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Abstract

An unconditionally stable leap-frog finite difference scheme for a class of nonlin-
ear dispersive equations is presented and analyzed. The solvability of the difference
equation which is a tridiagonal circular linear system is discussed. Moreover, the con-
vergence and stability of the difference scheme are also investigated by a standard
argument so that more difficult priori estimations are avoided. Finally, numerical ex-

amples are given.
»
£1. Introduction

We zhall consider a leap-frog finite difference approximation of the nonlinear dispersive
equation given by

ue + (a{z,t, %)) + b(z,t,4) — ezt =0, (z,t) €E R X I, (1.1a)
u(z,0) = ug(z), =z € R, (1.1b)
u(z + 1,t) = u{z,t}), (z,t)€RXI, (1.1c)

where I = [0, T|(T > 0), and R is the real line. The coefficients a and 4 in (1.1a) will be C*
functions defined on R x I x R, 1-periodic with respect to their first argument. %o in (1.1b)
is also g given l-periodic function.

Theoretical results about the existence, uniqueness and regularity for {1.1) can be found
in {1,2] and the references contained therein. Numerical approximations of (1.1) based on the
finite element methodl!], the finite difference method!?®l and the spectral method!4] have also
been considered. W.H. Ford and T.W. Ting!®! have studied the convergence and stability
of the Crank-Nicolson scheme, but the Crank-Nicolson scheme is a nonlinear system and
is hard to solve. Some physicists and engineers proposed some finite element and finite
difference schemes, but they did not get the proof of convergence and stability (see {5, 6]).

In this paper we devote a leap-frog finite difference scheme which is a tridiagonal circular
linear system and can be easily solved by the Seidel iteration method. Using the standard
argument!!'7), we prove its convergence and stability. Therefore we can avoid quite difficult
priori estimations. | '

Throughout this paper, we assume that (1.1} has a unique smooth solution U defined
0 R % I. The letter C will be used to indicate generic constants, and the usual functional
notation will be employed to specify dependence.

* Received March 14, 1987.
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§2. Some Symbols and Finite Difference Scheme

We introduce a grid Z; =jh=(0<j < J),h= 1/ t" = nk(0 < n < N), where J and
N are positive integers, A and k are space-step length and time-step length respectively.

In the following we often use superscript n to denote the n-th time level. We set the
following difference operators:

(vF)e = (wFrx = wf)/h, (u})2 = (u] — u?_,)/h, (u7); = (441 — ui_1)/(2h),

where u7} is the approximation of U (7h,nk). Similarly, we can define difference operators

(47 )e, (u})g and (u?);.
If V and W are 1-periodic grid functions, we denote by v; and w; their values at z;

respectively. Set

J
(V,\W)=h)> viw;, (V,W),= (VW) + (Vo, W.),

7=1

iz = (v,v), Vi =,V

where V; = (v;;pand W = (w;,) are difference grid functions.
With these notations we can consider the following leap-frog difference scheme of ( 1.1):

wii T (o7 (u7))e + 87 (u]) —ul =0, 1<5<J1<n<N, (2.1a)
ujie + (a5(uf))s + 83(u)) — 0, =0, 1<5< (2.1b)
ul =ugjh), 1<j5<J {2.1¢)
ulier=u;, 1<7<J, 0<n<N, r= 1, 2,00 (2.1d)

where a}(u}) = a(7h, nk, u?) and b3 {u}) = b(7h, nk, u?).

§3. Solvability, Convergence and Stability
of the Difference Solution

First of all, we discuss the solvability of (2.1). Note that (2.1a) and (2.1b) can be
rewritten as

—ui o+ (24 R —ulH =, i<l 0CREN -1, (3.1)

3—1 71
where b7 = hgu;?_l - hz(u;-“l)ﬂ ~ 2kh2[(a?(u;}]i +b67{u?)] (1<n< N-1)and b;? =
K2 ~ W2 (0D).z — EA[(a(u))s + H2(u2)].

The coeflicient matrix of the tridiagonal circular linear system (3.1) is nonsingular be-
cause 1t is strictly row-wise diagonally dominant. So the following result holds:

Theorem 3.1. Difference equation (2.1) s always solvable.
On the convergence and stability of the solution of (2.1), we have
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Theorem 3.2. Assume that solution U(z,t) of equation (1.1) s in C°(I, H2(0,1)). If
’Ermﬁ |U° —u®||; = 0, then there exist positive constants C;(j = 1,2,3), independent of h and

k, such that for h < C| and k < C; the follounng error estimate holds:

sup ||[u” — U"|ls < Ca(h® + k% + ||u® = U°|1), (3.2)

1<n<N

where u™ 13 the solution of (2.1).

Proof. Set ¢® = U™ — u™. The truncation error defined by

Ui+ (af(U))e +03{(UF) - Ul ;=17 1<7<J,1<n<N (3.3)

jz2i 3?

is easily seen to be O(h% + £?).
Subtraction of (2.1a) from (3.3), multiplication by h(&7*! + &} ~'}, and summation with
respect to 7 from 1 to J yield

(EE’ E"+1 +¢n—1) e ([ﬂn(Un] e a"(u“))i, Eﬂ+1 4 1I=fﬂ—l) -+ (bn(Un) e b“[u"’),

g R 0 ) s (s g P ) i g T R, (3.4)
Note that (u},v®) = —(u",v}) and (ul;,v"} = —(uZ,v]). Then by (3.4) and the

definition of (-,-);, we have

(le" ™3 — e~ 1) /(2k) = (aGe™, (" €™ )s) — (Bhe™, e + e H) + (7", ™ H?_l;
3.5

1
where &l = [ da(u™ + ue™)/Budu, for a = a or b.

We first es%irnate (3.5) to a* and b* respectively instead of @ and b where a* and b* are
1-periodic functions in C, (R X I X R) with respect to their first argument; a* and b* extend
respectively a and b from e-neighborhood S{¢) of solution surface § (the definitions of S
and S(e) can be found in [7]). For convenience sake, here we still use a and b to denote a*
and &* respectively. By (3.5) we have

le™ T = e IT < Ch(lle™ 1T + le™IIT + fle™ T + ™), (3.6)

where we have used the fact [[ul]] < 2||u?|].
Summation of {3.6) with respect to n from 1 to m(m < N} yields

le™ 208 + ™l < e’ IT + le']li + TC max |Ir*]* + kC D Ule™lIF + le”*13). (3.7)
- n=1
Application of Gronwall’s inequality for (3.7) implies
le® s < C(le”||x + [fe’ lx + A% + &%), (3.8)

where C is a constant dependent on ¢,a,6, T and U(z, t).
Similarly to the above proof, by (2.1b) we have

le* 12 < Nle® 1 + &C il + [[e°l])- (3.9)
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Because 77 = O(hZ + k), we have ||r°|) < C(h2 +k). By (3.8), (3.9) and the fact that k < T,

we have

i€ l1 < C(lle®]lx + A% + &), {3.10)

where C depends on ¢, T, a, b and Ulz,t).

Thus we complete the proof of the theorem in the case that a* and d* & Cy(Rx Ix R).

Finally, similarly to the standard argument in [1, 7], we can remove the hypothesis that
the coefficients and their first derivatives are bounded. This completes the proof of Theorem
3.2.

By Theorem 3.2 and the Sobolev inequality U™ — u™le < CIU™ — u®||;, we can get
the uniform norm convergence of the difference sohation

Corollary 3.1. Under the assumptions of Theorem 3.2, we have

]]U“—u“”meLm EC{hz—l-kE—!-”Uu-—uD”l), | (3.11)
where
U™ ~ ulLeoxre = sup U~ u?l.

1SnEN, 1< T

Similarly to the proof of Theorem 3.2, we have

Theorem 8.8. The difference solution of (1.1) 1s uncondstionally stable in the norm of
HI(U 1). # |
P 2

§4. Numerical Results

We consider the dispersive equations (1.1) with a(z,t,u) = e*u® and b(z,t,u) = (1+
47? ~ 3cos(2nz)u/(27))u. It is not difficult to check that u = e"tsin(2nz) is an exact
solution of {1.1).

We compare the finite difference solution of (1.1) among the leap-frog scheme (L-F)
and the Euler scheme and the Crank-Nicolson scheme (C-N). The calculations of the three
schemes are performed by using Turbo Pascal Version 5.0 on IBM PC XT/286 computer.
We use the Seidel iterative method to calculate the first two difference schemes and the
iterative method to calculate the C-N scheme. The stopping criterion is

[u 4D — )| < eps, ()

where ul!) is the I-th iterative approximation and epx=10"3,

Errors, time-step and space-step lengths and computer times are listed in the following
table, where the error is with respect to L2-norm. When k = £ 0.1, the first two numbers
of iteration are at most 43 and computer times are almost the same, but the C-N scheme
needs more computer time than first two schemes. When h = k = 0.01, the number of
iterations of the Euler scheme is at most 64, the leap-frog is at most 69 and the C-N is at
least 209. So the C-N scheme takes more operating time. But its accuracy is the same as
the L-F scheme.

Remark 1. Our leap-frog difference scheme (2.1) is squarely convergent just like the
Crank-Nicolson scheme. Moreover, it is a tridiagonal circular linear system and can be
solved by the Seidel iterative method more easily than the Crank-Nicolson seheme which is

a nonlinear algebraic system,
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Remark 2. The leap-frog difference scheme can be also used to calculate the solution
of the initial-valus problem of {1.1) (cf. [5, 6]). Moreover, theoretical results in the above
section are also available for the initial-value problem. By the way, we point out that the
Causs ehmination method to solve (3.1) is not stable because A* << 1. When A = k = 0.1,
e(0, 8) = 128065109.8 When k = h = 0,001, €{(0.5) = 93823694976.

Acknowledgement. The author would like to thank Professor Zhou Yu-lin and Professor
Guo Bo-ling for their useful suggestions.

tn Ah=0.1 k=0.1 b h =0.01, k= 0.01
L-F Euler C-N L-F Ealer C-N
0.10 | 0.0013 | 0.0080 | 0.0016 | 0.10 | 0.000014 | 0.01066 | 0.000016
0.20 | 0.0021 | 0.0150 | 0.0024 | 0.20 | 0.000025 | 0.02031 | 0.000030
0.30 | 0.0028 | 0.0211 | 0.0031 | 0.30 | 0.000035 | 0.02903 | 0.000046
0.40 | 0.0035 | 0.0266 | 0.0038 | 0.40 | 0.000043 | 0.03692 | 0.000059
0.50 | 0.0040 | 0.0313 | 0.0042 | 0.50 | 0.000051 | 0.04406 | 0.000082
0.60 | 0.0045 | 0.0354 | 0.0046 | 0.60 | 0.000058 | 0.05050 [ 0.000096
0.70 | 0.0049 | 0.0389 | 0.0052 | 0.70 | 0.000084 | 0.05634 | 0.000102
0.80 | 0.0052 | 0.0420 | 0.0057 | 0.80 | 0.000069 | 0.06161 | 0.000107
0.90 | 0.0055 | 0.0446 | 0.0059 | 0.90 | 0.000075 | 0.06638 | 0.000119
1.00 | 0,007 | 0.0468 | 0.0065 | 1.00 | 0.000079 | 0.07069 | 0.000126
time | 2.511 | 2.511 | 5.311 | time | 6°1211 | 620511 | 1454711
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