\partial^{2}}{\partial x^{i} \partial y^{j}} \Pi_{T_{n+1}}^{3} v(A_{T}^{k}) \right|^{2} (\frac{l-n}{l})^{2}$$

$$\leq C \sum_{n=1}^{l} |v|_{3,T_{n}}^{2}.$$
(2.19)

Secondly, A_T^k is also a vertex of $\partial\Omega$. Let the number l of elements containing A_T^k be greater than 1. There must be two different elements T' and T'', such that an edge F' of T' and an edge F'' of T'' are along $\partial\Omega$ and A_T^k is an endpoint of both F' and F''. Let N', N'' and s', s'' be the unit normals and the unit tangents of F', F'', respectively. Let T_1, \dots, T_l be the elements containing A_T^k and $T_1 = T, T_l = T'$ and $T_j \cap T_{j+1} (1 \le j \le l-1)$ be a common edge of T_j and T_{j+1} . Then, from Lemma 2, we get

$$\begin{split} \sum_{i+j=2} & \left| \frac{\partial^2}{\partial x^i \partial y^j} \Pi_h^3 v(A_T^k) - \frac{\partial^2}{\partial x^i \partial y^j} \tilde{\Pi}_h v(A_T^k) \right|^2 = \sum_{i+j=2} \left| \frac{\partial^2}{\partial x^i \partial y^j} \Pi_h^3 v(A_T^k) \right|^2 \\ & \leq C \sum_{i+j=2} \sum_{n=1}^{l-1} \left| \frac{\partial^2}{\partial x^i \partial y^j} \Pi_{T_n}^3 v(A_T^k) - \frac{\partial^2}{\partial x^i \partial y^j} \Pi_{T_{n+1}}^3 v(A_T^k) \right|^2 \end{split}$$

$$+ C \sum_{i+j=2} \left| \frac{\partial^2}{\partial x^i \partial y^j} \Pi_{T'}^3 v(A_T^k) \right|^2$$

$$\leq C \left(\sum_{n=1}^l \left| v \right|_{3,T_n}^2 + \sum_{i+j=2} \left| \frac{\partial^2}{\partial x^i \partial y^j} \Pi_{T'}^3 v(A_T^k) \right|^2 \right). \tag{2.20}$$

On the other hand, we have

$$\sum_{i+j=2} \left| \frac{\partial^2}{\partial x^i \partial y^j} \Pi^3_{T'} v(A^k_T) \right|^2 \leq C \sum_{i+j=2} \left| \frac{\partial^2}{\partial s'^i \partial s''^j} \Pi^3_{T'} v(A^k_T) \right|^2,$$

where constant C is dependent on the angles at all vertices of Ω . From Lemmas 2 and 3, we have

$$\begin{split} \sum_{i+j=2} \left| \frac{\partial^2}{\partial s'^i \partial s''^j} \Pi_{T'}^3 v(A_T^k) \right|^2 &\leq C \Big(|v|_{3,T'}^2 + \left| \frac{\partial^2}{\partial s''^2} \Pi_{T'}^3 v(A_T^k) \right|^2 \Big) \\ &\leq C \Big(|v|_{3,T'}^2 + \left| \frac{\partial^2}{\partial s''^2} \Pi_{T''}^3 v(A_T^k) \right|^2 + \left| \frac{\partial^2}{\partial s''^2} \Pi_{T''}^3 v(A_T^k) - \frac{\partial^2}{\partial s''^2} \Pi_{T''}^3 v(A_T^k) \right|^2 \Big) \\ &\leq C \sum_{\substack{\tilde{T} \in \mathcal{T}_h \\ A_T^k \in \tilde{T}}} |v|_{3,\tilde{T}}^2. \end{split}$$

Hence, from (2.20), we have

$$\sum_{i+j=2} \left| \frac{\partial^2}{\partial x^i \partial y^j} \Pi_h^3 v(A_T^k) - \frac{\partial^2}{\partial x^i \partial y^j} \tilde{\Pi}_h v(A_T^k) \right|^2 \le C \sum_{\substack{\tilde{T} \in \mathcal{T}_h \\ A_T^k \in \tilde{T}}} |v|_{3,\tilde{T}}^2. \tag{2.21}$$

If A_T^k is a vertex of $\partial\Omega$ and only element T contains A_T^k , then the three vertices of T are all on $\partial\Omega$. Hence $\Pi_h^3v|_T\equiv 0$ and (2.21) is also true.

Thirdly, A_T^k is on an edge of $\partial\Omega$ and is not the vertex of Ω . Denote the unit normal of the edge by N and the unit tangent of the edge by s. From the definitions of $\tilde{\Pi}_h v$, we have

$$\begin{split} \sum_{i+j=2} & \left| \frac{\partial^2}{\partial x^i \partial y^j} \Pi_h^3 v(A_T^k) - \frac{\partial^2}{\partial x^i \partial y^j} \tilde{\Pi}_h v(A_T^k) \right|^2 \\ & \leq C \sum_{i+j=2} \left| \frac{\partial^2}{\partial N^i \partial s^j} \Pi_h^3 v(A_T^k) - \frac{\partial^2}{\partial N^i \partial s^j} \tilde{\Pi}_h v(A_T^k) \right|^2 \\ & = C \left(\left| \frac{\partial^2}{\partial s^2} \Pi_h^3 v(A_T^k) \right|^2 + \left| \frac{\partial^2}{\partial N \partial s} \Pi_h^3 v(A_T^k) \right|^2 \\ & + \left| \frac{\partial^2}{\partial N^2} \Pi_h^3 v(A_T^k) - \frac{\partial^2}{\partial N^2} \tilde{\Pi}_h v(A_T^k) \right|^2 \right). \end{split}$$

As in the second case, we can show that

$$\left|\frac{\partial^2}{\partial s^2}\Pi_h^3v(A_T^k)\right|^2+\left|\frac{\partial^2}{\partial N\partial s}\Pi_h^3v(A_T^k)\right|^2\leq C\sum_{\substack{\tilde{T}\in\mathcal{T}_h\\A_T^k\in\tilde{T}}}|v|_{3,\tilde{T}}^2,$$

and in the way for the first case, we can prove that

$$\left|\frac{\partial^2}{\partial N^2}\Pi_h^3v(A_T^k) - \frac{\partial^2}{\partial N^2}\tilde{\Pi}_hv(A_T^k)\right|^2 \leq C\sum_{\substack{\tilde{T}\in\mathcal{T}_h\\A_T^k\in\tilde{T}}}|v|_{3,\tilde{T}}^2.$$

It follows that (2.21) is true for the third case as well.

Combining the discussion of three cases and (2.18), we get

$$|\Pi_h^3 v - \tilde{\Pi}_h v|_{0,\Omega} \le Ch^3 |v|_{3,\Omega}. \tag{2.22}$$

Lemma 4 follows from (2.17), (2.22) and the inverse inequality for polynomials.

From Lemma 4 and the Aubin-Nitshe technique, we can prove the following lemma.

Lemma 5. Let u be the solution of (1.1) and u_h the solution of (1.5) with V_h the Argyris element space. Then

$$||u - u_h||_{m,\Omega} \le Ch^{3-m}|u|_{3,\Omega}, \quad m = 1, 2$$
 (2.23)

when $f \in H^{-1}(\Omega)$, and

$$||u - u_h||_{1,\Omega} \le Ch^5|u|_{6,\Omega} \tag{2.24}$$

when $u \in H^6(\Omega) \cap H^2_0(\Omega)$.

3. The proof of Theorem 1

In this section, we will prove Theorem 1. Firstly, let the solution u of (1.1) be in $H^6(\Omega)$. From (2.6), Lemma 5 and the interpolation theory, we have

$$||u - u_h||_{0,\infty,\Omega} \le ||u - \Pi_h u||_{0,\infty,\Omega} + ||\Pi_h u - u_h||_{0,\infty,\Omega}$$

$$\le C \Big(h^5 |v|_{6,\Omega} + |\ln h|^{1/2} |\Pi_h u - u_h|_{1,\Omega} \Big)$$

$$\le C h^5 |\ln h|^{1/2} |u|_{6,\Omega},$$

i.e., (2.3) is true. What remains is to prove (2.2). Assume $u \in W^{6,\infty}(\Omega)$. By the interpolation result (see [1]), we have

$$|u - u_{h}|_{1,\infty,\Omega} \le |u - \Pi_{h}u|_{1,\infty,\Omega} + |\Pi_{h}u - u_{h}|_{1,\infty,\Omega}$$

$$\le Ch^{5}|u|_{6,\infty,\Omega} + |\Pi_{h}u - u_{h}|_{1,\infty,\Omega}.$$
(3.1)

So we must estimate $|\Pi_h u - u_h|_{1,\infty,\Omega}$. Let $T' \in \mathcal{T}_h$ be the element such that $|\Pi_h u - u_h|_{1,\infty,\Omega} = |\Pi_h u - u_h|_{1,\infty,T'}$. Without loosing generality, suppose that

$$|\Pi_h u - u_h|_{1,\infty,T'} = |\frac{\partial (\Pi_h u - u_h)}{\partial x}|_{0,\infty,T'}.$$

Let $(x_0, y_0) \in T'$ be the point such that

$$\Big|\frac{\partial(\Pi_h u - u_h)}{\partial x}\Big|_{0,\infty,T'} = \Big|\frac{\partial(\Pi_h u - u_h)}{\partial x}(x_0, y_0)\Big|.$$

To prove (2.2), we need some results about the weight function and the regular Green function. For (x_0, y_0) , define the weight function ρ as

$$\rho(x,y) = (x-x_0)^2 + (y-y_0)^2 + \lambda^2 h^2,$$

with λ a fixed positive number. For integer α and a bounded domain $G \in \mathbb{R}^2$, define

$$|v|_{m,(\alpha),G} = \left(\sum_{i+j=m} \int_{C} \rho^{-\alpha} \left| \frac{\partial^{m} v}{\partial x^{i} \partial y^{j}} \right|^{2} dx dy \right)^{1/2}$$
(3.2)

when $v \in H^m(G)$. When $G = \Omega$, $|\cdot|_{m,(\alpha),G}$ is replaced by $|\cdot|_{m,(\alpha)}$. For the weight function, the following inequalities are true:

$$|v|_{m,(\gamma)} \le (\lambda h)^{-(\gamma-\alpha)}|v|_{m,(\alpha)}, \quad \gamma > \alpha, v \in H^m(\Omega), \tag{3.3}$$

$$|v|_{0,(1)} \le C |\ln h|^{1/2} ||v||_{0,\infty,\Omega}, \quad \forall v \in L^{\infty}(\Omega),$$
 (3.4)

$$\left| \int_{\Omega} vw \, dx dy \right| \le |v|_{0,(\alpha)} \, |v|_{0,(-\alpha)}, \quad v, w \in L^{2}(\Omega), \tag{3.5}$$

$$|v - \Pi_T v|_{k,(\alpha),T} \le Ch^{6-k}|v|_{6,(\alpha),T}, \quad 0 \le k \le 6, v \in H^6(T), T \in \mathcal{T}_h.$$
 (3.6)

Lemma 6. There exists a constant C such that, for $v \in H_0^2(\Omega) \cap H^3(\Omega)$, the following inequalities are true:

$$|v - \tilde{\Pi}_h v|_{m,(\alpha)} \le Ch^{3-m} |v|_{3,(\alpha)}, \quad 0 \le m \le 2.$$
 (3.7)

Proof. Let $0 \le m \le 2$. Then

$$|v - \tilde{\Pi}_h v|_{m,(\alpha)}^2 = \sum_{T \in \mathcal{T}_h} |v - \tilde{\Pi}_h v|_{m,(\alpha),T}^2 \le \sum_{T \in \mathcal{T}_h} ||\rho^{-\alpha}||_{0,\infty,T} |v - \tilde{\Pi}_h v|_{m,T}^2.$$
(3.8)

For $T \in \mathcal{T}_h$, let $S_h(T) = {\tilde{T} \in \mathcal{T}_h; T \cap \tilde{T} \neq \emptyset}$. From the proof of Lemma 4, we see

$$|v - \tilde{\Pi}_h v|_{m,T}^2 \le Ch^{2(3-m)} \sum_{\tilde{T} \in S_h(T)} |v|_{3,\tilde{T}}^2. \tag{3.9}$$

For $\forall T \in \mathcal{T}_h$, we have

$$\max_{\tilde{T} \in S_h(T)} \rho(x, y) \leq C \min_{\tilde{T} \in S_h(T)} \rho(x, y).$$
$$(x, y) \in \tilde{T} \qquad (x, y) \in \tilde{T}$$

Then from (3.8) and (3.9), we get

$$|v - \tilde{\Pi}_h v|_{m,(\alpha)}^2 = \le C h^{2(3-m)} \sum_{T \in \mathcal{T}_h} \sum_{\tilde{T} \in S_h(T)} |v|_{3,\tilde{T}}^2.$$

Because the number of the elements in $S_h(T)$ is bounded, Lemma 6 is proved.

Now we turn to the regular Green function. Let $q \in P_5(T')$ satisfy

$$\int\limits_{T'} q p \, dx dy = rac{\partial}{\partial x} p(x_0, y_0), \qquad orall p \in P_5(T').$$

Define $\delta_h \in L^2(\Omega)$ such that

$$\delta_h(x,y) = \begin{cases} q(x,y), & (x,y) \in T', \\ 0, & \text{otherwise}. \end{cases}$$
(3.10)

Let g be the regular Green function determined by

$$\begin{cases} \Delta^2 g = \delta_h, & \text{in } \Omega, \\ g|_{\partial\Omega} = \frac{\partial g}{\partial N}\Big|_{\partial\Omega} = 0 \end{cases}$$
 (3.11)

and g_h be its finite element solution by Argyris element, i.e.,

$$a(g_h, v_h) = (\delta_h, v_h), \qquad \forall v_h \in V_h. \tag{3.12}$$

For δ_h , g and g_h , we have the following estimates:

$$\|\delta_h\|_{0,\Omega} \le Ch^{-2},\tag{3.13}$$

$$\|\delta_h\|_{-1,\Omega} \le Ch^{-1},$$
 (3.14)

$$||g - g_h||_{1,\Omega} + h|g - g_h|_{2,\Omega} + h^2|g|_{3,\Omega} \le Ch,$$
(3.15)

$$||g||_{2,\Omega} \le C|\ln h|^{1/2},$$
 (3.16)

$$|g|_{3,(-1)} \le C|\ln h|^{1/2},$$
 (3.17)

which are similar to those in [3].

Lemma 7.

$$|g - g_h|_{2,(-1)} \le Ch|\ln h|^{1/2}.$$
 (3.18)

Proof. By simple computation, we have

$$|g - g_{h}|_{2,(-1)}^{2} \leq \int_{\Omega} \rho \left[\left(\frac{\partial^{2}}{\partial x^{2}} (g - g_{h}) \right)^{2} + 2 \left(\frac{\partial^{2}}{\partial x \partial y} (g - g_{h}) \right)^{2} + \left(\frac{\partial^{2}}{\partial y^{2}} (g - g_{h}) \right)^{2} \right] dxdy$$

$$\leq |a(g - g_{h}, \rho(g - g_{h}))| + \left| \left(\frac{\partial^{2}(g - g_{h})}{\partial x^{2}}, g - g_{h} \right) \right| + \left| \left(\frac{\partial^{2}(g - g_{h})}{\partial y^{2}}, g - g_{h} \right) \right|$$

$$+ C \sum_{i+j=2} \int_{\Omega} \left| \frac{\partial^{2}}{\partial x^{i} \partial y^{j}} (g - g_{h}) \right| \rho^{1/2} \left| \frac{\partial (g - g_{h})}{\partial x} \right| dxdy$$

$$+ C \sum_{i+j=2} \int_{\Omega} \left| \frac{\partial^{2}}{\partial x^{i} \partial y^{j}} (g - g_{h}) \right| \rho^{1/2} \left| \frac{\partial (g - g_{h})}{\partial y} \right| dxdy.$$

From (3.5) and Green formula, we get

$$|g - g_h|_{2,(-1)}^2 \le |a(g - g_h, \rho(g - g_h))| + C|g - g_h|_{2,(-1)}|g - g_h|_{1,\Omega}$$

$$+ \left| \left(\frac{\partial^2 (g - g_h)}{\partial x^2}, g - g_h \right) \right| + \left| \left(\frac{\partial^2 (g - g_h)}{\partial y^2}, g - g_h \right) \right|$$

$$\leq |a(g-g_h,\rho(g-g_h))| + C|g-g_h|_{2,(-1)}|g-g_h|_{1,\Omega}$$

$$+ |\frac{\partial}{\partial x}(g-g_h)|_{0,\Omega}^2 + |\frac{\partial}{\partial y}(g-g_h)|_{0,\Omega}^2.$$

By (3.15), we have

$$|g - g_h|_{2,(-1)}^2 \le |a(g - g_h, \rho(g - g_h))| + Ch|g - g_h|_{2,(-1)} + Ch^2.$$
 (3.19)

From (3.3), (3.5) and (3.7), we have

$$\begin{aligned} |a(g-g_h,\rho(g-\tilde{\Pi}_hg))| &\leq C|g-g_h|_{2,(-1)}|\rho(g-\tilde{\Pi}_hg)|_{2,(1)} \\ &\leq C|g-g_h|_{2,(-1)}(|g-\tilde{\Pi}_hg|_{2,(-1)}+|g-\tilde{\Pi}_hg|_{1,(0)}+|g-\tilde{\Pi}_hg|_{0,(1)}) \\ &\leq Ch|g-g_h|_{2,(-1)}(|g|_{3,(-1)}+h|g|_{3,\Omega}+h^2|g|_{3,(1)}) \\ &\leq Ch|g-g_h|_{2,(-1)}(|g|_{3,(-1)}+h|g|_{3,\Omega}). \end{aligned}$$

From (3.17), we get

$$|a(g-g_h,\rho(g-\tilde{\Pi}_hg))| \le Ch|\ln h|^{1/2}|g-g_h|_{2,(-1)}.$$
 (3.20)

For $v \in L^2(T)$, let $P_T^0 v \in L^2(T)$ be the orthogonal projection of v in $P_0(T)$. From (1.4), (1.5), (3.5) and (3.6), we have

$$\begin{aligned} |a(g-g_h,\rho(\Pi_hg-g_h))| &= |a(g-g_h,\rho(\tilde{\Pi}_hg-g_h) - \Pi_h(\rho(\tilde{\Pi}_hg-g_h)))| \\ &\leq C|g-g_h|_{2,(-1)} \Big(\sum_{T\in\mathcal{T}_h} \Big|\rho(\tilde{\Pi}_hg-g_h) - \Pi_h(\rho(\tilde{\Pi}_hg-g_h))\Big|_{2,(1),T}^2\Big)^{1/2} \\ &= C|g-g_h|_{2,(-1)} \Big(\sum_{T\in\mathcal{T}_h} |(\rho-P_T^0\rho)(\tilde{\Pi}_hg-g_h) - \Pi_h(\rho-P_T^0\rho)(\tilde{\Pi}_hg-g_h)|_{2,(1),T}^2\Big)^{1/2} \\ &\leq Ch^4|g-g_h|_{2,(-1)} \Big(\sum_{T\in\mathcal{T}_h} |(\rho-P_T^0\rho)(\tilde{\Pi}_hg-g_h)|_{6,(1),T}^2\Big)^{1/2}. \end{aligned}$$

On the other hand,

$$\begin{split} \sum_{T \in \mathcal{T}_h} |(\rho - P_T^0 \rho) (\tilde{\Pi}_h g - g_h)|_{6,(1),T}^2 &\leq C \sum_{T \in \mathcal{T}_h} \left(h^2 |\tilde{\Pi}_h g - g_h|_{6,T}^2 \right. \\ &+ |\tilde{\Pi}_h g - g_h|_{5,T}^2 + |\tilde{\Pi}_h g - g_h|_{4,(1),T}^2 \right) \leq C h^{-6} \sum_{T \in \mathcal{T}_h} |\tilde{\Pi}_h g - g_h|_{2,T}^2 \\ &= C h^{-6} |\tilde{\Pi}_h g - g_h|_{2,\Omega}^2 \leq C h^{-6} \end{split}$$

by (2.16), (3.3), (3.15), the inverse inequality, and the inequality

$$\left|\frac{\partial \rho}{\partial x}\right|^2 + \left|\frac{\partial \rho}{\partial y}\right|^2 \le C\rho.$$

Hence

$$|a(g-g_h, \rho(\tilde{\Pi}_h g-g_h))| \le Ch|g-g_h|_{2,(-1)}.$$
 (3.21)

Combining (3.19) to (3.21), we get

$$|g-g_h|_{2,(-1)}^2 \le Ch|\ln h|^{1/2}(|g-g_h|_{2,(-1)}+h).$$

Inequality (3.18) follows.

From (1.4), (1.5), (3.5) and (3.10) and (3.12), we have

$$\begin{aligned} |\Pi_h u - u_h|_{1,\infty,\Omega} &= |(\delta_h, \Pi_h u - u_h)| = |a(g_h, \Pi_h u - u_h)| \\ &= |a(g - g_h, u - \Pi_h u) + (\triangle^2 g, \Pi_h u - u)| \\ &\leq C \Big(|g - g_h|_{2,(-1)} |u - \Pi_h u|_{2,(1)} + |\delta_h|_{0,(-1)} |u - \Pi_h u|_{0,(1)} \Big). \end{aligned}$$

By (3.4), (3.6), (3.10) and (3.18), we get

$$|\Pi_h u - u_h|_{1,\infty,\Omega} \le Ch^5 |\ln h|^{1/2} |u|_{6,(1)} \le Ch^5 |\ln h| |u|_{6,\infty,\Omega}. \tag{3.22}$$

Inequalities (3.1) and (3.22) imply (2.2). Theorem 1 is proved.

4. Bell Element and Bogner-Fox-Schmit Element

First, let \mathcal{T}_h be a subdivision of Ω by triangles and $V_h \subset H_0^2(\Omega)$ be Bell finite element space associated with \mathcal{T}_h . Then $V_h = \{v \mid v \in H_0^2(\Omega), v \mid_T \in P_5'(T), \forall T \in \mathcal{T}_h \}$.

Similarly to the analysis for Argyris element, we can prove the following.

Theorem 2. Let V_h be Bell finite element space, u the solution of problem (1.1) and u_h the solution of problem (1.5). Then

$$|u - u_h|_{1,\infty,\Omega} \le Ch^4 |\ln h||u|_{5,\infty,\Omega} \tag{4.1}$$

when $u \in W^{5,\infty}(\Omega)$, and

$$|u - u_h|_{0,\infty,\Omega} \le Ch^4 |\ln h|^{1/2} |u|_{5,\Omega} \tag{4.2}$$

when $u \in H^5(\Omega) \cap H^2_0(\Omega)$.

From now on, let Ω be a rectangle with its edges parallel to x or y axis respectively. Let \mathcal{T}_h be a subdivision of Ω by rectangles with their edges parallel to x or y axis, and $V_h \subset H_0^2(\Omega)$ be Bogner-Fox-Schmit finite element space associated with \mathcal{T}_h . Then $v \in V_h$ if and only if the following are true:

1) $v|_T$ is in $Q_3(T)$ for all $T \in \mathcal{T}_h$.

2) v, $\frac{\partial}{\partial x}v$, $\frac{\partial}{\partial y}v$ and $\frac{\partial^2}{\partial x\partial y}v$ are continuous at the vertices and vanish at the vertices along $\partial\Omega$.

For this element, we have

Theorem 3. Let V_h be Bogner-Fox-Schmit finite element space, u the solution of problem (1.1) and u_h the solution of problem (1.5). Then

$$|u - u_h|_{1,\infty,\Omega} \le Ch^3 |\ln h| |u|_{4,\infty,\Omega} \tag{4.3}$$

when $u \in W^{4,\infty}(\Omega)$, and

$$|u - u_h|_{0,\infty,\Omega} \le Ch^3 |\ln h|^{1/2} |u|_{4,\Omega} \tag{4.4}$$

when $u \in H^4(\Omega) \cap H_0^2(\Omega)$.

The proof of Theorem 3 is similar to that of Theorem 1. The orders of h and the Sobolev norms should be changed relevantly, and the operator $\tilde{\Pi}_h$ should be replaced by the following.

For $T \in \mathcal{T}_h$, denote its vertices by $A_T^1, A_T^2, A_T^3, A_T^4$. For $v \in H^3(T)$, let $P_T^a v$ be the interpolation polynomial of v by Adini element, i.e., $P_T^a v \in P_3(T) + \text{spann } \{x^3 y, x y^3\}$, and let $\Pi_T^a v$, $\frac{\partial}{\partial x} \Pi_T^a v$ and $\frac{\partial}{\partial y} \Pi_T^a v$ equal v, $\frac{\partial v}{\partial x}$ and $\frac{\partial v}{\partial y}$ at vertices A_T^1 to A_T^4 respectively. For $v \in H^3(\Omega)$, let $\Pi_h^a v$ be determined by $\Pi_h^a v|_T = \Pi_T^a(v|_T), \forall T \in \mathcal{T}_h$.

For an arbitrary vertex A, let N_A be the number of elements containing point A. Obviously, N_A is bounded. For $v \in H^3(\Omega) \cap H^2_0(\Omega)$, $\tilde{\Pi}_h v \in V_h$ is determined by the following:

- i) For each $T \in \mathcal{T}_h$, $\tilde{\Pi}_h v|_T \in Q_3(T)$.
- 2) $\tilde{\Pi}_h v$, $\frac{\partial}{\partial x} \tilde{\Pi}_h v$ and $\frac{\partial}{\partial y} \tilde{\Pi}_h v$ equal v, $\frac{\partial v}{\partial x}$ and $\frac{\partial v}{\partial y}$ at the vertices respectively.
- 3) Let A be an arbitrary vertex. If $A \in \Omega$, then

$$\frac{\partial^2}{\partial x \partial y} \tilde{\Pi}_h v(A) = \frac{1}{N_A} \sum_{\substack{T \in \mathcal{T}_h \\ A \in T}} \frac{\partial^2}{\partial x \partial y} \Pi_T^a v(A). \tag{4.5}$$

If A is on $\partial\Omega$, then

$$\frac{\partial^2}{\partial x \partial y} \tilde{\Pi}_h v(A) = 0. \tag{4.6}$$

For the operator $\tilde{\Pi}_h$ defined this way, Lemmas 4 and 6 are also true.

References

- [1] P.G. Ciarlet, Finite Element Method for Elliptic Problems, North-Holland, Amsterdam, New York, Oxford, 1978.
- [2] Wang Ming, On the inequalities for the maximum norm of nonconforming finite element spaces, Mathematica Numerica Sinica, 12: 1 (1990). (in Chinese)
- [3] Wang Ming, L^{∞} error estimates of nonconforming finite elements for the biharmonic equation, Research report, No. 11, 1992, Institute of Mathematics and Department of Mathematics, Peking University.
- [4] Zhang Hong-qing and Wang Ming, The Mathematical Theory of Finite Element Methods, Science Press, Bèijing, 1991. (in Chinese)