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Absatract

A sequential algorithm for solving a system of nonlinear equations based on the
number-theoretic method is proposed. In order to illustrate the effectiveness of the
method, the following two problems are discussed in detail: the problems for finding
out a representative point of a continuous univariate distribution, and a fixed point of
a continudus mapping of a closed bounded domain into itself.

§1. Introduction

Suppose D is a domain of R*. We want to solve the system of equations

filz) = fi{z1, - ,2.) =0,
S (1.1)

felz) = fez1,---,2,) =0,

There are many well-known methods for solving (1.1) if f;’s are all linear, but it is difficult
to find out an analytic expression for the solutions of {1.1) in usual if f;’s are not all linear
functions, so that (1.1) can be solved only by numerical methods, for example (see [5]}, the
iteration method (see [1]), Newton’s method (see [6]), Brown’s method!®, Brent’s method!2l,
quasi Newton’s method (see [5}), etc. However, the above methods are contained in detail in
a book of Feng [6]. These methods require that f;’s have continuous derivatives of first order
or even higher orders, or satisfy certain properties of convexity in order that the convergences
of these methods are ensured. It is difficult to obtain the explicit formulas of derivatives
of the functions f;’s, and sometimes f;’s even do not satisfy the required conditions, for
instance, max, min and |z| appear in the expressions of f;’s.

In fact the problem for solving the system of equations {1.1) can be reduced to a problem
of optimigation. Let

Liz) =) |fi(z), zeD (1.2)

i=1
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or

i(e)=3 ), zeD. (1.3)

i=1

Then the pm])]cm of fmc]ing out a ﬂoluﬁnn Ty = (z.ﬂ, - --,z.;..) of {1,1] 15 equivalent to the

problem of finding out a point such that L{z) (or L(z)) attains its minimum. Notice that
such points that L(z) (or L(z)) attains its minimum M = O are not unique in general, and
our aim is to find out at least one among them.

We have proposed a sequential algorithm for optimization based on the number-theo-
retic method, and it is denoted by SNTO [9]. The continuities are required only for the
functions f;’s in SNTO such that the convergences of the approximate minimum M* and
the maximum point z* to the respective M and zg are ensured. Besides, it is easy to work out
a program in SNTO, and more precisely the programs are almost the same for distinct sets
of f;’s. It is the aim of our paper to recommend SNTO for finding an approximate minimum
point of L {or L), that is, an approximate solution of (1.1). In Section 2, we give SNTO 1n
detail. In order to illustrate the effectiveness and also universality of SNTO, we apply SNTO
to treat two problems. The first is the so-called quantization problem. Let X be a random
variable with a continuous cumulative distribution function F(z) with a standard deviation’
1 and n be a given positive integer. For any given numbers ~00 < 21 < g < - < Ty < OO,
an n-level quantizer @, is defined by

Qn(z) = zk, ifax <z <L a4, k=1,--,n,

where
gy = —00, Gnp1 =00, Gk ={Tk+ Zr-1)}/2, k=2,-",n

We use the mean square error (MSE)
MSE(z) = E(X ~ Qu(X))? = f minls —izdPulalits (1.4)

to measure the distortion between X and Q, (X), where z = {(z;, -, %,) and p(z) denotes
the probability density function (pdf) of F(z). We shall call z* a representative point of
F(z) if it has the least MSE, i.e. MSE(z") = min MSE(z). The problem of finding out a

representative point appears in many fields, such as information theory, clustering analysis,
~ theory of quantization and theory of stochastic simulation. Max!t2l Lloyd!*!l, and Fang and
Hel”! proposed independently numerical methods for finding out the representative points.
Their methods are the same in essence, where as Fang and He’s method is to reduce the
above problem to a problem of solving a system of nonlinear equations {cf. (2.2)). In this
paper, we shall give a numerical method for finding out a representative point based on the
number-theoretic method.

Let f be a continuous mapping which maps a closed bounded domain D into itself. We
shall call 2o a fixed point of f if f(zo) = Zo. Our second problem is to find out a fixed point
of . This problem is close to the problem of solving a system of nonlinear equations, and

there appeared several related monographs in recent years, for instances, (13], [14] and [15].
Let |
L(z) = ||z — f(=)|, =€ D, (1.5)

where || - || denotes {; or I modulus. Then the problem of finding out a fixed point of f(z)
is reduced to the problem of finding out a point z = o of such that L(z)} attains its
minimum at zo. Hence we may use SNTO also to find out an approximate fixed point.



A Sequential Algorithm for Solving a System of Nonlinear Equations 11

These two problems will be discussed in detail in Section 3 and 4.

§2. SNTO

Let @ and b be two vectors of R*, where a; < b;, 1 = 1,---,5. We use [a, b| to denote
the rectangle [a;,b,] % - -- X [a,,4,]. First of all, we give the sequential algorithm for solving

(1.1) as follows:

1) Take n; points P{1) = {y}cl) = (y}cll},-——,y}nij), k = 1,---,n1} which are uniformly
scattered on D{1) = [a, b] by the methods of Konobov, Hua and Wang (K-H-W) (cf. {9]).
Find out the minimum M{!) and a mininum point (1) of L(z) on P(1), i,

2) The domain DY) is contracted to D) = [a(?) b)), where a(?) = (a!®), ... al?),
412 = [b(f),---,b?], a1(2] = max(:cf.” - cE”/Z,a,—), 552] = min(:!:El].—i— c£1}/2, b;), £ =
1,---,8, and el}) = (b—a)/2 = (c(ll),---,cﬁl]). Then, take n, points P{2) = {yf], k =
1,---,n2} which are uniformly scattered on D2} and find out the minimum M®) and a
minimum poin§ of L(z) on P{1) u P(2),

3) Suppose that the domain in the ¢ th step is D{¥) = [u[*],b“}] and the correspond-
ing set of points on Dt iz Pt} = {y}:}, k = 1,---,ns}, and that the minimum and
a mimmum pomnt of L(z) on PL ...y P gre M®) apd z®) respectively. Let 6 be
a pre-assigned positive number which is used to control the process of the algorithm: If
max cft} = max %(6‘{” — a}t)) < &, then the process is stoped, and MY and z(Y) are
considered to be the approximations of M = 0 and zy. Otherwise, it enters into the (t+ 1)
th step:

Let “EH” = ma.x(m}” — 55”/2:"1-'); bEtH] = min(zit} + c?]f’lbi), §=1;rvry8, alttt)

- (ugﬁl}] s :ﬂ'-it_'_l)), b[H'” - (bgH.l]! s, bit*}-l}) and DU+1) — {ﬂ[:+1;’ b[H’l]]. Take ny.
points P{t+1) = {y,(:"'l), k=1,---,n441} which are uniformly scattered on D¥*+!). Then

find out the minimum M+ and a minimum point 2¢4+1) of L{z) on P(1} U ...y Pt+1)
and return to 3) by using £ + 1 instead of t.
Now suppose D) has a parameter representation

Ly =mi(¢’1:“'}¢i) =$,;(¢), 1= 1:'”:3:

where ¢ = (¢1,- -, ¢:) € [0,1]°, t < s and ¢!s are independent in the sense of statistics
(cf. [16]). Given a set of points {b;, £ = 1,:--,n} which are uniformly scattered on [0, 1),
we can obtain a set of points P = {y,, k = 1,.--,n} uniformly scattered on D (cf. [16]).
Let z be a point of P such that P(z) attains its minimum at z among the points of P, i.e,

Liz) = lg}:lg L{yy). Suppose that z corresponds to 6" of {bs}. Then a rectangle [a, b] with

centre b* corresponds a domain of D which includes 2. Using this correspondence, we can
define the process for contraction of D by means of the contractions on [0, 1]* stated above.
Since the method mentioned here for optimization is just the SNTO, we call SNTO the

method for solving the system of nonlinear equations.
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§3. Representative Points of a Continuous
Univariate Distribution

Let F(z) be a given distribution function which has pdf p(x). We may assume without
loss of generality that it has variance 1. Given z = (%1, -, %n), Where z; < -+ < Zp, We
have a quantizer @, (z) and use MSE (cf. (1.4)) to measure the distortion between X and
Q,.(X). By (1.4) we have

MSE(z) = f_m 121%:1(1: — zx ) p(z)dz. (3.1)

Let

The so-called representative point z* = (=}, -, %y) is defined such that MSE(z*) attains
its minimum on TR, at z*, l.e, |

MSE(z*) = min MSE(z).
TeT R,

It is obvious that

(zg+x3)/2

(z — 21)°p(z)dz + / (z — z2)°plz)dz + -
{x1+23)/2

(£1+=z2)/2

MSE(z) = /

— Q0

+j;m (z — z,)°p(z)dz.

Tn-1+Zn)/2

Using the ralations 3 MSE (z) f8z; =0, 2=1,---,n, for minimization of MSE we have
a system of equations

(z1+z2)/2
filz) = f (z — z1)p(z)dz =0,

— 0

)= [ (e aala)
2(Z) = r — zo)plz)dz = 0,
(z1+z3)/2 i (3.2)

llllll

Hence the problem of finding out a representative point is reduced to the problem of finding
out a solution of (3.2). |
Suppose F(z) is the standard normal distribution. We have zf = —zI5.1.4 ¥ =

F %
g

n+1 s oy ; : . i
——%—, by the symmetry of the distribution density with respective to the origin, and

therefore m’{"n +1)/2 = 6 if nis an odd number. So we need only to find out the nonnegative

coordinates z¥, -+, z° of z*, where 0 < zj < --- <z, and s = (n/2] in which |z] denotes
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the integral part of z. Consequently, (3.2) is reduced to

Zi + X2

fulz) = #() - #(2T2) - ma (AT ) - 0(w) =0,
ale) = (1 272) - (1 2) — my(9(B ) - 0(E ) =0

2

fulz) = $(E=ETE) — o, (1 - 92225 =,

where

Wa) = =77, 0la) = / lt)ae

and
0, if neven,
$) =

z1/2, otherwise.

The following gesults show that the advantages of SNTO are not only on its simple algorithm
but also on its precision compared with some other known methods (cf. [12], {11] and [7]).

Let

L

L(z) =) _|fi(z)l, zeTR], (3.4)

1=1
where
TRY ={(z1, " ,%,): 0SSz < -+ <z, }.

The problem of finding out a representative point z* is equivalent to the problem of finding
out a minimum point of L{z) on TR}. It is known by the properties of standard normal

distribution that z* must fall in the region
TR} (B) = {(x1, -,24): 0< 2, <--- <z, < B}

where B is a certain constant, for example, we may take B = 3.5 if 10 < n < 30 and
B =3.0if n <10. Let D = TR (B). We can obtain the approximation of a representative
point z* by SNTO. The results are given in Table 1, where the calculations are made on an
IBM PC/XT, and we always take ng = ng = ---. In Table 1, we use ;N to denote the total
number of points for calculation, T the number of contractions for the domain DR} (B), z**
a representative point obtained by SNTO, z* a representative point given in |7] which is
slightly better than the result in [12), and L(z**) and L(z*) the respective values of the
function L(z) at z** and z*. Table 1 shows that z** has higher precision than z* given by
[7] and [12]. Table 2 gives the values of z** for n < 10.



14 FANG KAI-TAI AND WANG YUAN

Table 1. Comparison between SNTO and Fang-He’s
methods

non ngo T N L(z**) L(z*)

4 144 89 20 1835 1.490E-8 3.308E-6
5 144 89 20 1835 1.490E-8 6.124E-6
6 701 199 22 4880 1.490E-8 1.305E-5
7 701 199 23 5079 1.490E-8 1.882E-5
8 1069 523 22 12052 7.078E-8 2.424E-5
9 1069 523 22 12052 2.235E-8 7.964E-3
10 4001 1069 22 26450 1.576E-6 3.400E-5

Table 2. Representative points of standard normal distribution

n zy To T3 T4 Ts L{z*)

4 452780 1.51042

5 .764567 1.72415

6 .317717 1.00011 1.89360

7 .560579 1.18814 2.03336

8 .245006 .756014 1.34392 2.15195

9 443636 .918791 1.47639 2.25465

10 .199614 .600828 1.06777 1.59125 2.34488
Remark. 1) If

Ea) =Y 12(a)

is used instead of (3.4), the results for the same n;,n;,T are all the same as given in Tables
1 and 2. It 13 worth mentioning that the results given by in these two functions are not
always the same; the results are the same if N — oo and differences may appear if N(n,, ns)
i1s not large.

2) Substituting the expressions of fis in (3.2) into (3.4), we know that the algorithm
given here can apply also to any one-dimensional continuous distribution.

3) Although the algorithm is used for finding out a minimum point on T R,,, the problem
13 really to find out a minimum point on a rectangle by the properties of representative
points. More precisely, we use zgn} < 0 K IE;H) (n = 1,2,--:) to denote representative

points of the distribution function F(z). Therefore we have

(n—1)

—-B < IE"] < T3 (r)

' <z (a1}

n—1
g g2 g eglnl e B

where B is a bound of {:rg-"J}. I{ll) 18 easy to find out in general. Next, find out (:::[12), mézl)

in (- B, z[ll}) X (I(II},B), and then (z\>, 28, 2¥) in (=B, z?) x (2%, 22)) x(:n(f),B)
and so on. Since the points we use for calculation are scattered uniformly on a rectangle,
there 1s no need to transform them to a T'H,, and thus the amount of calculations can be
further decreased. Besides, the scope of solutions is reduced.
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t4. Fixed Points

Let f be a continuous mapping which maps D into D. We want to find out a fixed point
zg of f, 1e.,

g = f(tg). | (4.1]

Suppose L(z) is defined b];r (1.5). Then, the problem of finding out Zo 18 equivalent to the
problem of finding out a minimum point z such that L(z) attains its minimum M = 0. We
shall give an example to illustrate the efficiency of SNTO for finding out zg.

Example. Let

D = {(z,,22,23): 2; 20, :=1,2,3, 2, + 25 + 23 = 1}

be a simplex. Let
1 = {Il + 2x5 + 3:1:3)/3,

y2 = (4z, + 522 + 623) /8,
Yz = (71"1 + 82, + 9:!:3]/3,

where
. S =12z; + 1525 + 18z,.

This is a continuous mapping which maps D into D with y, = 1 /3. We want to find out a
fixed point of this mapping. We use {; modulus in (1.5). Take n; = 233 and n, = 144. By
SNTO with 18 domain contractions, we have the approximations of M and zy as follows:
M8} — 298 x 10-7, and z(18) = [:cgm},a:%w],zgla)), where :1:5_13] = 0.1471927, 2{18) —

2
0.3333332, :céw) = 0.5194746, which are very close to M = 0 and zq = (::i”’,zg“’ ,:rgo} )

where z{” = 0.1471027, 2" =0.3333333, z{°) = 0.5194740.

The design of domain contraction in SNTO is to shorten each edge length of the original
rectangle by one-half time, and thus the volume of the resulting rectangle is 2™ * times the
original one; here 1/2 is called the contraction ratio. Is it possible to contract the domain
still faster? i.e, a small number ¢ less than 1/2 is used instead of 1/2 in the contraction.
The answer is confirmative in some cases. Now we shall use contraction ratios 1/2, 1/4,
1/8, 1/16 in our example for comparisons, and we see that the amount of calculations can
be reduced at least one-half time to obtain a result with still higher precision if a number
€ < 1/4 is used instead of 1/2 in the contraction. The results are given in Table 3, where
T denotes also the number of contractions. In general, n; cannot be chosen too small if the

contraction ratio £ is small.

Table 3. Comparison of the results for different
contraction ratios

contractionratio ny ny T  L{z)
1/2 233 144 18 2.98E-7
1/2 233 144 9 1.98E-4
1/4 233 144 9 9.54E-7
1/8 233 144 9 9.54E-7
1/16 233 144 9 5.96B-8
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