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In this short note, examples are constructed to show that a recent algorithm
given by Soliman, Christensen and Rouhi[l] may give a non-optimal solution.

l'.n'[l],., a linear least absolute value (LAV) estimate algorithm is presented. The
linearly constrained LAV problem has the following form. |

, min 176 - 2l ()
Cé=d | (2)

where H € R™*", z € R™, C € R*™ and d € R'. One of the algorithms given in [1] is
for solving problem (1)-(2). The algorithm can be restated as follows:
Algorithm 111, Step 1. Calculate

(] (5): X

where Bt is the Moore-Penrose generalized inverse of B.

Step 2. Compute
N - H .
“=(2)-le]" 4

j i |

ﬂ._r - J;:Z:(r: = F)?. . . . (6) l

Step 8. Let J = {J[Ir“"l <0,1<j<m}and
 Pr=Yejed (7)

jeJ
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where ¢; (j = 1,---,m) are unit vectors in ™.
Compute the new least squares solution .,
- _ o
- PJH PJ"?’ - S
w7 (7)) ®
Thew = 27 HOZ - (9)

Step 4. Let I = {iy, - ,int} be a subset of {1,:-- ,m} which corresponds to the

n — | smallest residuals. Let Pr = Zeie? and solve
i€l

PrH Prz |
[ )e=(7)

to get 8. Accept 8 as a solution. - CoE |
It should be noted that definition (6) is not the usual definition for standard devi-

ation. We use (6) because it is the definition, as we understand, used by [1]. However,
our examples are also valid if the usual definition of standard deviation is used. An-
other point that is worth mentioning is that r%., denotes first m residuals of the whole

system, though 6}, is the least squares solution of a reduced system.
Soliman et al. [11 also extended the above algorithm to solving nonlinear LAV

problems. For more details, see [1]. Now we give a linear LAV problem for which a -
non-optimal solution would be given by the above algorithm. |
Example 1. Solve problem (1)}-(2) with the following data:

11 2
1 2 2
1 3 3
H = { 41 z=| , 1 (11)
1 5 0
e 0 0 |
C=(@1 6), d=(5), (12)

where ¢ € (0,1) is a very small parameter,
Our example is very similar to Example 2.1 of {1]. We have added a very small row in F

the example, expecting that the corresponding residual will eventually be the sma]leat.-___fé
The original z5 = 3 (as in [1]) is changed to 0 to guarantee that the fifth residual_wi]l_'ﬁi%
be the only measure to be deleted. Tt should be noted that, unlike Example 2.1 of [1],"
the above example can not be viewed as a Stfafght line data fitting problem -beca.u5é§
¢ # 1. However, we can still analyze the above algorithm for problem (1)—2) with da.ta.
given by (11)-(12). | | -
" It is easy to calculate
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which gives
5

-25

- 50
r* = 125 | +O(e%), - (14)
~325 | -

~175¢
170

f 74880 157.734
2 2N 2
\] ;(r) = +O(5 )m ==+ 0. (15)

Hence, because ¢ << 1, only the fifth measure should be deleted. Therefore the
algorithm will compute the least squares solution of

1 1 2
i 2 2
1 3 3
Y & g = il (16)
‘ e 0 0
1 6 5
Direct calculations give
1 { 80
B = 1, '
Consequently, we have
19
—30
3 1 —5
Tnew = ﬂ" 20 | + O(Ez)* (18)
—325
—80¢

Again, because ¢ << 1, the residual 80¢/74 is the smallest. Thus, the final linear

system should be ¢ ‘ |
- e 0 0
' = . 19

5.- 0 | |
?=(5/6)' , B

It is not difficult to show that the optimal solution is

(2/3 ) -.-;-.(21) _

which gives the point

é
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Therefore we have shown that the above algorithm may yield a non-optimal solution.
Our technique for constructing the above example is to introduce such a small row,
that it will have the least residual, and the algorithm will take this measure as an active

measure. Consequently a non-optimal point would be computed. Qur next example
shows that even for straight line L, data fitting problems the algorithm given above

may also give a non-optimal solution.
Example 2. Fit the data points {(2,1),(3,2),(4,3),(6,6)} with a straight line of
the form 2(z) = a1 + a2 such that 2(0) = 1. '
For Example 2, we have

1 2 1
1 3 92
- = 29
H=|. ,| =2 % | (22)
1 6 6
c=01 0), d=(1). (23)

From (22)—(23) and (3), it follows that

»
| 1 (5
. 100(85)’ )

which gives

~75
| -to
¥ e —45 . | (25)
100
85
95
e . 1
= \3 X}(ri) = -m—o\/184‘i’5/3 ~ 0.78475. (26)
1=

Therefore the fourth measure should be deleted, and we compute the least squares
solution of the following reduced system:

And we have | | e

1 2 1
1 3 2 |
1 4 3 | oL w5
1 [ 23
6 T o
new = 35 ( 17 ) o 5
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—22

. 1| -4 | v
Thew .— g 14 i ; 5 (29)
85

Now it is quite clear that the second residual is the smallest, and from the algorithm,
we should solve the linear system

1 3 9 | |
a)e=(1): 2
_ 1 |
2 ( !3). (31)

But the optimal solution for Exaﬁple. 2 is

which has a unique solution

" 1 |
8 = 32
and it is easy to verify that
| _ 13 7 :
# I|HE — z||; = 3 > §=H39—z|l1* (33)

Thus, again the algorithm gives a non-optimal solution.

We carried out our research in August 1991. Recently we were informed by Professor
D. Naeve, Co-editor of Compuiational Statistics and Data Analysis, that a similar result
was obtained by Bassett and Keonker in April 1991. The result of Basset and Keonker
(1991) was submitted to Journal of Computational Statistics and Data Analysis.

References

(1] S.A. Soliman, G.S. Christensen and A.H. Rouhi, A new algorithm for nonlinear L;-
 norm minimization with nonlinear equality constraints, Computational Stat. and
Data Analysis, 11 (1991), 97-109.
[2] G.W. Bassett and R.W. Koenker, A note on recent proposals for computing I,
estimates, Report, University of Illinois at Chicago, USA, 1991.



	File0001.jpg
	File0002.jpg
	File0003.jpg
	File0004.jpg
	File0005.jpg

