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Abstract

The equilibrium strategy for N-person differential games can be obtained from
a min-max problem subject to differential constraints. The differential constraints
are treated here by the duality and pena.lty methods.

We first formulate the duality theory. This involves the mtrnductmn of N+1
Lagrange ‘multipliers: one for each player and one commonly shared by all players.
The primal min-max problem thus results in a dual problem, wh:ch is a max-min
problem with no differential constraints. |

We develop the penalty theory by penalizing N + 1 differential constraints. We
give a convergence proof which generalizes a theorem due to B.T. Polyak.

§1 . Introduction

In part I, we have presented a new minimax approach fo N-person nonzero-sum
differential games. We have also seen several advantages of using this approach.

The constraint equation contains N strategy variables u;,---,nn and one state
variable z. Although 2N auxiliary variables vy,---,vy and z',---,2 z™N have been
added in N supplementary differential equation constraints, they play the same roles as
U1, -, uy and z, respectively. The functmna.l F{u,v) depends on uy,--+,UN,V1," ",
and vn: N + 1 state variables z,z',---,z" and N +1 differential constraints are elim-
inated by integration. Therefore, from the mathematical programming pmnt of view,
the approach taken in Part I can be classified as pnma.l Cumputatmnally, this involves
a rather large number of quadrature evalua.tmnsial _ |

It is fair for us to say that most works i in the literature on mlmma.x pmblems are
primal in nature in the sense that their constraints are handled in an implicit way.

On the other hand, looking back at optlmal control problems, we understand that
“the use of dlfferent mathema.tmal programmmg approa.ches of dua.hty and penalty (cf

W
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[12], [19], [4]) can lead to significant insights for solutions of those pmbiems.' These
approaches also have the added advantage of being very amenable to numerical com-
putations. One may wonder what can be done for N-person differential games. Here

we are interested in developing some duality and penalty theory for minimax problems

as well as numerical methods for N-person diflerential ga,mes Indeed this is the main

motivation of our work.

By duality or penalty, differential constraints are handled explicitly. In the duality
method Lagrange multipliers are introduced which eliminate the state constraints. In
the penalty method, the system dynamics equations are penalized, which again results
in an unconstrained problem. Both methods invole fewer quadrature calculations, and
the variational matrix equations are sparse. Thus the computation is less costly and
more efficient.

In §2, we first establish the duality theory under a general setting. For N -person
games, we need to introduce N + 1 Lagrange multipliers: one for each player, and one
commonly shared by all players. Under the convexity-concavity assumption, we use
the Hahn-Banach separation theorem to prove that the primal inf-sup problem leads

to a dual sup-inf problem.

In §3, we present the fundamental penalty theorem. N +1 auxiliary state equations
are penalized, with N 4 1 penalty parameters. The rate of convergence with respect
to the penalty parameters is determined. Our work here extends and generalizes an

earlier result of B.T. Polyak [16].
The applications of duality and penalty theory to finite element and their numerical

examples are given in Part ITT(),

§2. Duality Theory

As in Part I, we assume the following linear dynamics:

() — A(t)=(t) - EB(t)m(i) f(t)=0 on [0,T],

=1
J:(U) = g9 € R". | (2.1)

For notational convenience later on, we denote the system differential equation as

(DE)—-’-«'(t) A(t)e(t) - EBi(t)‘u:(t) f(t)

fF .ﬁfi,

t=1

The matrix and vector functions A(t) f(t), ,(t], u; (t),‘l = I e W, sa.tlsf_v the sa.me
conditions as in Part L I H
Ea.ch Player wants to minimize his cost | Tee g, T B '”;i'__' i"
| Ji(z,u) = J("’; o TR ﬂN), 1=1,2,. N (22)

g ;
RS

which is continuous with respect to (:c ) in the H! x U norm. As befare, we let o "-aj

F(ﬂ:,ﬂ,x,ﬂ)—F(ﬂ?,ﬂh uﬂ,ﬁl, -13 sV, ‘U’N_)
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="y [Ji(z,u) — Ji(z*,v')] : e (23)
1=1 '
where X = (zl,- . ,z_N),vi = (ul, e U1y Vg, Uil ™ ,ftpj) and each a:"'is th_e solution
of
z'(t) — A(t):n‘(t) Y Bj(t)u;(t) — Bi(t)vi(t) - f(t) =0, on [0,7],
¥
£(0) = 2o, i=1,"-+,N. (2.4)

Also, we denote

(DE); = a:'(t) A()z'(t) ~ ZB (t)u_,(t) Bi(t)vi(t) - f(1), i=1,---,N.
F
N
We inherit the notations U = [ [ U; and U; = L. (0 T) form Part 1. From now on, we
1=1

signify the Sobolev space

k
HE = H::(n,T) = {y:[0,7)— R*|llyllns = Z I(@/dt)iylj22 < oo}

For future use, we also let HY, = {y € H,|y(T) =0} and Hlo= {y € H}|y(0) = 0}.
Following Part I, we consider the inf-sup problem

(P) i.-.-,-ni ?p {F(z,u; X,v)l(z,u) € Hl x U subject to (2.1) ,

(X,v) € [HL)NY x U subject to (2.4) for 1 = 1,2,---,N}
which constitutes the primal problem. Associated with (P} is the dual problem

D - su inf L
(D) Mgﬁ P - (po,P)

where P= (Ph " ipﬂ) and
L(po,p) = L(po,p1,"--,PN) = Lng?p L{po, p; =, u; X, v)
1 R,

with the lagrangian L : L2 x (L3N x HY x U x [Hz]Y x U deﬁned by

L(po, pi, u; X, v) = F(z,% X, ) + {po, = Az - Z Bju; ~ f)1z
=1

1 Z(p],m — Az' — E Bjuj - Bivi— )z (2.5)
=1 Fow . s 4
for z, X safisfying z(0) = zo, X (0) = Xo = (%o, - :co) |
From now on we say that (z,u) or (X ,1:) is feasible if (z, u) € Hj X U sa.tlsﬁes (2.1)
and (X,v) € [H,}]N x U satisfies (2.4) for i = 1,---, N for some given u. Similarly,
(po,p) is feasible 1f (po, P} € L2 x {L2]V. For a.ny given (z u) € H x U, z(0) = zq, we
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define | .
P(z,u) = sup F(z,u;X,v)
{easible
- |
= ZJ;(:H;:;)—— sup Z'](m Uy, oty Oir Uidly " "y UN ) (2.6)
£ (X,v)
fa.lnble

We are now in a position to state the fundamental theorem in this paper.
Theorem 2.1 (Duality Theorem). Assume that
(A0) inf sup F(z,u;X,v)=¢€< 0o.

(u,=) (X,v}

feasible ¢uaqible

(A1) For any fixed (z, u) E H! x U, F(z,u; X, v) is concave in (X, ‘U) for any

(X,v) € [Ha]" x U,X(0) =
(A2) v(z,u) as defined in (2.6) is convex in (z,u) € H, x U,z(0) = zo.

Then

& I = { L{po, inf FlemX.vl. (27
sup inf Llop)= max ol Lowp)= ff oop Fuidon) G0

fe "’“ ible guqsible

Consequently, if the differential game has an equilibrium sirategy, then

sup inf L(po,p) = min max F(z,u; X )=E€=1. (2.8)
oL PEILAN AT

We now prove the theorem. For any given (:l: u) € Hy x U, let

8z, u,p) = sup {F(z, u: X, )+ S (DEWIX € (21,
=1

v€U,X(0) = Xo, p=(p1,---,pn) € [L2]"}. (2.9)
By (A0), we know that there exists, at least, one feasible (z,u) such that
sup F(z,u; X,v) = ¥(z,u) < +00. (2.10)
(X,¥} .
feasible

From now on we need only to study 1,b(:c 'u) and ¢(z,u,p) for those (z,u) satisfying
(2.10).

defined above ts convez in p and the following statement holds: |
inf ¢z, u,p) > ¥(z,u). (2.11) J

Proof. By slmple verification.
Lemma 2.3 (Strong Duality). Assume that F(z,u4; X, v) is concave in (X,v) fo
all (X v) € [H}l i x U, X((]) Xo. Then for any (z,u) € H x U, ::(0) = zg, WE hdﬂe g

mf ¢{m u,p) = ¢¥(z, u).

pe[l?

Lemma 2.2 (Weak Duality). For any (z, u) satisfying (2.10) the functional ¢(z,%,p) -
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In fact, the above infimum is attained and we actually have | |
min_ @, u,p) = ¥(z,u). " (2.12)

Proof. If ¥(z,u) = +00, then (2.12) holds trivially by Lemma 2.2. So we assume
that (2.10) holds. The standard arguments such as in [12] immediately apply. We
define two convex sets

Y ={(a,0) € R x [L3]"|¢(=,u) < a},
Z ={(ﬂ‘lb) € [Li]NlF(I, “;X; t’) > G,b == (bh " !bN)!bi =z' — Az’ - Biv;

— Y Bju; —_f,z*'(o) = xg,i =1,---,N}.
J#
Then it is easily checked that Y and Z are beth convex, closed and YN int Z = P since

when b = 0 € [L2]V,
a< F(z,u; X,v) < sup F(z,u; X,v)

(X,v)
 feasible

for any (a,0) € int Z, whlch is ebvmusly nonempty. So by the separation theorem{17:18],
Y and Z can be wea,kly separated in R x [L2}V:

ra; + E(%b )[.l:,g‘]iﬂnT < r.ag, V(ﬂhb) €Z, (a3,0)€Y (2.13)
i=] |

for some nontrivial (r,q) € R X [L2]N. We now argue that r > 0. Fer, if r were equal
to 0, then ¢ # 0, s0 we can choose b = q and conclude

0< E la:ll* <0,

i=1
a contradiction. Also, if r were less than 0, we can use b = 0,41 = F(z,u; X,v) - e(e >
0) and a; = ¥(z,u) in (2.13) to get

r-(F(z,u;X,0) - £)+ 0 < 7 Y(z,u),

F(z u; X,v)—€ > ¥(z,u) = Bup; F(z, u){v),

feasible
again a contradiction. _
Therefore r > 0 s0 r can be normalized to 1. Using a; = F(x,u; X,v) and a3 =

gb(:c,u) in (2 13), we get b

F(z u,X v)+ Z(q,.,b) < gb(:c u)

g r-l
i

e . R o T e
s i PR Y R IR DL R
l- =y T . W
: ;
. : LN o

F(a: u; X, v) + E(qu A:l: - EB u, — tv, ) £ ¥(z,u). (2.14)
A=l RET - L S
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Therefore, ¢(z,u,q) < ¥(z,u); thus | |
P‘Ei[g?f; N‘ﬁ(:’:au&p) < ‘i)(m'.lu'lQ) < ¢(I, u) | | (215)

Combining the above with (2.11), we conclude
inf = :
. 28 o(z,u,p) = ¥(2, ft)
Tt is well understood in duality theory that the ‘hyperplane’ separating ¥ and Z
will define and attain the optimal dual multiplierlls]. This can be easily seen here from .

(2.11) and (2.15), because ¢ satisfies |
&(z,u,q) = P(z,u) = inf &(z,%P),

pe(L2 ¥

B3O

¢($,H,p) = min ‘i’(:ﬂs“-pp) = ¢($1 ﬂ.).

pe(Li]Y

Therefore (2.12) is proved.
The arguments for the following lemma are the same as those for Lemmas 2.2 and

2.3: the proofs are therefore omitted. ,
Lemma 2.4. Assume the P(z,u) as defined in (2.6) is convez in (z,u) for (z,u) €
H: x U, z(0) = zo. Then '

sup  inf [$(z,u) + (po, (DE))} = max inf  [9(z,u) + (po, (DE))]
peL? ("“(}SHH"U ro€L} (u.:(}[ﬁH“xU
X =.:D T =ID

= inf ¥(z,u). | (2.16)
: {easible

Remark 2.5. In (2.9), we have introduced N Lagrange multipliers p;, one for each
player. In (2.16) we have introduced the joint multiplier po commonly shared by all

players.
Proof of Theorem 2.1. From Lemmas 2.3 and 2.4 we conclude that

(P) = inf sup{ F(z,%; X,v)|(z,u) and (X,v) are feasible }

Tt Xov .
= inf [sup f(z,u;X,v)] = inf +¥(z,u)
GRIRROE: ()

feasible  feazible

max’  inf [¥(z,u) + {po,(DE))] (by Lemma 2.4)

po€EL2 (z,u)EH] XU

i}

t=1

x(0)==xq
N
= max = inf inf 8 F ¢ X g, (DE); o
PTEL?; tz,u)leﬂi.xu-{pe[b?,l” (x,.,:.efﬁwm [ (z,% X,0)+ ;(P"( _ )‘)H |
(0)==xg | X(0)=Xg :
+ (DE)); = max inf inf 51 Flz,u; X,v
(Po ( ))} po€EL3 (su)EHy XU {P‘E[I%]N {Jf,u)E[HE]NHU [ ( - )
2(0)=zp X{0)=Xgp
+ 3 (5, (DE)) +{po,(DEN|} | N

3 B *
P b 4
S g e e S B e e R
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— max  inf inf su F(z,u; X,v) + i, (DE)i
po€LY (z,w)eH} xU pe[LAIN (x.n}etﬂgif‘ xU [ Ve : ;{P R
=(0)= 5 X{(0)=Xg R .
+ {po,(DE)}| = max inf L{(po,p)- . - (2.17
(po, (DE))| = max _iof , Lipo:P) | el

So (2.7) is proved.

Theorem 2.1 will be sufficient for the purpose of subsequent development in this
paper and Part 11161, The theory of duality can be further strengthened and improved,
but the work is too general and lengthy, so we choose not to do this here.

§3. The Penalty Method for N-Person Differential Games:
Rate of Convergence

For the ease of presentation, throughout this section, we assume that we have made
the change of variable z(t) — z(t) — zo in (2.1) so that z(0) = 0. Thus the space for z
will be H,LO. This change of variable results in only superficial changes of J;. We will
use L? to denotgs L2.

For nptilﬁiza.tion problems with equality constraints, the penalty method approx-
imates the original problems by penalizing the equality constraints. In the minimax
problem (P), we see that (DE) = 0 and (DE); = 0 (i=1,---,N) are N + 1 equal-
ity constraints. Thus, a completely natural use of penalty here is to approximate the
problem by

- mp  Flz,uX,0) = F(z,.X,v) + —|(DE)|Z:
(z.)EHA o XU (X w)elH] o]¥ XU | =0
N 1 |
+ 3 (DB =
1=1 .

for some eg,€1,**,en > 0.

The most important question remains in determining the validity of the above
scheme and, if it is valid, its rate of convergence. Thus, we consider the fundamental
theorem of penalty for N-person differential games below.. The following assumption
will be needed:

(BO) F(z,u; X,v) is stﬁr:tly | cqnvei in (z,u) and strictly concave in (X,v) for

(z,u) € Hig x U and (X,v) € [H1G|¥ x U; and F(u,v) is strictly convex in v as

well as strictly concave in v. - .
(B1) inf sup.  F(z,u; X,v) is attained by (,%; X,8) € H = Hy o X
(su)EH], (XU (X,v)elHL N xV ' "
(DE)=0 {DE};-:U,EL:I,---.H '

U x [HL 1V x U. By (BU), this point (Z, it; X, ) is unique.

(B2) There exist Lagrange multipliers fig, p = (f1, -+ ,Pn) which are optimal (max-
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min) dual multipliers such that the following holds: -

F(3,4;X,0)= min max F(z,u; X,v)
(x.u)EH] o XU (X, v)E[H], SIxU .
(DE)=0  (DE);=0,i=1,-N -

= maX min min max [F(z,u; X ,v)
po€L? pe[L2Y (x,u)eH, o XU (X v)elH) oIV xU |

N
+ (po,(DE)) + 3_(pis (DE):}) (32)

(B3) The costs Ji(z,u) are of the f:ms |
T
Ji(z,u) = ] hi(z(t), u(t))dt (3.3)

- 0
so that po € Hp 0,9 € (H0l"-
~ (B4) The first and second derivatives FY, F" exist, and F" satisfies the global Lips-
chitz condition
(1 F"(z1, 813 X1,01) — F"(z2,u2; X2, 22)l < Kill(z1 — 72, %1 — ¥2;
Xy — Xa,11 — v;)l|g, for some Ky > 0 uniformly, for (z1,%1; X1, V1),

(X3, u2;X2702), where H = ! x U x L x U. (3.4)

(B5) Let Ag = dz2F Ay = 0z*F, Mo = 942 F and My = 0v*F be second-order -
Frechet partial derivatives evaluated at (i,ﬁ;i’ ,i‘:). Then Ao, Mo, —A1 and —M; are
positive definite linear operators on 12U, [L"‘]M and U, respectively. Furthermore,
Ao X A; maps H no X [HLG]N into itself.

(B6) By,--,Bn are small relative to Ao, Mo, —A1 and —M; (cf (3.22), e.g.).

(B7) The mixed Frechet partial derivative operators 8,05 ,0:04,- -, €tC. evaluated
at (x,u;X,v) are all 0.

Remark 3.1. (i) In (B3), Ji's are .ssumed to be of the form (3.3), for the conve- -

nience of discussions. |
(ii) Making some other assumptions, we can relax the global Lipschitz condition

{3.4) to a local one. |
(iit) (B7) is assumed here only for the convenience of discussions, cf. Remark 3.5
later. | | |
" Theorem 3.2. Under conditions (BO)}-(BT7), for €0,€1, 1N > 0 sufficiently
small, there ezists a unique (i,,ﬁﬂ;i’ ., Te) € H salisfying F! = 0 such that |
(i) "(&e:ﬁe;j{n ﬁc) —-(i,ﬁ;i,f?)"f{ < Kj(j.—%ﬁ?fej)"(ﬁm f’)“L*x[L?]N;
(if) ]2/ eo(e — Ake — T Bitiei — ) — Pollzz + 2 [2/ei(d - A5° — T, Byfie; — Bitei =
4 ¥
=l < K 3(jgﬁ¥ﬁﬁﬂll(ﬁoaﬁ)llm ({7 for some K3, K3 > 0 independent of
€a," " »EN- | | -
Proof. We introduce the new variables

£0=I-'i, £l=i_xl'rm=“_ﬁi
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Mm=v—9— 0—2/*30(1' --A::: "Z:B‘U- f)-ﬁm |

o —2;&;(3’ = A-’I i E Bjuj S BIUI-_ f) = lﬁf!
i |

Cl =(C111C121'”1 iﬁr) I (3 5)

In the above, we first choose z € H? ﬂﬂ,{’mx clH:nH] u]N u,v€ U n H and
t=1
then let (z,u; X, v) tend to an element in H. We further let

== (Eﬂ'ﬁgl)! n= (7101’?1): C = (Cﬁ*rcl)'
For any (6z,6u;8X,6v) € H, we have

F'(z,u X,v) - (62, 6u;6X,6v) = F'(z,u; X,v) - (62,6u;6 X, 6v)
- 2/6{](.’& - Az — E B,'u.; — f, dz — A(GS:I?) e Z: B,'(ﬁﬂ{))

+E2/e,<m — Az’ —EB u; — Biv; — f, 62" -A(ﬁ:ﬁ)

J#1 |
— Z B;ou; — B;ﬁu;). (3.6)
37
We can use (B4) tb write
F'(z,u; X,v) = F'(#,% X,8) + F"(&,% X, )(é0, M0 £1.m) + (&, ), (3.7)
where the remainder r(£,7) (as a functional in H) satisfies
r(0,0) = 0, (3.8)

RGO r'(€,7) < (€ = &, — Dl (2 x[L2)¥)x (UxD)s

V(E,7),(€,7) € (Hao X [Hp ol™) x (U x V). (3.9)

Substituting (3.7) into the first term on the RHS of (3.6) and integrating the remaining
terms by parts, we get

LHS of (3.5) = [F'(%,#;X,) + F'(£,% X, #)(€0, 0, £1,m)
+ r(&,9)) - (6z,8u;8X,0v) — ([d/dt + A*]2/eo( — Az — ) Biu; — f), 53’)

. 2/eo<a:(T) A(T)z(T) - 2 B:w:)(T) — f(T), 6:r:>
ot 3 (B:- " 2fea( = 42 - EB ui - f),6u;)

i3 E([d{dt + A*] 2/6.(:!: - A:r — ZB_,u_, Biv; — f),6z° >
_ T

] '-szet(z(T) A(T)a: (T) - ) (B (T) - (B=v=)(T) - H(T),62(T))

J#e: ?’f‘*
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+ ZZ(EI -2/e; - (:l:' — At — ZBJ*HJ' — Biﬁi = f),&'uk>

Let L = d/di— A and L* = d/dt+ A* (the formal adjoint of -L). We now substitute
(3.5) into the above and denote that

F(,4; X, 9).(8z, 6u; 6 X, 6v) — (L'p J6z)y— S (Brp,bui) - ) (L7 b, 6%
- ZZ(B; pi, bui) — Z(BF iy §0;) = 0. (3.11)
Y | ; .
We get that the solution of F'(z,u; X,v) =0 can be found by solving
(F"(z,@; X, 8)(€0, M3 €1, ) + r(€,m)] - (b2, 0% 6X,6v)— (L*Co,6z)

— S(B3 o) — UL G 8) - 2 T (BjcH bus)

T |
— Y (Bi(i,6u) = 0. - | (3.12)
j :

» .
Note that all the (, ) terms on the RHS of (3.10) disappear because to the arbitrariness
of 6z(T) and 62'(T). By (B5) and (B7) we have

A, 0 O 0 &o

S, 0 A 0 O ]&
.F‘" 4 ;X} ¥ b ’ = 3.13
(£,4; X,9)(é0, €150, ) 0o 0 Mo 0 |1lmno (3.13)

0 0 0 M T

Therefore, from (3.12) we get, for i =1=1,---, N, .
Aofo — L*Co = —1(&,n),  (A1,&) - L*(} = —r(£,m),
(Mo, m0) — BiCo— S B¢ = —r'(&,m), (Mum)' = BiG = —ra(&,m),  (414) |
Br
where ry, 72,73, and rq are the respective components of r(£,7) and the superscript t

denotes the i-th component. Combining (3.14) with (3.5), we get the following nonlinear
“matrix” equation:

Ag 0 0 0 = Py 0 &o
-L’ 0
0 Ay 0 0 0 e ‘ fl
- 0 -L°
0 0 M; 0 BT ; ’?D
0 0 0 M, O B .
-L 0 B 0 €0 }' 21 0

-L 0} . ' e1/21 o| «
0 i Bg B3 0 . i i o
0 -L en ;gf G | | Les
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_r;(fs"?)

315

0
0
0 _rz(fs 1?)
” 0 £ "'1'3(61 ’1) (315)
-'60/2}10 —r‘l(f'l ’?) :
- 0
€1/2P1
[ 1/2 ] J I_ 0
€N/2PN
where |
- B, 0 -8B —Bn-1 —Bn]|
—B o 0 —Bn-1 —Bpy s
Bl — B : 4 Bz — i ' : . : : y
—Bﬁ -8By -By —~BNn_1 0 J
;Bl 0 'I
—B
B; = : :
0 —Bn |
We further abbréviate (3.15) as
£ = 0 ZL*Jf¢]1 fo —r1(&, 1) .
D |ni=[0 M B*||{n|=]0]|+|~-rlsn)], (3.16)
¢ _i' B I, ¢ De 0
where
_ [ L 07
1 .
e " > L=
0 Al] - ’ 0 MJ [Bz 33]
L0 L | (v+1)x(V41)
. 60{21 0
- [L v ] “elfzf
L = “Hy _ _ 3 I.g - y
0 L* ;o
Sl 0 —eny2d 1 (Ny1yx(N+1)
_EGﬁI _ | )
61;21 . _ [rl(fv 7) 2 » [r3(f,q
PE —_ 'y T 5 e . y T ’ e .
ENIQI

By (B5), D, is a closed lmea.r operator on (L? x [Lz]N) X (U x U) X (L2) X [Lz]N) with

domain dom (Dg) (HY o % {Hno]V) x (U x U)x (Hzp x [Hy
Lemma 3.3. Under conditions (B5), (B6) and (BT) for all eg, ey,

o)

-,eny > 0

sufficiently smal! the opemtor D, introdiced above has an inverse and

G e Al

DT € K.

(3.17)
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>rpof. For an arbitrarily gi{ren (e, 8,7) € (L* X [Lz]N Y x (Ux U) x (L ._x [L2V),
+ wish to find some (£,7,() € (Hg.pn X [H V) x (U X U)x (Hgp % (H} .V such that

£ o
D.\#| =8 (3.18)
¢ v
or, in detail,
Af-L*C=a, Mij+B(=5 _LE+ B+ L =7 (3.19)
Let &(t, 8) be the fundamental n X n matrix solution satisfying I
a/0td(t,s) = A()®(t,s), 0<s<i < T,
®(s,8) = Inxn
It is easy to see that L is invertible with inverse
t ®(t,s) 0
(L)1A = L : A(s)ds.
0 ®(t,3) | (ner)x(N+1)
Thus, we have from- (319)
(3.20)

= (L) '(B7+ L —7)-

Substituting (3.20) into (3.19), we getl
AL B+ (AL L -L ) =a+ AL .

The integro-differential operator i* — AL"11I, is easily seen 1o be invertible for e =

., ep) sufficiently small; thus we have
e (3.21)

(Eﬂaela"
f = (L - AL L)AL B — (o + AL "))

Qubstituting (3.21) into (3.19), we obtain
M +B*(L" - AL L)AL Bl =+ B (LT - AL - AL L) e+ ALY,

Now we invoke (B6): since M is invertible, :¢ B is relatively smaller than M such that
M4 B (L - ALy TALT'B (3.22)

.« invertible for e sufficiently small, we have

. 2 ey | .

i=Q:[B+BL, (e+AL 7l (3.23)

where | | T . |
Q.=M+B (L - AL Ly ALt B, Le=L - | (3.24)

Using (3.23) in (3.20) and (3.21), we obtain g . | - | |
£ = i YBQ:'BL, + I,i;‘(i,‘?'nn*i';?;; Dla+ [BI7! + i AL BQYB

 p[BQIBLALT - T4 Li; (AL7BR'L." - DAL I},

{ = f_,:i {(Ai‘133¢L:1 ~Da+ AiTlBQ: ﬂ-g;+ ( AfleB"L:-l

- 1

- DAL "Iv}.
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Therefore, D, 1s invertible,- with

L' BQ- B L Lo+ LI LT(BQ: IB*I','IAi'.
+LLT (AL 'BB*L.  -ALT'BQ;Y) I+ 1, L "aL'BB"L™
—~1)) ' ~1)AL™")
D;l — O | : | s -
Q;'BL o Q:'B'L, AL
“1AL BB L, ALT'BQY (AL™'BB°L_’
—I : VS

Since each entry of ‘the matrix D! is bounded, we have proved that D_ ! js bounded

for e sufficiently small.
We need the following lemma from 16): |
Lemma 3.4. Let H be a given Hilbert space, T a densety defined closed linear

operator from dom (T) C H onto H with a bounded inverse |[T~ H < ¢, and r(z) a
nonlinear (Frechet) differentiable operator on H such that r(0) = 0, 1 (2)|| < ezl|=li for
all z € H. Then for anya € H, ||| < 1/(4c3cy), the egquation

- Tz =a—-r(z)
has, in the sphere lizl| < 4eillall, a unigue solution z € dom (T') satisfying
llzlf < —Ilﬂl\

We note that, although in [16] it is assumed that T is bounded, a ca.reful examination

of the proof shows that the assumption is redundant.
Using T = D.,¢; = k4 and ¢z = K7 in Lemma 3.4 a.nd applying it to (3.16), we

obtain that, for
1Bell g2 xpzap < 1/(4K1k5),

which is clearly satisfied if

J_I}lm.ﬁﬁlﬁ: > 4Ky K{[[(—Por BMlL2 xirav»

(3.18) has a solution (&, fle, () € [HA o}V ! x U? X [H2 o1 +1 gatisfying

"(Ee: 1"}1:116«:)“[4[;-"']1""“ x /2 x[L2])N+1 < Kd/“‘l ﬂﬁla-xN 'EJ) "("'Po P)"[L!]N+1

From (3.5), writing - B
5:==:5+£=0, X.=X4&1, e=1t+70 =10+,
2/60(:1:,, Az, —~ EB fle,i - f)= C,,n - pg,
| 2/6{(.’5' — Af! - ZB_,uw B;b v,,‘ f) Cel -p;, t=1,---,N

IFs
we obtain that, for |

J_ﬂgﬂxﬂ e; < [2K1K] ||(msP)||[m1N+1xmx[m1H+1 < K4/4 C max ﬂ:) I(Pom)ll[m]m:-
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Similarly,

e — llo < Ko/t { maxe;) o, Dz

J= "y

1%, — Kl < Kafa ( max_e;) o, 8)lgayess

pmd
ey ¥

60 — olly < Ka/a ( max es ) N(hou Dllipess

o 1".1

[2/eo(de — A~ Y- Biiiei = ) = (=), < Kol { max, ;) WGoo, gy,

“2/6; (:c*; — AZ — Zﬁjﬁc,i — Bives — f) — (—5i) lL,
IFS
< Ku/4 (, max, ;) o sy

The proof of Theorem 3.2 is complete.
Remark 3.5. From the proof given above, we see that assumption (B7) can be re-

laxed; we need only to sequire that the mixed partial derivative operators 8.0x F, 0,0, F,
... etc. be dominated by 82F,82F,82F, 0, F, at (2,%; X,9).

Remark 3.6. Although F.(z,u;X,v) is concave in (X,v) for all eo,€1,---,€N,
in general (without assumption (B0)) it is not necessarily true that F.(z,u;X,v) is
concave in (z,u). Thus (£, te; X.,7.) need not be a saddle point for F,.

Corollary 3.7. Under the conditions of Theorem 3.2, assume, 1N addition, that

F(z,u; X, v) is quadratic in the sense that
F(:’é,ﬁ;f,i’r) = F(z,u; X,v) + 2F (z,u; X,v)( — 2,8 - w: X — X,0— v)
+(F'(m,u;X,v)-(ﬁ':—:c,t'i—u;jf-—X,ﬁ-v),(:ﬁ-m,ﬂ—u;i’—X,ﬁ—-ﬂ)}

holds for all (m,u;X,,v),(:’i:,ﬁ;)?,ﬁ) € Hg, XU X [H3 ) X U. Then Theorem 3.2 (i) can
be strengthened to | |

1(Ze, fie; Xey Be) = (&, 8 X, D)l < Ka | _pgﬁgcﬁej) (Po, )2y +1 (3.25)

for all eg, €1, -, en sufficiently small.
Proof. Since F is quadratic, 80 is Fe. Therefore r

3.2. By (3.16), we have

(¢,7) = 0 in the proof of Theorem

ée S A

D, ﬁﬂe = |-0 (3,26]_

. Cg : ﬁ: L
Th'llS - ' | . ' : : .ﬂi fg
; | - - - et : | :ﬂ

oy “De(&ti e CE)II%L?]N+1 xU’x[L’]NH 5 "Pﬁ“?L2]H+1 . b i
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For ep, €1, -+, ey sufficiently small, it is easily seen that there exist X5, K¢ > 0 such
that v

Ks|l(€,m, Ollizapv e xexizpv+r + 11Pe(€ s Ollfz2)v+1 xv xqzan+1

> Kel|(£, n’-()”[zH,Lu]N“HU’K[H}._;.]”‘” | | (3.27)
for all (£,n,¢) € [HLIN+! x U? x [H} o]¥*?, thanks to the coercivity |
"‘Z‘EH[ZHLU]N+1 2_ KT"{"'[ZH}.’D]NH :

"‘E*£"[2Hi.ﬂlﬁ+l 2 KTHC"[zHEI'u]N“H 5
Combining (3.26) and (3.27) with Theorem 3.2 (i), we conclude (3.25).
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