Journal of Computational Mathematics, Vol.9, No.1, 1991, 33—40.

A PARALLEL ALGORITHM FOR TOEPLITZ
TRIANGULAR MATRICES*Y

Chen Ming-kui Lu Hao
(Depariment of Mathematics, Xi'an Jiactong University, Xi'an, China)

Abstract

A new parallel algorithm for inverting Toeplitz triangular matrices as well as solving
Toeplitz triangular linear systems is presented in this paper. The algorithm possesses
very good parallelism, which can easily be adjusted to match the natural hardware par-
allelism of the computer systems, that was assumed to be much smaller than the order
n of the matrices to be considered since thia is the usual case in practical applications.

The parallel time complexity of the algorithm is O([n/p]log n + log? p), where p is the
hardware parallelism.
»

L]

§1. Introduction

Parallelly inverting triangular matrices and solving triangular linear systems is an in-
teresting problem both in theory and practice. The best parallel algorithm known so far
requires O(log” n) time steps and O(n3) processors, where n is the order of the matrices!5:8].
The order of the time complexity can not be reduced further even for more strongly struc-
tured triangular matrices, but the number of processors needed can be reduced. Although
the approximate algorithm for parallelly solving Toeplitz triangular systems presented in [1]
reduces the time complexity, it requires precomputations, and does not seem practical since
some restriction must be imposed on the parameter € to ensure the nonsingularity of matrix

ALII. Chen and Lul?l constructed an algorithm for inverting Toeplitz triangular matrices
and solving Toeplitz triangular linear systems, by which the number of processors needed
to perform the algorithm can be reduced to n.

In practical applications, the number of processors of a computer system, denoted by p, iz
limited and frequently much smaller than n, the order of the matrices. We will consider the
problem on parallelly inverting Toeplitz triangular matrices as well as solving the associated
linear systems in this case. The parallel time complexity of the algorithm presented here iz
O{[n/p|log n + log® p), where log n means log, n and [2] 8 the integer ceiling function of x.

We will first give a method to carry out multiplication of a vector by a circulant or a
block circulant matrix in §2, and then develop an algorithm for computing the product of
the Toeplits or the block Toeplitz matrix and vector in §3. In §4, the method for invert-
ing Toeplitz triangular matrices as well as solving the associated Toeplitz systems will be

constructed.
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§2. Circulant Matrices and Block Circulant Matrices

Consider the following special class of Toeplitz matrices

Co Ci €y ' Cg-1
Cg-—-1 Co €1 ' £LCg-—-2
i = i b g Cg=—
C=1] -2 ¢&-1 <o =3 1 (2.1)
C1 Cn €y - ¢o

which are called circulant matrices. This kind of matrices are completely defined by their
first row, and thus frequently denoted by

C = circ (Cg, C1,€2, """, Gq_l).

Circulant matrices can be diagonalized by the Fourier matrix F' = (f;;)qx¢ With elements
fi; = g~ /24— -1 (t,7 = 1,2,-.,q), where w is the primitive nth root of unity!4l
1.e., it holds for any circulant matrices that

C = FA DF, (2.2)

where

D= diﬂ.g (Aﬂ,ll,“'.*q_l), (2.3)
and the eigenvalues Ar’s of C are defined by

qg—1

Ak=ZE;wH, k=0,1,“',q-1. (2.4)
=0

It is easy to see that premultiplying a vector by matrices F and F¥ may be accomplished
by Fast Fourier Transform (FFT} and its inverse, respectively, and the eigenvalues A;’s can
be computed via FFT4. Thus, multiplying any g-vector by a circulant can be accomplished

in (3log g + 1) time steps with ¢ processorsiZ],
A block matrix of the form

Cb = CiI'C (Tﬂ, Th Tg, s 4 ,Tq_]_),

where each of the blocks 7T, is a pth order matrix, is called a block circulant matrix. It is

easily verified that
g—1

C,=) P*QT;, (2.5)

k=0

where the notation ® denotes the Kronecker product of matrices, and
P = circ (0,1,0,---,0)
is a circulant of order g, and that (see [4])

P=FEDPF, (2.6)
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where

D= diag {1,w,w?, .. ,w"_l].
We will now derive an algorithm for multip

lying a (pg)-vector d by the block circulant
matrix Cp. Partitioning vector d as

d®) 7
d(1)
d = | (2.7)
d(ﬂ—"l} |
where each of d\9)’s is a vector of length p, we can express the product of Cp, and d as
g—1 g—-1
Cod={3" ProT ) (Fo L) (Fol,)d= { S (Pron)(F# ® 1) (Fo1,)d,
k=0 k=0
(2.8)
where I, is the pth order identity matrix.
If the {pq)-vector
y=(F®IL)d (2.9)
& »
1s similarly ‘partitioned into g subvectors y(“],ym, -, y1971) a5 in (2.7), then the y{¥)%5 are
given by
p—1
v =gV 0, jo0,1, g1 (2.10)
=0
From (2.8) it can be derived that
q—1 qg—1
D (PFRT)(FE 0 1,) = (F¥ & L)Y (D*eT). (2.11)
k=0 k=0

Substituting it into (2.8) we have

u=0Opd = (FH & Ip]z,

(2.12)
where
z= Xy, (2.13)
and 1
X=) (D*®T:) = diag (Xo, X, -- +y Xg-1) (2.14)
k=0
s a (pg)th order block diagonal matrix with the matrices
g—1
Xi=Zw“"Tk, 1=0,1,.--,g—1 (2.15)
k=0
as its diagonal blocks. |
If the vector z is partitioned into subvectors z(-”(j =0,1,--+,¢ — 1)} in the same way as

in (2.7), then the 2(/)’s are defined by



36 CHEN MING-KUI AND LU HAO

2D =X, 3=, 90, \210)

Jimilarly, equation (2.12) can be written as

p-1 |
uld) =g'”22wﬂz“), 1=0,1 50— 1. (2.17)
[=0
Thus, multiplication of a block circulant matrix and a vector can be computed via (2.10),
(2.15), (2.16), and (2.17), each of which, except (2.16), that expresses the product of a

matrix and a vector, may simultaneously be accomplished by using FFT’s or their inverses,
and, therefore, is suitable to compute in parallel.

§3. Toeplitz and Block Toeplitz Matrices

In this section, we will use the method developed in the previous section to construct
a parallel algorithm to compute the product of a Toeplitz or block Toeplitz matrix and a

vector.
Let T' = (ti;) be a Toeplitz matrix of order g defined by t;; = t;_;, ie.,

[ o 1 o tg—1 ]
, :
; T = tfl (3.1)
t)
| b1 -1t
If we let )
0 t;_4 t_y |
i ba 5
F=1" (3-2)
. " " t1—q
t ik ey o |
be a Toeplitz matrix of order g, then
il .
= [ f' T J = CIrc (tn,th s *,fq_10, tl...q, A ',t_l) (33)

is a circulant of order 2gq. The product

BEH|

which shows that the first ¢ components of the product constitute the Toeplitz matrix-vector
product T, can be computed in 6log g + 8 time steps with g processors, and so can the

product T'b.
The method developed above can easily be generalized to the block Toeplitz matrix. Let

' B - By
= | le & % : (3.1')

W tw

5 Tl_q T._l Tg
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be a block Toeplitz matrix with blocks T; of order p. Similarly, let

[ % Ry — Tg
f= | for (3.2')
. e Tl—q
B

be a block Toeplitz matrix. Then

T, T
=1 - 3.3
y [ T T ] i
18 a block circulant matrix of order 2pg, and the product of T} a.nd a vector d is the (pg)-
vector consisting of the first pg components of C, rg ], and therefore, can be computed by

using the method described in Section 2.

It 18 more suitable for our purpose to assume that the blocks T,’s are Toeplitz matrices. It
follows that the pth order matrix X;’s defined by equation (2.15) are Toeplitz matrices, and
the product defined in (2.16) can be carried out in 2¢(6log p+ 8) steps with parallelism p. As
we pointed out above, the computations in (2.10), (2.15), and {2.17) can be accomplished by
performing FFT of length g in 2¢(log ¢+ 1), 4g(log g+ 1) and 2¢(log ¢+ 1) steps, respectively.
The procedure to compute the block Toeplitz matrix vector product is summarized in Table
L

Table 1. Multiplication of a vector by a
block Toeplitz matrix

stage formula time steps parallelism
1 (2.10)  2¢(log ¢ + 1) P
2 (2.15) 4q(logg+1)
3 (2.16) 2¢(6logp + 8)
4 (2.17)  2¢{loggq + 1)

= S~ Bl

The overall time steps needed are 8g(log g + 3) + 12qlog p, where n = pg is the order of
the block Toeplitz matrix to be used to multiply a vector.

§4. Toeplitz Triangular Matrices

We now consider the problem on parallelly inverting Toeplitz triangular matrices and
solving linear systems having a Toeplitz triangular coefficient matrix. We have constructed
an algorithm in (2] to obtain the inversion of a Toeplitz triangular matrix of order n in

(3 log® n + 5 log n) steps on a computer system having n processors. The parallel algorithm
for the same problem on-a computer with less processors will be developed in this section.
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Assume for convenience that there are p processors avallable in the computer system,
and that n = pq,q = 2" for some positive integer r without loss of generality. Let

EEE 2™

R
|. to
be a Toeplitz upper triangular matrix. It is well known!”! that the inverse of I 13 a Toeplitz

upper triangular matrix, and completely defined by its last column, which is the solution of
the following linear system

Uu=ce, (4.1)

where ¢, i3 the last column of the nth order identity matrix.
To construct the method for solving (4.1), we partition matrix U into pth order blocks
as follows

s B s Uf_._ll
[ = R (4.2)
g T
Ug 1

where Up is a Toeplitz upper triangular matrix and Ui{7 = 1,2, --,q — 1) are Toeplitz
matrices. To conform with the block structure of the matrix U, we partition the unknown
vector u Into g p-vectors as

Ug—-1
Ug—2
u = . : (4.3)

Up

Now let u*) denote the p2*-subvector of u consisting of the last p2* components of u, i.e.

‘- Uok_g
ul®) — : (4.4)
U]
T
which satisfies
v®e® = (0,0,--.,0,1)T, k=12 .-,r (4.5)
where
‘- Uﬂ U]_ Lt Uﬂ'k—l 1

Ulk)

o
L v |
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is the submatrix of order p2* at the lower right corner of U. By partitioning U(*) as

&) k) ]
(k) 11 tz] J | (4.6)
i Uy,
where
[ Ug U]_ ngul_l
k
U1{1] = (4.7)
Uy
- Vo
1s a Toeplitz upper triangular matrix, and
I- UEE—I Uﬂk—l G 1 i
Uy = . P (4.8
U]_ Uzh J
and noting tHat [Ul(f})_l is completely defined by u'*¥), the system
k k)y—1g5r(k) (k
up = (U)W u, (4.9)
ugk) = gl (4.10)
where e
sz__l
! : . (4.11)
L tUok—1
(k) ]
u
ulk) = 1 (4.12)
(k) |’
= u2 o

which is equivalent to (4.5), can be recursively solved if the inverse Ui has been computed,

and finally, we obtain the desired vector u, which
as follows.

is given by u!"), The algorithm proceeds

Algorithm PITM (Parallel Inversion of Toeplitz Triangular Mati'ices].
1. Compute the inverse of U; to get ug (see [2] Algorithm II) and compute

e
am—wam

Uq

and then form
U

Up

G [

2. For k=12,3,---,r do
1) Let u{;) = =1,
2) Calculate ﬁ[lk) = —Ul[-;] u&k}.

— 1
_"UD Uluﬂs

|
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3) Use ul*~1) to form (Ul{‘f})“'l and then multiply ﬁgk} by it to obtain ugk}.
4) Form ul*) via (4.12).

3. Let u = u(") and form U~!.

endalgorithm

It takes r stages to complete the algorithm, and at each stage it is necessary to perform
the multiplication of a (p2*~!)th order Toeplitz matrix and a vector twice. In addition, at
the first stage the pth order Toeplitz upper triangular matrix Uy must be inverted. If all
of these computations are performed by uging the Toeplitz matrix-vector product algorithm
described in Section 3, then the total time steps would be

§ = (3log°p + 5logp) + (6logp +2) + 3 [8(k — 1)2*~*
k=2

+12 - 25" 1logp + 24(k — 1}] = 4q(log p + log q) + 3log? p + 12 log? g
+8glogp — 129 — 13logp — 121log g -+ 18.

Thus, algorithm PITM is one with time complexity O(glogn + log? p) and parallelism p.
We wish to point out that the parallelism can easily be adjusted to match the hardware
parallelism of the computer system to be used to perform the algorithm. Therefore, it is
expected to gain high performance when the algorithm is used.

The algorithm m4y easily be used to solve Toeplitz triangular systems of the form

Uzs—f, (4.13)

the solution to which is given by
g=slF *§ (4.14)

So, we use Algorithm PITM to compute U/~ ! and then employ the algorithm in Table 1 to
perform the multiplication in (4.14). The time complexity is the same as Algorithm PITM’s.
If p << n, then the complexity would become O(glogn). When p = 1, the sequential case,
we have an O(nlogn) algorithm.
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