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Abstract

To solve F(z) = 0 numerically, we first prove that there exists a tube-like
neighborhood around the curve in R" defined by the Newton homotopy in which
F(z) possesses some good properties. Then in this neighborhood, we set up an
algorithm which is numerically stable and convergent. Since we can ensure that
the iterative points are not far from the homotopy curve while computing, we need
not appfy the predictor-corrector which is often used in path following methods.

§1. Introduction

Suppose F : R — R™ is a smooth mapping. Let us consider solving F(z) =
0 globally. Recently, homotopy methods are used, that is, homotopy H(Z, T) =
implicitly defines a path or a curve which leads to the root z* of F(z) = 0. By following
this path, we can finally reach z*. But on computing, to follow the curve closely, we
must use the predictor-corrector, which, of course, may bring us some trouble.

Here we take the advantadge of the Newton homotopy, and set up a new path
following algorighm which (i) is numerically stable and (ii) does not use the correction
technique. With it we can also judge whether or not we are going along the path we
are following. Thus, the a.lgoritlim might make up for the deficiencies in current path
following methods. |

In this pa.per, we will use the following notations:

|:1:||2 Zz (:sl,:cg,...,:r“)T eR", |All= ma.x |Az||, A € L(R",R™),

i=1

= (0Qi/0z;), Q:E" — R™, B(:c ) = {y; lv — z|l < 6},z € R®,

d(y, E) = inf{lly - zll;z € E},y € R, E C R".
If F(:r:) is a mapping from R" to R*, we then denute its last n—1 exponents by G(:::)

G(ﬁ) (Fz(z),Fs(xL n(-'c))T
5 Recewed .Apzil 18, 1989, .. .
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§2. Basic Curve and Its Prbpertie's

Let zo € R™ be a given point. Consider the Newton homotopy |
H(i,z)=F(z)-(1-t)F(z0), 0<t<1 (2.1)

chow etal. [1] discussed the conditions under which the connected exponents of one-
dimensional manifolds determined by H(t,z) = 0 will be a diffeomorphism. [2] then
proved the following theorem:
Theorem 2.1. If F(z): R* = R" and M > 0 satisfy
(1) F is a C? and proper mapping;
(2) the Lebesque measure of {z;det DF(x) = 0} is zero;
" (3) det DF(z) 2 0, as |[F(z)l| 2 M.
Then for almost all 2o € B (M) = {z; | F(z)l| > M}, the projection z(1): [0, 1] —
of curve (t,z(t)) defined by the Newlon homotopy H(t,z) = 0, is a diffeomorphism and
connects zo with set {z; F(z) = 0}. Especially, {z; F(z) = 0} is nonempty. |
With the above mndltmn, by Sard’s theorem, we obtain

rank DH(t z) =n, for (t,z)€ {(t,z); H(t,z) = 0}. (2.2)

In the following, we wﬂl always assume that det DF(z) # 0 for z € {z; Fi(z) = 0} and
F(z), and o, and H (t,z) satisfy the hypotheses in Theorem 2.1 and (2,2). Then, we
have a smooth curve z(t) : [0,1] — R", denoted by C(zo).

We further assume its arc length L < +oo and parametrize by arc length s, i.e.,
2(3): 0 < s < L,z(0) = zo,2z(L) = z*, instead of ¢.
For given F(zo), there exists an orthoguna.l matrix P, such that

PF(%) = (| F(zo)|l,0,--,0)".

Obkusly, solving PF(z) = 0 is equivalent to solving F(z) = 0, and PF(z) and F(n:)
have the same properties along C(zp). Later, we will consider solving PF(z) = 0
instead of F(z) = 0 and still denote PF(z) by F(z) Thus we have

F(zo) = (I F(zo)ll,, - ,_ By @3

From (2.2) and (2.3), we can easily get
Lemma 2.2. If F(z) and z¢ satisfy the mnd:tmns and (2.3), then

rank DG(z) = n - T, for z€ C(zu) (24)
Hence, there is a constant v > 0, such that _ i _
IDGEMI <Y, = ec:'(zo) ' (25)

where DG(:.':)"' = DG(:.':)T(J[}(}"(:l:)DG(:!:)T)‘“'1 ”
By the definitions of H (t z) a.nd G(z), we ca.n get

Lemma 2.3. If F(z) and Zo are as abave, then
(1) Fi(z) 2 0,G(z) =0, for z € C(zo);
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(2) along C(zq), we have - |
dz(s |
{xwy— ") _ 1(D6(a(s)))

o z(0) = 2o,
where T(DG(x)) is the solution of DG(2)T(DG(z)) = 0 satisfying

T(DG(z))" ' -
det ( DG(z) j < 0 and ||T(DG(z))l| = 1.
Proof. We need only to show

NECH
dt(DG&@D)<B.

The rest is trivial. ~
By DG(z)z = 0 and rank DG(z) =n -1, we ha,ve

_ z(8)T _ £(0)T
sign det( DG(z(s)) ) = gign det k DG(2(0)) ) (2.6)
Let ¢ = g% From (2.3) and DH(t,a:)( i ) =0, it is clear that
» . L
det,( DtH (::,:c) ) £0 (2.7)
t a7 i 0T\ [ 2+ g7 . |
( DH(t,z) ) ( g I ) B ( 0 DF(z) ) " (28)
Ta;ke determinants on both sides; then
LT | .
t(s) det ( DtH(t z) ) = (12 4 ||#]|*) det DF(z). (2.9)

Since ||#|] = 1, #(s) = 0 iff det DF(z) = 0. On the other hand, t € [0, l] and
det DF(zg) > 0. We have-#(0) > 0. From the first exponent of

DF(z0)£(0) = —#(0)F(zo)
we get | _
V Fi(2(0))2(0) = —2(0)|| F(zo)l| < 0 (2.10)

BFI oF, oFR

where VFl(:r:) = (3X1 sz’” ' OX.

) Ccmslder ma.tru:

DFiﬁ)-"—-( ‘;g((:))) ( 5 GL) ) (1 - a7 -VR(@).  (@1)
We obtain o .
detDF(m) VFl(m)wdet( DZ’(.-:) } | (2.12)

Hence, det DF(:I:o) S h and (2 10) ylelds the result.
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Let R(G) = {z;rankDG(z) = n —= 1}. Assume that DF(z) satisfies the Lips_chitz
condition | .
“DF(:E) i DF(y)“ < K"‘T ) y": S Rﬂ _ ' (2'13)

where K is a Lipschitz constant. It is easy to see that DG(z) satisfies the same Lipschitz
condition. T '

Proposition 2 303 Assume that A is an m X n matrix, and B = A + 0A.

1) If rank A = min(m,n), then B is of full rnak, as I6A|| [|ATY < 1.

2) If rank A = rank B, and ||§A[[|AT]j < 1, then

ATl
B'l" { “
1Bl < =

= 64T TTAT 2%

where A% is the pseudo — inverse of A.
Corollary 2.4. If DF(z) satisfies (2.13), then

1
R(6) > {uillv~ =l < Zipegy * € CG)} -

It is easy to show
T
Lemma 2.5. Suppose A;, Az € L(R*,R* 1), Aju; = 0, ]| = l,det( 12 ) < 0,
i 1.2 4 ; -
- min [|AF]| |41 — A2l} <1, (2.15)

then ui uz > 0.

!
Lemma 2.64. If A; € L(R*,R™), Am; = 0,||wl] = 1,det ( Y Eni=

A,
1,2, u{ﬂq 75 —1, then
2 :
o =l || oy i IAF 1 = sl (216)

In R(G), consider .

(I) §(s) = v(y(s)), ¥(0) = vo € R(G),
where v(y) satisfies DG(y)v(y) = 0, det( o(y)” ) < 0 and ||v(y)|| = 1. We have

DG(y)

Theorem 2.7. Let K,L,v be as above, ¢ -s:?(Iffy)'le‘ﬁKL’*. Then, for any yo €
B(zq,8), Eq (1) has, at least for s < L, salutiolnl'y{_s) C R(G), and the estumate
ly(s) — =(3) < llvo — zolleV?**, 0 < s < L. (217)
holds. | '

Proof. From Lemmas 2.5 and 2.6, v(y) satisfies the local Lipschitz condition. We = -
can easily show that, for sufficiently small s, |

ly(s) - ()| < llvo — oll + [ i) = (r)ldr

" . (2.18)
< llvo — zall + VK [ lls(r) = =(r)ijdr - 4
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Therefore the Gronwall lemma and the extension theorem of QDEs give the results.'
Assume that yg € B(zo,6), and y(s) is the solution curve of Eq(I) Let

Hy, = {2:(z - 20)74(0) = 0}. | (2.19)
Then we have |
Theorem 2.8. Suppose § is small enough. For all yo € H,, N B(z0,6), 0<s< L,
all the integral curves of Eq(I) constitute a neighborhood, say Ns, of C(zo), i.e., for
any 0 < s < L, z(s) is an inner point of Ns. Furthermore, for each integral curve y(e)
of Eq(I), we have

sign d{? g(s.)) £ 31gn det DF(y(s)) s< L, | (2.20)

G(y(s)) = G(w) - ' (221

and | L -
~det DF(z*) >0, (2.22)

§* = inf G(z)|] >0 (2.23)

where B = N5 — {B(.’cg,é) U B(z* 6e‘/-KL"")}

Proof. from Theorem 2. 7, if 6 is small enough, then for yo € H;, N B(xo,6),
0 <s< Ll the integral curves y(s) of Eq(I) form a close connected set A, the
continuity of y(s) = y(s, yo) with respect to s and yo ensures that z(s) = y(s,zo) is an
inner point of As. (2.21) can be easily got from

G(y(s)) = G(w) + [ DG(s(r)i(r)dr = Glso). (2:24)

To obtain (2.20), notice that #Flgi(i))

w(s)! . o *
. F 0 and Fy(z*) = 0 yield sign det DF(z") =
( DG(y(.S)) ) < 0 glVE_the resu 1(30) > all 1(2‘,‘ ) 0 yie Slgl'l e (.'L' )
—signdFé: ) > 0. (2.23) can be deduced from (2.24) and 4" = mm{|[G(:-;)|| T €

H., N BB(eg,ﬁ)} > 0.

= VFi(y(s))y(s). Then (2.12) and det

 §3. Algorithm

Consider

SR - z .“ | | T A(Z)Fl(z)
w ] F=e PR =-(0) )

H(0) =20 € Mo {5 ||G(z)n <s}

where A(z) R“ -—-‘i~ R“"‘ eheuld sa.t:sfy

(1) slgnf\(z)!-., g%vdet DF(z)3
(2) hm A(z) +ee, a: € {:r:, F(.e) 0}



268 JHANG SHU-GONG, FENG GUO-CHEN

For example, }L(Z) = det DF(Z)f"F(z)" is an ideal one. .
It is clear that if the solutions of Eq(II) exist, then they satisfy

G(2(s)) = e~ fo PTG (20), | ~(3.1)
sign dFlS;(B)Z = gign det DF (2(s))- / (3.2)

If det DF(z) = 0, then the solutions of Eq(II) and Eq(T) are tangent to each other at

2. If zo and F(z) satisfy the condition in the Kantorovich theorem, then the Newton

‘teration which numerically solves F(z) = 0 converges to the root z* of F(z) = 0.

Consider the discrete analogue of Eq(II). We have |
Reduced Dimension Path Following Method. Given Zo,

set k= 10. g g
Step 1. If Dy = |det DF(z;)| < d,set [ = Fi(z), goto Step 2;

orF1(2k) )
_ N Glzp) 7
where o = o(z)) = sign det DF(zy), and 7% is to be determined. If || F(Z)|| <€, stop.

Trp1 =T, k = k + 1, go back to Step 1.
Step 2. Azi = -—gq(l]BG(::k)"'G(:t:k)")DG(zk)““G(mk) + uj where

1 as 1<1,
r1'ﬂ(i)_{lft as 1> 1;
ur: DG(zr)ur = {l,det( uk” ) < 0, l|uxll = 13
DG(:E;;)
% = z; + TeAzy, and 7y 15 tO be determined.
If |F(Z)|| < €, stop. Tkyr = g k=k+1.1f IdetDF(:E)l' > d, o(Z)Fi(Z) <

a(Z)( f - o(z)n), o(%) = det DF(%) go to Step 1; otherwise go to Step 2.

ce>0,d>0n>0,

EF=ap — -rkDF(zk)"l(

§4. The Determination of Parameters and Convergenee

In this sectioﬁ, we discuss the determination of parameters appearing in §2. First,
choose & such that Theorem 1.8 holds. Thus, there exist s; such that |IDF(z(s:))l =0
fori=1,2, +-,1. By the smoothness of F(z) and the hypotheses in Theorem 1.1, 1f 4

and d are small enough, then there exist p; > 0, such that
| C,(d) = {$ € Ns; |dEt DF(:I:)' < d} C B;= B(i(&i),p{), ¢ = 1,25 "

. BI-!-I = BI+1_(:E*,pI+1) C {E,ldﬂtDF(‘.’G)l > d}, B; N Bj = ¢1 : 1 ié j!

o _ L v Lol sl - L.
Therefore, N5 can be writteﬁ BE" % ve o .z
- Ns = NQUCH(d)UAZ U---UCIH(dWNG @y
In this case, if y € Nf, then |det DF (y)| > d and the minimum and the maximum of '*
Fy(z) on N} must appear on A3 01 Ci(d) or N 0 Cica(d): - S B

:ﬁ’_'l*.

R R N
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Now we can choose § and & so small that the above and the following facts hold:

dcds DFles), = | - (4.2)
~VIK~L |
=~ & E ~1_-1_—V2K~L ;l_ € 5
§ < mm{gK 7" e " 3 max TEE I (4.3)
- 0<s<L
7 = max { sup Fi(z) — inf Fl(a:)} < min inf Fl(z) (4.4)
E,‘(d) ( ) ' t(f-ﬂ
where £(s) = d’;(:)‘ If we set
M = sup {||DF(:.-:) i 2 € (U N U B;H} . (4.5)
o : =1
et 5 1 1 =,
ji = min {1/4I{M 5111311 éﬁfd) Fl(x) B 13%1;41 ||F(:r)||}
and | |

N = |1:’1(‘-’f=1l.=)|/ffﬂi":illF(IJ.:)H2
r® = |Gl + (IG@)|* + 2K M| F(z)ll* )1 - IIG(--"::a)II)]2 [ KM\ F()Il,
) = 2Fy(zi)/[VFi(ze)* + 2R (ze) KMP[[F(zi)[ + Fi(=1)]

(4.6)

then we have
Lemma 4.1. If

- min {T,El), 'rf], 1",53}, 1}, as Fi(zi) > p, (4.7) |
1, as Fl(ﬂtk) < i

then in Step 1, there ezists a constant 7" > 0, independent of k, such that > T
moreover, if det DF(z) > d, k= N,---, N +p, then |G(z)l| < 1 and |

.
1Fi(zN4p)] S (1 - 37") Ren)l (4.8)
and if det DF(2) < —d, k= Ny,-+-, N1 +¢, then [|G(zi)l| < ps and
1 ,\¢
Fi(zmaol 2 (14 o JRIZTEWE (4.9)

Furthermore, either Fi(z;) > 0 or the Newton iteration converges with indtial ;.
" Proof. Consider the Taylor expa,nsmn of F(zx41) at g, and let

1 "
. olFi(@na)l S o (1- o) B, (4.10)
| Fi(zes) 2 0 and 1G(za4)ll < B : - (411)
Then we can get rp, 4="1,2,3, and hence (4.8), (4.9). |
For z3 € Nj, there exists an F* such that ||F(zx))| < F*. H Fi(z) > p, it 18

*4; .T.L;iﬁra ™ >0 mdependent of k, such that r(']_ > 7, i=1,2,3.
5 = 1, and 24.€ N U B Since IR = Filas)? +

éasy to show tha.tﬂ tﬁj
o < F1(:Ek) < p, Eh



270 . ZHANG SHU-GONG, FENG GUO-CHEN

IG(z)|I* £ 24, ie. I F(ze)l] < ieg%ilﬂ (2 by the Kantqmvibh the?fem, the

Newton iteration converges. | |
Lemma 4.2. In Step 2, if we denote v = DG(2x)*G(zk), and choose

i {1, (B GGz, GGy 1} o) £,

49 - aK?| V]S 2KV (4.12)
min {1, 2\/;17}{}, as G(zx) = 0,
r. = max{t; t€ [0, T,E4)], Fi(z; + tAxg) > 0}, (4.13)

then ||G(zi41)|| < g, and either 7, > 7 > 0, 1 independent of k, or the Newton
iteration converges with instial Zpy1. | g -

Proof. Let z(t) = zx + tAz, t € (0, T£4)). By the Taylor expansion of G(z(t)) at
z, we can get ||G(2(2))|| € p, and especially |G(zr41)}} < p. Now we can inductively
assume that 2z, € N, Fa(ze) 2 0. i1 = T£4), it is clear that 7 > ™ > 0, ™
independent of k. If 1 < T,E"), then Fj(z) must vanish at .?ck+1. Hence x5 41 € .N'g UBrsa
and ||F(zx41)l| < 1. Therefore, the Newton iteration converges with initial Tj41.

Lemma 4.3. In Step 2, if z(s}) is a point on C(zo) such that d(zi,C(x0)) =
lzx — z(sk)|, then .

5
(Azg, £(sk)) < " < -%. (4.14)
Moreover, there s a T > 0, iﬁﬂependent of k, such that
s>s8+c'r, as 0<7 <7, | (4.15)

where s and T satisfy d(zx + TAzE, C(20)) = ||z6 + TAZE — z(s), {(Azy, £(sk)) is the
angle between Azy and £(sy), and c* is a constant.
Proof. For z; € Nj, there is a solution y(s) of Eq(I) and 3; < L such that y(3;) =

zr. But _
d (zx, C(z0))= llzx — 2(se)ll = lly(3k) - z(sk)||

< fly(on) — 2(am)ll < GE 7 (4.16)
By Lemmas 2.5 and 2.6, 3T 2(sk) 2 —?, hence -

(§(5)s(80)) = cos (HENTE() < 5= (4.17)
On the other hand, since P, | | . -
_ Azi = —@(|DG(2x)* Gz ) DG(zx)* G(zk) + §(5k) (4.18) -
- (in this case, ux = §(3x), see §2), we have i | |

' ATi(a) =1 and [JAzl < V2.
Therefor i 4 | __ ; - -, A:BTS}(#) & \/§ )
- Bk, §(5)) =¢03'1 ("-.";_,c ;"—)2 coe” (5-) =
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Thus we get

(Az;,,:i:(s;,)) < (&Ik,f{(ik)) {9(3k), z(5k)) ‘( -I- g & g (4.21) |
To nbtmn (4. 15) let (1) = z¢ +7Azy. Since ||Z(7) - a:(s)” = d(:t:('r) C(zp)), we have

(£(1) — z(s))T(s) = 0. Thus

(Azidr — £(s)ds)T2(s) + (zx + TAzy — z(s))T(s)ds = 0. (4.22)
As 7 is small enough, since |(:!:;, ~ z2(i )T E(sp)] < %, we get |
ds _ Azt 2(s)
dr  1-(%(1) - 2z(s8))T3(s)
and especially, | . | |
drilr=0 1 - (zj — z(sk))Tz(s;;) 2 3 7

Thus, there exists a- 7 > 0, such that (4.15) holds, 7 and c* are clearly independent of
k.
- Theorem 4.4. If the choices of all the parameters are as above, then the Reduced
Dimensson Path Fal!owmg Methods converye. |
Proof. Frof the choice of d, the algorithm enters N? by Step 1, since 11}5_0 Fi(z) >
i

I{MT’

#t > 0. By Lemma 4.1, the algorithm cannot stay in NP, but [zx41 — 74| <

|DF(zx)~'|| < M, and so there must be some z4, € Cy(d).
By Lemmas 4.2 and 4.3 and the choice of 7, the algorithm neither stays in Cjy (d)
nor goes back to AVy; hence it must go into A ~ {NMP U C1(d)} .

Inductively, it must finally enter Na U Br41 and therefore, converge to z*.

§5. Example

Consider
z] ~ 223 — 5z% + 12z, — 2
F(zhxh 33.) = 3% _'_ g |
mf + z3
Then S
-1 225 0
DEley=]- . "
L. A

For any T € R3 W‘e“ aﬁlﬁays ha.ve ra.nk DG(z) = 2. Let 2o = (2.5,v/25,—2. 5)T We
get the fullﬂwmg_%_i Jgi The increment Az; with astensk 1s computed by Step 2. This
computa.tlon by Step 2 13 mﬁre comphcated tha.u hy Step

exa.mple shows i all;ﬁo '

1, only a few pmﬁ%a naed»ztﬂ be cmnpufed by Step 2.
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[ — T 1 2t
2.5 5119791667 | 2.051862743 1.366038104
Tx 158113883 | 1.460906398 1 437348331 | 1.193864513
| -25 9119791667 | —2.051862743 —1.366038104
4.5625 5110070323 | 2.019672431 3.446118637
F(zx) |0 | 0.014455836 | 0014107431 0.059274371
0 0 1o |0
T0.380208333 | —1.086862791 T0.685824639° | —1.205384871 a

0.380208333 1.086862791 0.685824639 1.205384871

Az _0.120232431 | —0.37692907 ~(.243483818 &-—0.56‘?342117

1 —6.352087077

L TR SUES, TR oY WL gt vy

“det DF | 37.947332 5.674920656 1_2.223033779
Tk 1 B ¥2'4' 1 | 1/4
k 4 1 .5 | 6
T 042101886 | 0.38014499 0.181258712
Tk 1.052028984 | 0.698871838 0.425744891
_1.042191886 | —0.38014499 ~0.181258712 E
3091252609 | 1.750202347" ~3.55E-08
F(zx) | 0.064573097 0.108276855 | 2.1E-10
0 -« |0 0 . _
0.662046896* | —0.075664844 3.5449996E-09 s
Az _0.333157146 | —0.131599021 3.0166643E-09
0.662046896 | 0.075664844 -3.5449996E- 09
Tt DF | —1.767360251 | 10.55468135 8.526908398
Tk i *1 . 1 L
(.181258715 ~5.4E-09
Tio= | 0.4257448%4 |, F(z) = | —24E-10 |
—0.181258715 0
Take z10 as z"; then we ha.ve“F(:c""]“ < 1075,
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