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In many problems involving practical applications, e.g., in exploitation of oil fields and gas
fields, nuclear engineering, large-scale structural engineering and forecasting of chimate and
tides, it is frequently necessary to solve initial boundary value problems of high dimensional
linear or nonlinear p#rtial differential equations defined in large regions. Solving these
problems requires a large amount of computation and sometimes, even rapid responses.
The idea of parallel computer system encourages numerical analysts to develop more efficient
methods. It seems that the study of parallel algorithms will soon become a new target in
the development of numerical analysis!?l.

Based on the Schwarz algorithm, L.S. Kang!!l introduced an asynchronous parallel algo-
rithm for solving partial differential equations of the elliptic type. In this paper, we introduce
two synchronous parallel algorithms for the solution of partial differential equations. First,
the region where the equations are defined is divided into some subregions which may be
overlapping, and then the equations are solved in each subregion independently. Finally,
a simple arithmetic mean is assigned to each point within the overlapping parts of the
subregions.

The first algorithm introduced in this paper 1s based on the groupwise projection iterative
method. We need only to solve the least-squares problem m each subregion. It can be proved
that the parallel solution converges to the solution of the discrete equations for the entire
region. Moreover, this result 1s independent of the type of differential equations. The proof
of the second algorithm is based on the discrete maximum principle.

In §1 and §2 We give the descriptions of the two parallel algorithms respectively. §3
introduces the gronpwise projection iterative method, and the proofs of the convergence of
the two algorithms are given in §4 and §5. Tn §6 a numerical experiment is presented.

§1. The Parallel Algorithm 1

The boundary value problem of a partial differential equation, in general, can be written
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Lu = {, in {1, (1)
|

lu=g, on J{1,

where {] 18 a bounded region with boundary 311, L is a differential operator, and [ is a
 boundary operator. We may apply. either the finite difference or the finite element method
to (1) and obtain an algebraic system. For instance, consider the Dirichlet problem of a
second order elliptic equation with homogeneous boundary value. We may start from its

weak form
a(u,v) = (f,v) for ve E'(N) (2)

and then discretize by the finite element method.
Take a regular triangulation of the region {1 to get {1;,. At each P; € f1,, we define a
linear shape function p;. Let

S" = Span {g,, for P; € N} (3)
where

wi( P} = by, for p; € 8.
Hence the finite,element approximation {u"} satisfies

| alubopg) =), el _ (4)

where [ is the set of indices of all grid points in {1,,. N{P;) = supp (p;) is called the discrete
neighbourhood of the point P;. N{P;} contains only P; and a few neighbouring points. We
denote N(F;) by N,. Obviously, (4) can be written as

a(u, ;)= D Cpu"(RP)=f; forjel (5)
P;eN;

In other cases, such as shape functions of a higher degree, or when a finite difference
method or a collocation method is used, the corresponding discrete system can be obtained
in a similar way. At each grid point P; € {};, establish an equation:

LhM(P) =Y Cuu(P)=f; jel (6)
i€l
We define the discrete neighbourhood as
N; = N(P) = {F; Cji # 0}

and (6) now becomes

LM (P)= Y Cuut(P)=f;, jel (7)
PieEN; |

In order to solve (7) by a parallel algorithm, we divide {1, into m subregions 2}, -, 17,

m
{in = Z £2},. Some of the subregions can be overlapping. To reduce the waiting time among

=1
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different computers used in one parallel system, (1} ,s =1, --, m, should contain nearly the
game number of grid points.
Define the discrete neighbourhood of (2} as follows:

N(QL) =UN(P), PE€ ﬂ};.
For 7 € I, P; is called a k-multiple point, denoted by P; € my, if there exist at most k
k
subregions QL‘, ' o ,HL" such that P; € ﬂ N(Q}).

a=1

The procedure of the parallel algorithm 1 is as follows: .

1° Choose a relaxation factor w € (0,2), a tolerance € > 0 and an initial ug
{uo{P;),7 € I}. Set 0 = n.

2° Compute parallelly for each 02},,1 = 1, -, m, the coefficient matrix Cj, of the discrete
system (for the nonlinear case, a linearization process is needed) and the residuals

fi=fi- > Cuu,(P), j€L= index set of points in (0

P,EN,
F‘:I%?lf;l, 1-_1,, ,m
»
3 F =  max F; < e, stop the process and output u,; otherwise proceed to the next
<t<m
step.
4° Set equations for the correction Au' iseach },s=1,---,m,
(A;) Z C,—,ﬁuf‘(P,) = _j-, 7 € 1.
P.EN_,‘
5° Find the least-squares solutions of (4;),# = [, -+, m, parallelly in a parallel computer
system, l.e., | |
Au, =Ci f*

where C;' is the Moore-Penrose generalized inverse matrix of the coefficient matrix of (A4;).

k
6° If P; € m, then there exist 11, -- -, tx such that P; € ﬂ N (ﬂ;'] and define

ga=]

k
Au,(P) = —::-Z: Au't(P;), forjel. (8)

a=1
7° Set u, + wAu, = u,, n+1=>n and go to 2°.

Remark. 1. The tolerance ¢ is recommended to be of order O(h*). From the posterior
error estimate theorem!®!, we have |

|u® — unllec < CFK(A)

where C is a constant, K(A) is the condition number of the discréte gystem in {1, and F is
the maximum of residuals. In general, u” is of order O(h?), and K(A) = O(h™%). In order
to guarantee that u, has the same order of accuracy as u”, F should be of order O(h*).
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2. In linear cases, the coefficient matrices of the systems in each subregion remain
unchanged over the entire iterative process. In nonlinear cases, at each iterative step, lin-
earization should be done first and the resulting coefficient matrices should be modified from
step to step.

3. The relaxation factor w € (0, 2) is satisfactory for convergence. We may choose better
values of w to accelerate the convergence.

§2.The Parallel Algorithm 2

For convenience, we consider the following Dirichlet problem

b= 1. n {1,
u=g, on df}.

The discrete system in the entire region is

{ Lhuh = fh, l.Il ﬂh,

(10)
up =g, on 9{1;.

&

' T
Divide 15, into m subregions: 02, = | ] Q},; 0}, can be overlapping. a9}, = N(}) \ 0} is
=1 |
the discrete boundary of {1 .
Let u* be the unique solution of (10). (10) is equivalent to the system

{Lhu; =% infl,

u; =u* on 911}, t=1---,m.

(11)

Since u* is unknown, (11) can only be solved by iterative methods. The procedure is as
follows:

1° Choose a tolerance £ > 0 and an initial approximation ug = {ug(FP;);7 € I}. Set
0= n.

2° Compute the residuals |
fi = MP) - LPua(Py), seI

and
F = max|;].

3° If F < ¢, stop the process and output u,; otherwise proceed to the next step.

4° Solve

Lhui | = fh in €25
{ 1 h (12)

By on 81},

£
un-.--l-l

for s = 1,---, m parallelly. |
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5° If P; € my, then there exist ¢y, - -, 1, such that

k
P, e [ N(9).

=1

Set

6° Set n+ 1 => n and go to 2°.

In §5 we will prove that u, 4, converges to u* provided (12) satisfies the discrete maxi-
mum principle and 801} NAfl, #0,s=1,.--, m.

§3. The Groupwise Projection Iterative Method
for Linear Systems

The parallel algorithm 1 introduced in §1 is based on the groupwise projection iterative
method for linear systems. The method was first established by S. Kaegmarz/(®l: its further
development can be found in [4]-[6]. In those papers the discussion was confined to the case
of one equation in"one group. To deal with our problem: we extend the method to the case
of many equations contained in one group.

Consider the linear system

epzr+---+agrnn="b;, 3=1,---L (13)
Rewrite (13) in the form of inner product,
(e,2) =b;, 5=1,-,1 (14)
and assume it has a unique solution z*.

First the set of indices I = {1,2,--,1} is divided into m subsets: [ = U I;, where
1=1

different subsets can be overlapping. Then the system (14) is divided into m groups:
(B:) | (3;,2) =b;, 7€ (15)

wheret =1, ---,m.

For each ¢, (B;) has at least a solution z* which, in general, is not unique. It iz well
known that the least squares solution of (B;)} exists and is unique. This solution is the
projection of z* in the subspace H; = span {a;;7 € I;}. If we denote the projection onto
H; by E;, then E;z* is the least squares solution of (B;).

First, we describe the groupwise projection iterative method.

Choose a relaxation factor w(0 < w < 2} and an initial approximation z° = {z"(P;), 7 €

I}; then the process of getting %! from z* can proceed as follows:
i e ol k “
::“_'_1}—:;[.]—}—503:(”, s=1,---,2m,

I?.] =1{I'Fa)(PJ')!j € I} and I’ft} = g¥,
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where the correction ﬁ:z:f” 18 obtained from the group (B;), i.e., ﬁa:f’) 18 the least squares
solution of the system
({1_1', ﬁﬂ:?‘]) = by ~ ({13', :Et,]), 1€k

where t is chosen to be the minimum of s and 2m + 1 — 5. Obviously, ﬂ.:ct] (P;) is defined

only for 7 € I;. We extend it to all § € I by simply setting ﬁzf‘,] (P;)=0for ye I\ I.
Finally, we set

E+1 _ _k
i T Ia[2mr1+ 1)
Now we are going to prove the convergence. In fact, the exact correction value of It}

is z* — :r:t] and the least squares solution ﬁmfa} 18 the projection z* — If‘} on the subspace

K = mf!} + w.&zﬁ), we have

H;,, i-E-:'ﬁﬁ?,} = E;(z* - :r:‘”). Hence, from Tiypr) =

z" —~ Iﬁ-}-l] = (I - wE;)(z* - I?.))-
Let @; = I — wkE;. Then

2" — 2" = Q1 Q@ Quz” — 2¥) = (QQ*)FH (z* — 2°) (16)

where @ = @, - Q. It is known, by direct computation, that ||Q;[| < 1, =1, -, m, and
hence ||Q|| < 1. The equality holds only if there exists a vector y, ||y]| = 1, such that Qy = y.
This means tlfat y is orthogonal to all a;,7 € I, and hence y = 0. The contradiction shows
Q]| =r <1 and

l=* — =*|| < |QIP*{iz* — z°(| = r**||z* — 2°.

It follows that z*¥ — z* as k — co.

When the groupwise projection iterative method is applied to nonlinear systems, the
convergence also follows.

Consider a nonlinear system

fi(@,-m)=0,7=1,--,1, (17)
or its vector form
F(z) = 0. (18)
Divide (17) into m groups |
(C) filzy, -, Tn) =0, j€I
where : = 1,---,m. The method can be described as follows:

Choose a relaxation factor w(0 < w < 2) and an initial approximation z°. Then for
$s=0,1,2,---,2m, let successively

-frra+1] = m?a) + "-'-’It:] (19)
where the correction ﬂ.zfﬂ 18 the least squares solution of the system
(D) (grad f;(z*), Azf,)) = - f;(a*), j€l (20)

where 1 = min(s,2m + 1 — s) and Ifﬂ] = z*. Set

_5k+1 = If2m+1]' (21)
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We shall prove the convergence of (19)-(21). We have, from the previous derivation,
that -

4 = 2% — (I - S SHIF (%) F (=) (22)

where Sy = Q1(z%) - Qm(z*) and Q;(z*) = I — wEi(z*),i = 1,---,m and E;(z*) is the
projection of z* into the subspace Span (gradf;(z*); 7 € L). From [|SiS; | < 1, we know
(I — 5.87) is invertible. Let G = I — (I —$5*) = §5*, where § = @:(z") - - Qrn(z*). Then
the groupwise projection iterative method is convergent since the Newton iterative method
is convergent under the condition p{55*) < 1.

§4. The Proof of Algorithm 1

In the following, we only prove the linear case. The nonlinear case can be proved in a
similar way.

Let

Y Civa=f, €I, u,=u"(P) (23)
SEN;

(s € N; means P, € ;) be the discrete system defined in the entire region {3 and

(E;) Y Ciui=f; je€k, i=1-,m (24)
sEN;

be the discrete system defined in the ith subregion 0.

When we solve {E;) by using the parallel algorithm 1, we take into account that u'! and
w'2({; # 13) are independent. From this point of view, we have assumed that (E; ) and
(E;,) have no unknowns in common.

As a compensation to this assumption, we add the following extra restrictions to (E;),

(F,) A  for P,eny, k=2 | (25)

Obviously, the equations (E;),f = 1, -- -, m, togeter with the equations (F,), Py € Mg, k 2 2,
are equivalent to equations (23).

We name (E;),s = 1, -+, m, as group 1 and (F,), P, € 7, &k 2 2, as group 2. Since (E;,)
and (E;,) (i, # t2) have no unknowns in common, the least squares solution of group 1 is
simply the union of the least squares solutions of (E;), i =1, -,m, and the latter can be
found parallelly, '

Let up = ug{P;),7 € I, be an initial approximation to u* = {u"{P;),7 € I}, which is
the solution of (23). Let Au!, = {Aul(P;),7 € L}, = 1,---, m, be the correction of u,
obtained from the least squares solution of group 1 and let éu},(P,), P. € mg, k 2 2, be the
correction of ut + Au! obtained from the least squares solution of group 2. Noting that
when s; # 82, (F,,) and (F,,) have no unknowns in common, we may find the least squares
solutions of (F,), P, € wx, k > 2, parallelly. If F, € 7,k > 2, then there exist {1}, --- (1>
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k .
such that P, € [ ] N(0}/). Substituting u’, + Au’, + Su’, into (F,), we have
1=1

6“:;1 (Pa) = 5“2(}’!] e ‘(3“2 (Pa) i 5“:::’ (Pu)]:
(o) /- U o ———
Suil (P,) ~ 6uit (P,) = —(Aui(P,) — Auit(P,)).

The general solution of (F,) is C — Au/(P,),7 = 1,---,k, where C is an arbitrary
constant. Finding the least squares solution of (F£,) is equivalent to determining C which

k
minimizes E[C — Au}i(P,))?. Obviously,

=1

C = 5 (zk: ﬁuii(P,])
k o »
and

it (P) = 1(3 aut () - Avi(ra).

=1

Finally, we have

k
Unt1(Po) = un(P,) + %(Zﬂuf{(}’.]), P,eme, k2>1.
i=1

Let E}, E; be the projections defined by group 1 and group 2 respectively. Let Q; =
I -wkE;,1=1,2 and @ = Q,Q;. According to the proof given in §3, we conclude that

" — unfl = [(QQ*)"* (¢* —~ wo)| < r*"fju* ~ wo|
where

r= 1@l = It - wE I - wEp)| < 1
When w = 1,Q = E{* E5 and

r=||EfEy| = sup ||E{Ejull= sup |Efull= sup sup |(u, v)|
' ”u”=1 uEH#- HEHiL I'E.lff'
ell=1 fell=1 of=1

= cns(Hﬁ%) = cos(H7, Ha)

where H, and H; are subspaces formed by group 1 and group 2 respectively, and cos[H:?fg)
1s the cosine of the angle between subspaces H, and Hs.
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§5. The Proof of Algorithm 2

We know, from (11) and (12), that u},,, — u* satisfies

LA{ul ., —u*) =0, in (1},
ul g, — U=y, U, on 3, \ 38, | (27)
uf1+1 —iggT =ik . on BQ}I N afly,

where u,, = {u},,,(P); P € N(})}, s, Naql, # 0.
Let | :
Un+l = (ﬂ:1+1(P);P = N(n;})’t =1, ---,m},
where @', (P) is defined as follows: if P € m, there exist 11, --,%x such that P €

k k
t, —3 1 i,
n N(¥/) and , ,,(P) = ;o § :“rf+1~
g=1 =31

We now prove
u, —u — 0, as n — 0.

First, we prove that the sequence [|[u® — u,|lo in monotonically decreasing, i.e., if ||u* —
nljeo # 0, then [lu” — Upt1lleo < [[u* — tinco. In fact, if |u* — up4+1| at P € my attains its
maximum value, shen there exists {2}, such that P € {1} . Applying the maximum principle to
(27), it follows that u* —up 4, is constant for all P € N(Q2}). By the condition 8Q5,Ndf, # O

and u* — u,,+1 = 0 on 305 N30y, we deduce that |[u™ — unt1lleo = [U*(P) —tns1{P)} = 0.

If lu* —up41|at Pe mi{k > 2) attains the maximum, then

a1 (P) =7 D uitsi(P)
and
ic
W (P) — ara (P € & 301wt (P) — ity (P)] € pax ' (P) =il (P). (29

=1
The equality |u*(P) — unt+1(P)| = ax |u* (P) — u¥, ; (P} holds only if [u*(P) — u'i (P,
j =1,--+,k, are equal. In this case, there exists a subregion ﬁ‘;{ such that P € ﬂ:;f and
|u* = ps1lleo = O follows according to the previcas discussion.

Now consider the case

4 (P) = i (P)] < g, 0" (P) — e (P (29)
Without loss of generality, we assume that |u*(P) — us. (P),7=1,---,k, attains a maxi-

mum when 7 = 1. Then,
s —Un+1ileo = lu*(P) —tun+1(P)] < ju*(P) — “:;1+1(P)| | )

< max [ut(Q) ~ uhy,(Q) = max |u(Q) - u (Q) < Jlu” ~valle:  (30)
e} : eahi,!
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Let S be an operator such that
Un+i —u = S(u, —u’).

(30) concludes that {u,4; — u*} has a convergent subsequence.
For convenience, we still write the subsequence as u,,; — u* and its limit as v — u*, Le.,

Upp1 — U —v-—-u', °~  asn— co.
Hence, we have
v—u = g(v—u*) (31)
and
o = u¥[|eo = [|S(v — 4")|lce < [Jv— Rl (PP (32)

The inequality in (32) is obtained by applying {30) to (31). It follows, from (32), that
v=u",

We have proved that the sequence {[lun — 4*||oo} has a limit and that there is a subse-
quence of {||u, — u*||oc} which has a limit zero; hence we can reduce that

» lun — u*llec =0 asn — oo,

L

and the convergence of the parallel algorithm 2 is obtained.

Remark. In using the five-point finite difference method to a 2nd-order elliptic equation,
1t 18 well known that the discretized system satisfies the maximum principle. When a
finite element method is employed, then, in order to satisfy the maximum principle, the
triangulation of 1 should satisfy some conditions (see [8] and [9]).

§6. A Numerical Example

1° Equation:
Ay = 0, in {2,

u = — arctan —"-;-, in ofl
2x T

where {1 = {—-1 < 2,y < 1}/{0 < z < 1,y = 0} (see Fig. 1).

2° Exact solution: ,

_ Y
U = — arctan —.
2r T

3° Scheme used:

ordinary 5-point scheme, i.e.

Uipr,; T Ui—g5 F U1 + U5y - dug

Au = g

4° Step size:
' h=02
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5° Method description:
1

First, {1 is covered by a uniform mesh of spacing h = 1 and at each interior grid point

the equation is discretized by the five-point finite difference method. At the point (0,0}, u
is assigned three different values 0.5,0.75 and 0.25 where (0,0) is on the right, the lower and

=1
1

the upper positions respectively of the five-point stencil Apu = 2 -1 4 =1 |wu

This is acceptable since the theoretical solution itself is discontinuous at the point (0,0).
Then, the resulting linear system is grouped into m systems with a smaller size, which
corresponds to dividing {1 into m subregions. The system 1s solved by parallel algorithms 1
and 2 respectively, |
The numerical results corresponding to m = 76, 3 and 4 are given in Table 1. The
calculations were carried out on the VAX 750 computer at Hong Kong Polytechnic and the
double precision arithmetic was used.

Table 1

Program Method Number of Size of the

» subregions  largest matrix
Paral 1 finite difference 1 76 x 76
Paral 2 parallel algorithm 1 76 1 %1
Paral 3 parallel algorithm 1 36 x 36
Paral 4 parallel algorithm 2 36 x 36
Paral 5 parallel algonthm 1 20 x 20
Paral 6 parallel algorithm 2 20 x 20
Paral 7 parallel algorithm 1 24 x 24
Paral 8 parallel algorithm 2 24 x 24
Continued
Program Number of Computer  Accuracy

iterations CUP (sec.) max|u— uy]

Paral 1 1 11.92 0.1781 x 10~
Paral 2 304 40.20 0.1953 x 107 %
Paral 3 68 31.71 0.1793 x 10~ *
Paral 4 11 10.00 ~ 0.1782 x 102
Paral 5 246 52.45 0.1893 x 107°
Paral 6 29 10.68 0.1786 x 10~ °
Paral 7 127 34.39 0.1844 x 10 "¢
Paral 8 19 10.46 0.1783 x 1072
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6° Conclusions: From the results in Table 1 the following general comments can be made:

a) It is found that with a given fixed error tolerance & = 5 x 107%, almost exactly the
same degree of accuracy was obtained for all methods.
b) By comparing the number of iterations, it 1s [
shown that the parallel algorithm 2 gives much better l
convergence rates than the parallel algorithm 1. |
c) It is observed that when the overlappling - E

l

I

parts of subregions enlarge, the number of iterations
needed to obtain the numerical solution to the de-
sired degree of accuracy will decrease. In this case, = 0'u(z,0) = 1{ 1
certainly, the size of coefficient matrices involved be- :
come larger and hence the computer time needed for |
each iteration will increase. Therefore, it is difficult :
to draw a general criterion for how to get the opti- \
mal subdivision of {1 with regard to both computing

time and storage. Fig. 1

Remark. We have proved, without using any preconditional technique, that the con-

1
vergence rate of the parallel algorithm is 0(1/In E) This will be introduced in our next

paper. "
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