Journal of Computational Mathematics, Vol.9, No.4, 1991, 305-313.

SOLVING BOUNDARY VALUE PROBLEMS FOR THE
MATRIX EQUATION X)(¢) — AX(t) = F(¢) ~
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Abstract

In this paper we present a method for solving the matrix differential equation
X3 (1) — AX(t) = F(t), without increasing the dimension of the preblem. By intro-
ducing the concept of co-square root of a matrix, existence and uniqueness conditions

for solutiong of boundary value problems related to the equation as well as explicit
solutions of these solutions are given, even for the case where the matrix A has no

square roois.

o §1. Introduction

Second order matrix differential equations with constant coefficients appear in the theory
of damped systems and vibrational systems/® 7!, Explicit formulas for solutions of the matrix

differential equation

X3 _AX =0 (1.1)

have been obtained in [1], but such formulas are not helpful for solving Cauchy problems
and boundary value problems related to the non-homogeneous matrix equation

X (¢) — AX(t) = F(¢). (1.2)
In a recent paper [9] we studied the boundary value problem
X@ ) - AX(t) =0, 0<t<a,
E1 X(0) + E;X(N(0) =0, FiX(a) + F, X (a) =0

where E;, F;,7 = 1,2, A and X(t) are n X n complex matrices. Under the invertibihty
hypothesis of matrix A, conditions for the existence of non-trivial solutions of (1.3) and
explicit expressions of these solutions in terms of appropriate square roots of A are given.
In this paper we extend the concept of square root of a square matrix A. Hence we get
an interesting expression for the general solution of equation (1.1) that allows us to obtain a
generalized variation of the parameter method for the matrix equation (1.2). Finally, from
the expression of the general solution of equation (1.2), existence and uniqueness conditions

for solutions of the problem
X)) - AX(t) = F(t), 0<t<a,
E: X(0) + E, X0} =0, FyX{a)+ F,X"Y(a)=0

as well as an explicit expression of these solutions are obtained.

e

(1.3)

(1.4)
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The paper is organized as follows. In Section 2 we introduce the concept of co-square root
of a complex matrix A and the concept of a fundamental pair of co-square roots of a matrix.
An easy characterization of this last concept and a method for obtaining fundamental pairs
of co-square roots are presented. Section 3 is concerned with problems (1.2) and (1.4).

§2. Co-Square Roots of Matrices

We begin this section with the concept of co-square root of a matrix A, that is a gen-
eralization of the well-known concept of square root of a matrix. This concept will be used
below to solve problems {1.2) and (1.4), and it is interesting because there are matrices
without square roots!*l.

In the following the set of all n X n complex matrices will be denoted by C,x,. If A
is a matrix in €, «,, we represent by o(A) the set of eigenvalues of A. For a rectangular
complex matrix N we will represent by Nt the Penrose-Moore pseudoinverse of N. An
account of properties and applications of this concept may be found in [10).

Definition 2.1. Let A be a matriz in Cx,. We say that a pasr of matrices, (X,T) €
Corxn X Cnxn, 35 & co-square root of A, if X # 0 and

, XT? - AX =0. (2.1)

Example 1. 'If A € €,«, and B is a square root of A, and I denotes the 1dentity
matrix in €,xn, then (I, B) is a co-square root of A.

Example 2. Let z be an eigenvalue of A, and let w be a complex number such that
w? = z: then the kernel of (w?] — A) is nontrivial. Thus, for any nonzero matrix X € €nxn
such that (w?] — A)X = 0, the pair (X, wl) is a co-square root of A.

Definition 2.2. Let A € € ,x,, and let (X;,T;) for i = 1,2 be co-square roots of A.
We say that the patr {{X1,T1), (X2, T2)} s a fundamental system of co-square roots of A,
if the block partitioned matriz

5 X
V = : ; (2.2)
XiTy X:Ts

in inveritble in o, x2n-

Example 3. Let A € €, «,, and let us suppose that T;,T; is a pair of square roots of
A; then the pair {(I,T1),(,T:)} is a fundamental system of co-square roots of A, if and
only if the matrix Ty — T is invertible; see lemma 1 of [9] for details.

The next result provides a characterization for the existence of a fundamental system
of co-square roots of a matrix A, and it shows that for a very general class of matrices
A € €, «, the construction of a fundamental pair of co-square roots 18 availlable.

0 [
Theorem 1. Let A € C,x, and let Cp = A B ] Then A admits ¢ fundamental

system of co-square roots, if and only if the matriz Cp, 13 similar to a block diagonal mairiz
J; 0
o S|

and PJ = C P, then the pair {(Py1,J1), (Piz,J2)} defines a fundamental

J of the form J = where J; € €, xn fort = 1,2, In this case, if P =

Py, Py
| P21 Pay

‘system of ca-.:equare roots of A.
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Proof. Let us suppose that PJ = Cp P, where P = (F;,) ig an invertible block partitioned
matrix with F;; € €, x,,, for 1 <1, 7 < 2. From the equality

P Pia P, Py, (2.3)
P P U J:.r Pp  Poo -

PHJ,; — PQ", Pﬂi‘Ii — API,;, = 1, 2. (24)

From (2.4) we have Py;J? = APy; for i = 1,2. Thus (P, 1) and (P12, J2) define a pair of
co-square roots of A, because from the invertibility of P and (2.4) one gets P;; # 0, P12 # 0.
Also note that {{P1,/1), (P12,Jz2)} iz a fundamental set of co-square roots of A because
the corresponding matrix ¥V given by [2 2) takes the form

P11 Pll Plﬂ — P
Py Jy Pu-fz Fzy Py .
Conversely, let us suppose that {(X;,7}),(X3,7T3)} is a fundamental system of co-square
roots of A. Then from Definition 2.2, the matrix V defined by {2.2} is invertible and an easy

computation yields

we have

V =

V[Dia.g(Tl, Tg)] — CLV

Hence the resulf is proved.

Let C;, be the companion matrix introduced in Theorem 1. An easy computation shows
that ¢{(CL) = {z € €; 2 € 5(A)}. The next lemma will be used to find concrete conditions
in terms of matrix A4, in order to know when the matrix C;, satisfies the condition of Theorem

1.

Lemma 1. Let A€ €, x,, and let w € 0(CL). Then for any positive integer g > . the
Jollounng equality holds:

dim ker(Cr — wi)? = dim ker(Cr + wI)?. (2.5)

~ Proof. Let zi,z3 be vectors in € ,y;. First of all we will prove by induction that

[ 1 ] € ker(C, — wl)? if and only if [_xl] € ker{Cp +wI)9. If ¢ = 1, then the condition
o Z2

I ; . . s
€ ker(Cr — wl) is equivalent to the condition
2

—wzy + zo = 0, A‘Il — wzp = 0. (2..6]

Now, condition (2.6) means that € ker(Cy + wli).

L T2 .
Let us suppose that for g—1 the above property is satisfied, and let [j € ker(Cr—-wl)9.
Then we have r o7 1er P 9
— W z —w
A -—wI] ..-"‘;] | o4 —wf] [:;] e et

where
V1 = —wz) +z2; Y2 = ATy — w32, (2.8)
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By application of the induction hypothesis and from (2.7)—{2.8), we have that (2.7) is equiv-
alent to the condition

—V1 wi) — 22 —1
= € ker(C ) L 2.9
m] [Aml_wg] er(Cy, + wl) (2.9)

Condition (2.9) means that

wli I ]° z z
—ZI —Z1
= (C i = .
Now, considering that the application ¥ : € zpx; — € 2nxi, defined by ¥ ([ "1 ]) =

—xl L » B + |
[ ], is an isomorphism in €3z,x;, the result is concluded.
X2

Theorem 2. Let Cp be the companion matriz of Lemma 1.
(i) If w# 0,w € 0(CL), then for g 2 1 the following equality holds:

dim ker(Cr — wI)? = dim ker(A — w?I)7. (2.10)
(ii) If p 1s a positide integer, then

dim ker C2P*! — dimker C?? = dim ker C3P*? — dimker ;7"

= dim ker A?*! — dimker AP. (2.11)
Proof. (i) An easy computation yields that C? = [Diag{A, A)| and hence we have
(C? — w?I)? = Diag|(A — w?1)%, (A - »°1)%], ¢2>1. (2.12)

From (2.12) we get
dimker(C2 — w2I)? = dimker(Cz + wl)? + dimker(Cp — wI}?
= 2{n —rang(A — w?1)9). (2.13)
From (2.13) and Lemma 1, it follows that
2 dim ker(Crp — wI)? = 2dimker(A — w*I)"
and hence (i) is proved.
(ii) It is sufficient to consider the following relationships:

AP 0 0 AP
e = ], C'ipH:[ ], for p > 0.

0 A APt 0

Remark 1. From Theorem 2 we have all the information about the Jordan blocks of
the Jordan canonical form of the matrix Cyz, in terms of the corresponding Jordan blocks of
the matrix A. In fact, for each Jordan block of A with dimension the one corresponding to
the eigenvalue z € o(A), z # 0, we have two Jordan blocks for the matrix Cp with the same
dimension and corresponding to the eigenvalues —z!/2,21/2 of Cr. The nilpotent Jordan
blocks of A, this is, those corresponding to the eigenvalue z = 0, provide Jordan blocks for
Cp with dimension twice the dimension of the Jordan blocks of A.

In order to construct a fundamental system of co-square roots of A, this is, in order to
determine P;; and Pj,, we can find a Jordan basis of Cf, whose vectors define the columns
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of P. Also, by application of Kronecker products!®, and since the blocks J?, appearing in
Theorem 1, for ¢t = 1, 2, are upper triangular, the algebraic equations

PuJ2=AP;, 1=1,2

may be solved in an easy way from the knowledge of the blocks J;, for 1 = 1,2; see [8§],
chapter 12, for details.

§3. On the Matrix Differential Equation X — AX(t) = F(¢)

We recall that with the standard change X = ¥;, X(1) = Y., the Cauchy problem
X)) - AX(t) =0, X(0)=Co, XW0)=C;, A,Co,CL€Cnxn (3.1)
18 equivalent to the first order linear system
Y,
: } . (3.2)

Y,

: Co

, Y =
Ci

Y{l}[t) =CrY(t); Y{0) =

C
Thus problem (ﬁl) has only one solution X(¢) given by X({t) = [I,0] exp (tCL) [ Cﬂ
1

(see [2], [6], p.122). The next lemma provides a representation for the general solution of
the matrix equation (1.1) that is analogous to the well-known representation of the general

solution of (1.1) for the scalar case.

Lemma 2. Let us suppose that the mairniz A € C,x, has a fundamental pasr of co-square
roots (X;,T;),t = 1,2. Then the unigue solution of problem (3.1} takes the form

X(t) = X1 exp(tTl)C + X2 Exp(tTg)D, (3.3]
¥ ” i Co “

=y -1 3.4

D | ¢ | (3.4)

where V' 1s given by (2.2).
Proof. If C,D are arbitrary matrices in € ,x,, then X; exp(tT)C and X, exp(tT3)D

are solutions of the differential equation (1.1) because (X;, T;}, for ¢t = 1,2, are co-square
roots of A. In order to find the unique solution of (3.1) that satisfies the Cauchy conditions

of (3.1), the matrices C, D appearing in (3.3) must verify
Cy = X(0) = X;C+ X;D; C; =X0) = X\T\.C + XoTo D (3.5)

because from (3.3) we have X1} {t) = X, T} exp(tT:)C+ X, T2 exp(tT2) D for all real numbers
t. System (3.5) may be written in the form

e X1 X |[c] [c
D XT: . |{|D] |}
As (X;,T;), for + = 1,2, define a fundamental pair of co-square roots of A, the matrix V is

invertible and the result 1s proved.
Now Lemma 2 suggests that in an analogous way to the scalar case we can obtain a

variation of the parameter method for solving equation (1.2), as it happens for the scalar

case.
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Theorem 8. Let us consider problem (1.2) where F 1s a continuous C,x,, valued matriz
function, and let us suppose that A has o fundamental pair of co-square roots (X:, Ti)is =
1,2. If V is the block matriz defined by (2.2) and W = V1 = (W;;), where W5 € Cpxn,
for 1 <1, j <2, then the general solution of problem (1.2) is given by the ezpression

X(t) = X, exp(tT1)C(t) + X2 exp(tT2) D(t), (3.6)

t

C(0) € Coxn, Clt) = C(0) + f ool —a T Wia Fla)ds,

0

t

D(0) € Cpnxn, D(t)= D(0)+ [ exp(—sT5)Waa F(s)ds. (3.7)
_ 0
Proof. Note that with the standard change X = Y;, X{1?) = Y,, and considering the
equivalent first order extended linear system, problem (1.1) has only one solution when the
Cauchy conditions are prescribed {[6], p.122}.
Let us suppose that C(t), D(t) are matrix functions satisfying the system

X, exp(tT1) X exp(tTz) | [ c(y) | 0
— (3.8)
Xlzl exp(tTy) XoTpexp(tl:) | D{l)(t) ] F(t)
that may be writfen as
(1)
V [Diag(exp(tT}), exp(tT2))] [ E{I)g; == [ F{zt) l (3.9)

where V is defined by (2.2). FOr these matrix functions C(t), D(t), the function X (t) defined
by (3.6) satisfies

X)) = X, Ty exp(tT1)C(t) + X3Tz exp(tT3) D(t), (3.10)

because from (3.8) we have X exp(tT;)C (1) (t) + X2 exp(tT;) D! (t) = 0. By differentiation
in (3.10) we have

X2 (t) = X, T2 exp(tTy) C(t) + X T2 exp(tT) D(t) + F(t), (3.11)

because from (3.8} we get X, T exp(tT1)C1M (t) + X T exp(tT2) D) () = F(t).
From (3.6) and (3.11) it follows that

X@(8) - AX(t) = (X1 T? — AX1) exp(tT1)C(t) + (X2 T3 — AX3)
-exp(tT2)D(t) + F(t) = F(t)
because X; T2 — AX; = 0 for 1 = 1,2. Thus X(t) given by (3.6), where C(t), D(t) are defined

by (3.8), is a solution of problem (1.2) on any interval containing the origin and where F is
continuous. From (3.9) we get

[c) | [ clo)
- D(t) | | D(0)

In order to determine matrices C(0) and D{0), note that taking ¢ = 0 in (3.4) and (3.10),
we have

+ j; [Diag(exp(—sTy), exp(—sT2)]V " [ F?s) ]d" (3.12)

X(0) = X;C(0) + X, D(0),
X1 (0) = X, T,C(0) + X, T> D{0)
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A0 el B B c) | _. | ¢l
[ X“}(D) ] - [*XITI X231y ] [ D({]) ] =¥ [ . (3‘13]

From (3.12) and (3.13) the result is proved.

Now we will use the representation (3.6)~(3.7) of the general solution of equation (1.2} to
find existence and uniqueness conditions for solutions of problem (1.4) as well as an explicit
expression of these solutions in terms of data and a fundamental pair of co-square roots of

the matrnix A.
For the sake of clarity, in the statement of the next result we introduce the following

block matrix:
" [ B\ X+ EX T, Ei: X2 + Eo X3T, ]

(FIX], + F2X1T1) EIP[L’ITll (F1X2 + FngTj) EIP(GTQ)

Theorem 4. Let us suppose that A € € ,«, has a fundamental pasr of co-square roots
{(X:,T3),¢ = 1,2}, and let F(t) be a continuous function on the interval [0, al. Let S be
defined by (3.14) and let Q be the mairix

Q=-(FX+ F2X1T1.) /: exp((a — 8)T1 )W 12 F(s)ds

»

or

(3.14)

—'(Fj_Xg St FngTg) /ﬂ exp([a = SJTg]Wng(E)dE (3.15}

where V™! =W = (W,;).
(i) If the matriz S is invertible, then problem (1.4) has only one solution X (t) defined

by (3.6)-(3.7), where 20 | < g1 [ 2

| Do | Q
(ii) If S 1is singular, then problem (1.4) is solvable, if and only if the following property
1s satisfied:
O O
SST = ; (3.16)
Q ¢
In this case the solution set of problem (1.4) is given by (3.6)-(3.7), where
C(0) O
= g+ I, -~ STS)Y 3.17
o | =5 @] #tm-sva -

and Y 13 an arbitrary matriz in Co, ...

Proof. From Theorem 3, the general solution of equation (1.2) is given by the expression
X(t) defined by (3.6)—(3.7), where C(0) and D(0) are arbitrary matrices in €, x,. In order
to find solutions of problem (1.4}, we have to determine appropriate matrices C(0) and
D(0), such that placed in (3.7), the corresponding function X (t) defined by (3.6) satisfies

the boundary value conditions of problem (1.4). By the expreasions {3.6), (3.10) and the
proof of Theorem 3, it occurs if the matrices C = C(0) and D = D(0) satisfy the following

algebraic system:
E, (ch -+ XED) + EQ(X;[TlC i XQTED) = (J,

Fi(X, exp(aTl)C'(u)f X3 exp(aT;)D(a)) + F2(X1T; exp(aT})C(a) (3.18)
+ X212 exp(aT;) D(a)) = 0.
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Now, taking into account that C(a) = C(0) + f exp(—aT }W12F(s)ds, and D{a) = D(0)+

0
/ exp(—8Ts)Waz F(s)ds, from (3.15) and (3.18), we get that matrices C' = C(0) and D =
0

D(0) must verify the algebraic system

[5)-(2)

It is well known!'®l that system (3.19) is solvable, if and only if the condition (3.16) is
satisfied, and that in this case the solution set of system {3.19) is given by the expression

0
Q

Remark 2. In order to characterize the existence of solutions for the boundary value
problem (1.4), we have to consider whether the condition (3.18) is verified and we need to
compute S*. An easy method for computing St may be found in [3, p.12]. In the next
example we show a problem of the type {1.4), where it is not possible to find a pair of square
roots of the matrix A satisfying “the conditions required in [9], and for which the method
presented here providés the solution of the problem.

(3.17). If § is invertible, then the only solution is §~! . Hence the result is established.

Example 4. Let us consider the problem (1.4) in €252 with the following data:

1 1 1 0 1 0. 1 1 . 0 O
1 1 1 1 0 1 -1 —1 1 1

F(t) continuous, a > 0. It is easy to show that matrix A has only two square roots given
by Ay = 2~1/2A, A3 = —271/24, and as A is singular, the difference 4; — A2 = 21/2 A is
singular. Note that o(A) = {0, 2}, and ¢(CL) = {0,2/2,—-21/2}. Thus the Jordan canonical

0 0
form of A takes the form J, = 5 5 [ From Theorem 2, the Jordan canonical form of
C'L is given by
0 1 O 0
c 0 O 0 0 1 21/2 ¢
Jes=10 0 a2 o — Jl=[0 0]’ J’=[o —2112]'

0 0 0 —21/2

Also from Theorem 1, there exists a fundamental pair of co-square roots of A, defined by
(Pu,Jl), (.Pu,.fg), where Pqu = APH and PmJg - A.Pu. As le = U, this system 18

equivalent to solving

[1 1] -1 1
| P, =0 d P, = 0.
1 1 11 an [1 __1] 12

The set of all nongero solutions of these equations is given by

d

b
P11=[ = ], |ﬂ|2+[b|2>ﬂandPu=[z J

. 3 ] c|? + |dJ? > 0.
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1 0 1 1
Takinga=c=d=1,b=0, WEgEt P11= 1 D],P12= [1 1],,a.ndthecnrr¢-
sponding matrix V defined by (2.2} is invertible with
1 o 1 1 1/2 —1/2 0 0
-1 0 1 1 0 o 1/2 1/2
— s NI s
¥ o= 0 1 21[2 _21[2 ’ W=V — 1/4 1/4 (21[24)—1 (21{24)—1
0 -1 242 -a13 1/4  1/4 —(2'/24)"1 —(21/24)"!
In our case the matrix 5 defined by (3.14) takes the form
0 1 2 +21/% 2 —21/2
e | 3 3 1+ 2'/2 1 - 242
o o 2 2

0 0 -—2+42%2exp(a2'/?) —2— 2%/2 exp(—21/24)

As S5 18 invertible, from Theorem 4 — (t), for any continuous function F(t), problem (1.4)
with the above data has only one solution given by the corresponding expressions (3.6)-(3.7).
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