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Abstract

In this paper we study the MSOR method with fixed parameters, when applied
to a linear system of equations Az = b (1), where A 1s consistently ordered and
all the eigenvalues of the iteration matrix of the Jacobi method for (1) are purely
imaginary. The optimum parameters and the optimum virtual spectral radius of
the MSOR method are also obtained by an analysis similar to that of [5, pp. 277-
981] for the real case. Finally, a comparison of the optimum MSOR method with
the optimum SOR and AOR methods is presented, showing the superiority of the
MSOR one.

§1. Introduction

To solve the linear system of equations:
Azx = b, | (1.1)

where A € R™*, b€ R™ and det(A) # 0, we consider the modified successive overre-
laxation (MSOR) method with fixed parameters (see e.g. [5, Chapter 8], [2]). We also

assume that A has the form

- 1.2
'l » (1.2)
where Dy and D, are nonsingular diagonal matrices. If we partition z and b in (1.1) in
sccordance with the partitioning of A in (1.2), we can write system (1.1) in the form

o [ [;

| K Dz} lz bl
The MSOR method is 'dgﬁ_ned by
gond ) = 7 gt b, om = 0,1,2, 00, (1.4)
where -
(1 = u.:)I; wkF
Lyw = (1.5)
el -w)G wW'GF + (1 - W)

* Received February 20, 1989.
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and |

o s
Faf = . . L
o ww'Gey + we;p ¢ - '

In (1.5) and (1.6), |
F=-D'H, G=-D;'K, ¢; = =D 'b1, ¢z = —D7 by, (1.7) .

I and I; are identity matrices of the same sizes as Dy and D; respectively and w,w'(#
0) are the real relaxation factors. If w = ', the MSOR method reduces to the SOR.
method and we write |

= Lo

In the following we first find necessary and sufficient conditions for strong conver-
gence and then determine the optimum parameters and the optimum virtual spectral
radius of the MSOR method under the assumption that the eigenvalues of the iteration
matrix B of the Jacobi method for system (1.3) are all purely imaginary. For this pur-
pose we follow an analysis similar to that given in [5, pp. 277-281] for the case where

all the eigenvalues of B are real. For other results in the real case see also [4].
’

§2. Convergence Analysis

According to Theorem 2.1 [5,p.273] for the matrix L .+ the following are true: (i)
If X is an eigenvalue of L, .+, then there exists an eigenvalue £ of the iteration matrix
B of the Jacobi method for system (1.3) (note that

B = [G " (2.1)

where 0y, 0y are square null matrices of the same sizes as Dy and D, respectively),
such that |
A4+w-1)A+uw' —-1)= w2 . (2.2)

(ii) If € is a nonzero eigenvalue of B and if X satisfies (2.2), then A is an eigenvalue of
Ly . If £ =0is an eigenvalue of B, then A=1-w andfor A = 1 -’ is an elgenvalue
of w,w' .

We can write (2.2) as follows: |
M-bltc=0, (2.3)
where | | | | ‘_

¢=(w- 1)(.;.: ~1), b=w—w-w'+2=1+c- wf(1-€%) (2.4)
 Since b = b({z), followmg §6. 1 [5 P- 17(]] we can define the wrtua.l spectral radius of

ww' by

(o) = max wi &, 2.5
P(Lw.w’) , Pﬂ;gl;? Y(w,w',€%) , (2.5)
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where P(w,w’,£?) is the root radius of (2.3), i.e. ‘the maximum of the modu-ii,of the
roots of (2.3) and Sp2 is the smallest convex set containing Sg2, the set of all eigenvalues
of B?. Note that, because of (2.1), we have |

9 FG 0
=10 crl
If p(L, ) is the spectral radius of Ly ., then p(Lyw) < P(Lww) With equality when-
ever the maximum in (2.5) occurs at an eigenvalue m of B? and ¥(w,w’,m) is equal
to the modulus of an eigenvalue of L, .. The MSOR method is strongly convergent if
and only if p(Lyw) < 1. | =
In the following analysis we assume that the eigenvalues ¢ of B are purely imaginary,
that is we set § = iy, where i2 = —1 and g is real. According to [5, pp.141-145], the
matrix A in (1.2) is consistently ordered and therefore iv is an eigenvalue of B if and
only if —iv is. Cﬁnééquently, if o(B) is the spectrum of B, then we have |

(2.6)

—u<p<p p<|pl<p and Sp=[-A'-p);

where | |
o=p(B) apd p= ‘Iéﬁ?ﬂ]lpl (ip and ifi are eigenvalues of B).
* 1o e
Thus, in our case we can replace (2.3) and (2.4) by
A _brte=0, ' (2.7}
where |

¢c= (w-— 1)(w" -1}, b=bp*)= eyt —w W+ 2=14+c—ww'(1+ 1), (2.8)

We now prove the following theorem. |
Theorem 2.1. Let A in (1.1) be a matriz of the form (1.2). If the eigenvalues of
B are purely imaginary, then the MSOR method is strongly convergent if and only if
2(2 — ')
- T2~ w1 = %)
Proof. The MSOR method is strongly convergent if and only if the two roots of

(2.7) are less than one in modulus Vu? € [p?, %) According to Lemma 2.1 [5, p.171],
this hapens if and only if

"lel <1 and {b] < 1+ ¢, vt € [Eg,"gl. . (2,10)
Because of (2.8), (2.10) are equiva]éﬁt to
{lw—+1| ' —1j<1, ww(14p*)>0 and

= M(a®). (2.9)

Decw<?2 and 0<w<

|
B R

(2 — w)(2 - &) —ww'n? >0, p? € [p?, %) | |
The second of (211) is e'qliiiraleﬁt to ww' > 0 and therefore in order that the thn'd oi; |
(2.11) can be valid we must have (2 — w)(2 — w’) > 0, that is w,w < 2orw,w > 2. 1t
w,w' < 0 or w,w' > 2, then the first of (2.11) is not true; hence, the only case we must
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consider is : 0 < w' < 2and 0,0’ < 2, since ww’ > 0. 0 <w < 2 and 0<w <2,
then the first of (2.11) is valid and the third of (2.1-1)_'15 equivalent to N

tl 2 — ] i : ,
T = MO, P R (2.12)

It can be shown that M(p?) < 2 and since (2.12) must hold Vu? € [4?, 2%] , we finally
have |

0<w<

’ £ 2(2_’”;)
0 <w <2 0<w<#,g[1£,11,]M(#) 7~ (1 = %)

ie. (2.9).
Remarks. (i) As follows from the prmf of Thmrem 2.1, the roles of w,w’ in (2.9)
can be interchanged.

(i) If w = «', then (2.9) are equivalent to Wi (1-p%)—4w+4>0,thatisd <w <

- which is a known result for the SOR method.

1+ i’
(iii) If & = 0, then (2.9) reduce to 0 < w' < 2and 0 < w < 2.

»

~ §3. Determination of the Optimuni MSOR Method

We now study and solve the problem of determining expressions for the virtual
spectral radius of L, .+ and of choosing w and «' to minimize the virtual spectral
radius. For this purpose we prove the following theorem.

Theorem 3.1. Let A in (1.1) be a matriz of the form (1.2). If the e:genvu!ues of B
(see (2.1)) are purely imaginary, then the optimum values wp,w) of w,w’, respectively,
of the MSOR method are the two roots of the quadratic equation:

21 + r2) 1413
p L . 1—-r2 A4 - =0, 3.1
{2+g“’+ﬁ2+ ] +2+y2+p P
where | - | |
r_2+£2_i'ﬁ2"2 (1+’E2)(1+ﬁ22= ; ﬁi_Ez
#’—&2 | | 2+Ez;l-ﬁ2—2\/(1+g2)(1+ﬁ2)
\/TT?-—,/H
3 (3.2)

T VITE+ 142

Moreover, the wmspondmg aptimum 'virt.ualwspebt_mf'rﬁdius (Lo :WG) is equal to T
given by (3.2). T |
Proof. I Ca.se E . Then p — E’ = i*VYp? and (2 7) becomes

}.

—(Wp s o w+2].l+(w—1)(w'-l) 0. (33)
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It is clear that in this case the optimum values of w,w are those for which the two
roots of (3.3) are equal to zero. Thus, from the system of equations: |

w-1) -1)=0, —w/p-w-u'+2=0 ° (34)

we obtain
1, W= ' f T : 3.5)
Wo — Wo = 1+_2 (01' WD*— and &g = 1+’]2) ‘ ( . )

I1. Case p < ji. We can by Theorem 2.1 restrict our consideration to values of w,e"
satisfying (2.9). Following [5, pp. 277-281} we note that p(L, ) for fixed w and v’ is
the root radius of

- A%A+e=0, (36)
where |
j 2 - / 2
b= fén?{p 16( )| = 22[1%_:[14— ¢ w(1+ﬁ ) . _(3.7)

Since b(u?) is a linear function of u? for fixed w and ', we obtain by (3.7)

b= max{|1 + ¢ — w'(1+ )], 1 +c—w'(1+p)} = max{[b(a*)], 16(z")I} - (3 3)
It can be proved that fb(2)| > jb(p?)| if and only if

MEDWE. - L. B (3.9)
24 pct+p°
or equivalently
2(2 ~w ) 2 -2
= N(u*,g5%) . 3.10
Evidently, N(u?, 5*) > 0 and we can show that
N(@2, i) < M(3) . (3.11)
On the other hand it can be proved that b(pﬂ) < 0if and only if w 2 1—24-_:‘:——
Moreover, b(p?) > 0 if and only if w < : “w 2 . We can also show that the following
inequalities are true:
2 -w 2 —u'
o N A7) & 1
1+ w'p? ~ (" )_1+wp e
Combining the above results with (2.9) we obtain
_ —b(ja?), if 0 <w <2 and N(E:2 2]<w<M(p2) (3.13)
— 3.13)
b(,u’), if0 <w< 2 and B < w < N(p?, @2). ot
Usmg (3.13) it is easy to prove that
og - | | o, oo
- - U | Y . ' —
D mm— | = 2 o
A T L e ]
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where r is given by (3.2). We have 0 < r < 1 (note that r = 0 if and only ifﬁ = ii). By
Lemma 6-2.9 of [5] and (3.14), the root radius of (3. 6) is at least as large as the root

radius ¥(c) of
2r

P(Ac)= N 1+ﬁJL+®A+c=D. . ' (3.15)
We have (r?) = r and following the analysis in [5, p.280] we obtain
Plc) >, if c£ 1% . (3.16)
If ¢ = r2, then from (3.14) we have
T (1+#y-m- (3.17)
1412 '
and the equality & = 2r holds if and only if
2
' = 22151;:_ ;)12 ., (3.18)
Hence, by Lemma 6-2.9 of [5] the roots ra.dms of
, Q(A) = A2 ~bA+r¥P=0 (3.19)
is greater than the root radius r of A2 — 2rA + 72 = 0, if
o # oAt

In order that the root radius of (3.18) shall equal r we must have b = 2r and hence
(3.18) is valid. Because of ¢ = r? and (3.18) we have

(w— 1w -1 =ws —w' +1=1%,

implying that |
2(1 + r?)
2+ 'pZ + ﬁ2

m+w’::

+1—7* (3.20)

Thus, from (3.18) and (3 .20) we can determine the optimum values wp,w; for the
parameters w and o', respectively. These are two roots of equation (3.1). Moreover,

we have

| it f(Luw) = HLugwy) =T - (3.21)
Finally, we observe that for r = 0, 1.e. y = j, (3.1) takes the form
2 + ji 1 |
A% - A =Al ; (3.22
14 j? ”+l+ﬁ"' 0_ _
with roots wo = 1 and "-'-’o =z ’:Pzi hence the nptlmum values obtained in case I are

recovered and the proof of the theorem is camplete
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§4. Comparison of the Optimum MSOR, SOR and AOR 'Méthold_,s
We can now compare the opﬁmum MSOR method of Theorem o.1 with t'l_1e cor-r

responding optimum SOR and AOR [1] methods. It is known (see e.g. [5]) that the
optimum relaxation factor of the SOR method for the case of Theorem 3.1 is given by

2
Wwp = — = 4.1
1+ 1+ p (4-1)
and \ y - .
V‘l+ﬁ§-1_ 24+ 5 —-2v1+ 4
L =l-w—-b= —/—m=—"7= — e 4.2

Setting = 1+ p?, y = 1 4 i it is easy to show that

L VE-VE -1
P(Lung,wty) = - < A+ = p(Luy) 5
with equality if and only if p = 0. o -
Let p(AOR) denote the optimum spectral radius of the AOR method for the case
of Theorem 3.1. It is known (see e.g. [3]) that

’ py i — 2 _
| _\/ — , if 14 p? > V1442
p(AOR) = ,/1 + 121+ /1 + p?) (4.3)
1—wy , if 1+L1__2£\/1+ﬁE .,

Consequently, if 1 + pu? < 1+ i, then p(Lomegagwt) < p(AOR) = p(L,,) with
equality if and only if 4 = 0. Suppose now that 1+ p > 1+ p?. Obviously we have
# > 0 and thus

1<z<y<z’ (4.4)

(z =1+ p?, y =1+ a*). We will show that

_ . y-z l/z-l\/u_ |
P(Luoun) = ~ o \/ﬁ< a0+ 77) = p(AOR) , (4.5)

or equivalently

(1+\/E\/m(y—a:) < vVz—-1{z+y+2/2y). (4.6)'
From (4.4) we have 1 + VT < VT + /Y; hence in order to show {4.6) it is sufficient to
show that |
(VEIWz(y— ) < Vo - 1(VT +¥) -
Then | ; g

(4.7) <= z(y—7) < (z - 1)(z + v+ 2/ZY)
= (Vz +\/‘.!_{)2 <2z + 23,/@ = 2z/z(/z + \/ﬁ) . |

> Vz+\y<2zv/z. .
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But, (4.8) is true since vz < z/z and /¥ < z+/Z (the last holds because /y < Z and
1< /7). | | -

From the previous comparison we conclude that if 0 < p then the optimum MSOR
method is faster than the optimum AOR method. We note also that if the order of
the matrix A is an odd number, then g =0 and the optimum MSOR method coincides

with the optimum SOR method. The case 0 < g may occur if A is of even order.
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