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Abstract

In this paper we present a posteriori exror estimator in a suitable norm of mixed
finite element solution for the two-dimensional stationary Stokes problem. The estima-
tor is optimal in the sense that, up to multiplicative constants, the upper and lower
bounds of the error are the same. The constants are independent of the mesh and the
true solution of the problem.

§1. Introduction

The stationary Stdkes problem arises from stationary flow of an incompressible viscous
fluid with a small Renord’s number. However, it is the basis of handling the complete Navier-
Stokes equations. In this paper we consider solving the Stokes problem by the mixed finite
element method. It is difficult to solve the Stokes problems with singularities, including,
for example, corner singularities. The adaptive finite element method is, however, a class
of effective method for solving the boundary value problems with singularities. A posteriori
error estimator of finite element methods presents an appreciation for the computed results.
It is the basis of the adaptive refinement mesh algorithm.

So far, the theorecal problems of a posteriori error analysis for ﬁmte element methods
of the boundary value problems of one-dimensional elliptic equations have been solved by
I. Babuska and others (see [9]-[12]). For two-dimensional problems there are also a large
number of works by 1. Babuska and his co-workers. They have presented a posteriori error
indicator of the finite element method for the Dirichlet problem of Poisson equation ([1]-[5]).
The indicator in [3], for example, is based on solving local Dirichlet problems in the patch of
elements surrounding each vertex in the finite element mesh. And in [1], using conforming
bilinear square elements, I. Babuska and A. Miller show that error indicators can be based
on jumps in the normal derivative of the computed solution at interelement boundaries.
Such schemes as a rule require less computation than the ones involving the solution of local
Dirichlet problems. E Wei-nan and Huang Hong-ci extended some results of 1. Babuska to
the case of more general conforming elements (see [7] and [12]}. In [6] R. E. Bank and A.
Weiser present error indicators for the Neumann' problem of an elliptic equation by solving
a Jocal Neumann problem in each finite element.

In this paper, a posteriori error estimator of mixed finite element solution for the two-
dimensional stationary Stokes problem is presented in a suitable norm. The estimator is
optimal in the sense that, up to multiplicative constants, the upper and lower bounds of
the error are the same. The constants are independent of the mesh and the true solution
of the Stokes problem. Morecver, they are not large in practice. The estimator is based on
solving local Stokes problems in the patch of elements surrounding each vertex in the finite
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element mesh. In this scheme, the Dirichlet boundary conditione ensure well-posedness of
the local Stokes problems. The estimator we obtain finally consistz of the indicator at each
element and those indicators which are based on the computation of the norm of the local
residual of the Stokes equation and the jumps in the computed pressure solution and in
the normal derivative of the computed velocity solution at interelement boundaries. Two

numerical examples in this paper support the above theorecal resulta.
In Section 2, we shall introduce the resulis of the mathematical theory and the mixed

finite element methods of the Stokes problem, explain the basic notation used in this paper
and present a partition of the solution domain, and give an approximate computing method
for the LBB constant of each element. In Section 3, the main theorems in the paper will be
proved and a posteriori error estimator will be presented. Finally, two numerical examples
in Section 4 support the results in Section 3.

§2. Preliminaries

Let {1 be a bounded connected domain in R? with a smooth boundary I'. We consider
the Dirichlet problem of Stokes equation

—v-?ﬂﬁ'—l-gr'id-p:f' in {1,
div =g in {1, (2.1)

3y 4u=0 onl’

where the velocity function #(z) and the pressure function p(z) are unknown, v is a viscous
coefficient, and f(z) and g(z) are the given functions. For simplicity, we assume that » = 1.

In this paper, H™{((2) with m being an integer denotes the usual Sobolev space. HZ ()
denotes the space in which the functions are in H*({1) and their traces are zero. The norm
of H} () is defined as

a5 { /fn [(9u/821)? + (3ufazg)“]d:r}1_m, u € HL(O).

Correspondingly, the norm of (H2(0))? is defined as

@lo = llulfa+ ulial’? &= (u,u) e (HI{O))?.

Denote V(Hg{{1)}? and W = L3(fl) = {q € L?(N1); ff ¢(z)dz = 0}.
The variational form of (2.1) is :

Find |4, p] € V x W, such that | |
a(i, 9) + b(7,p) = (f, 7) forall v €V, (2.2)
b(#,¢) = (—g,9) foralige W

where

a(%, ¥) =[/.(gr‘é.du1 - grad v; + grad u; - grad vp)dz,
0

b(0,0) = - [ v aalz)as,

(ﬁt?)=/j;f-ﬁd:: and (g,q}=/-/;lg-qda:,
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It is obvious that there exists a constant # > 0 depending only on {1 such that

b s |5(7, ¢)1
€W gev |Tl1.a - [lallo,

=P

where the constant 8 is called LBB constant of {1 (see [8]). Moreover, we can easily prove
the following lemma. ‘
Lemma 2.1. For any ¢ € L3(Q2), the followsng tnequality holds:

b(v
sup L2 < g
vev |¥]1a
b vl
Therefore, 0 < § < 1 and |||q]|| = sup |E_TT’ a) i8 a norm in W which is equivalent to the
zev |Y[1,0

norm ||glli,qo forge W.

One can prove that, if f € (H~1(1))? and ¢ € L3{{1), then there exists a unique
solution of (2.2), [&, p| € V x W. Moreover, when the boundary is sufficiently smooth, and
if { € (L?(M))? and g € H(f1) N LZ(£1), then the unique solution of (2.2), [&,p], is in
(H?(2))? x H!(f1) and there iz a constant C' > 0, such that

s Nl#llz0 +lplia < C- (ifllon + llgli0)
o #

where the constant C is independent of the solution 4, p| (see [8]).

Now we give a partition A = {kj-};?;l of the domain {). The partition 1s either rectangular
or triangulr. And we assume that A 18 a quasiuniform regular partition, i.e., the following
conditions are satisfied:

a) There exists a constant ¢ > 0 such that 0 < o < h;/p;, for any k; € A;

b) There exists a constant 4 > 0 such the 4 < h;/hp < 1, for any k; € A
where h; denotes the diameter of k,, p; that of the maximum circle contained in k;, and

ha = max{h;}.
3

For the rectangular partition, set
S*={peC(Q); ph, €Qalk;), 7=1,---,m};
and for the triangular partition, set
s*={peC(); ol € Pa(k;), j=1,--,m},

where Q2(k;) denotes the space spanned by the bi—quadratiﬁ polynomials on k,;, and Po(k,)
the space spanned by the quadratic polynomials on k;. We take

Vo =(S*nH{O))?2 | (2.5)

Wy = {q € Lg(ﬂ): QIir-j = const., 3 =1,-- :m}

Obviously, V), C V and W), C W. A mixed finite element approximation can be written as

Find |4y, ps] € Vi, X Wy, such that ~
a(¥, 0) + b(v,p) = (f,0) forall €V, (2.6)
b(i,q) = (—g,q) for all g € W,.
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It can be proved that (2.8) has a unique solution, and an asymptotic error estimate is as
follows:

== o ] FiLs { i » may - " - f sy
€~ dnl1,0+lp—pallon < C {ﬂggh |G - Ol1,0 + of {lp—qllo.a},

where the constant C is independent of the solution |2, p] and A (zee [8]).
In order to obtain a posteriori estimator of mixed finite solution [#n, pn], we consider a
partition of unity

M
®={é1, . dm}, b€ HY(Q) ,i=1,--- M, ¢i(z) > 0, _E¢-:{-"-‘)=1, ze€l (2.7)

of the domain {2, Supp ¢; and Supp °4; denote the support of ¢; and its interior, respectively.
It is always possible to partition the set such that

r{®)
'i':U(I’;, ‘I’;f“lfllj-:ﬁ for | £ 4 . (Z.Bﬂ)
i=1

and that the interiors of the supports of the members of each ®; are disjoint, that is
»

$i,¢; €® and i#7=> supp %°4; N Supp °®, = @. (2.8b)

o

For instance, it suffices to let each ®; consist of exactly one. The smallest integer r for which
(2.8) holds is the overlap index r(®) of P.
For given @ = {¢;}, and A = {k;} 1, we define the index set

=1

X3 -___XJ'(‘I':&‘) ={s = {1:'”:M}ikjn supp uﬁf'i 0} 7= l,---,m. (2*9)

Then (2.8) implies that

Z $i(z) =1, foranyz€k;, j=1,---,m. ~ (2.10)
13
The maximum cardinality max{|x;f;7 = 1,- -+, m} will be said to be in intersection index

x(®, A) of ® and A.

We consider a family 7 of triples {®, A, V,} each of which consists of a partition of unity
® (cf. 2.7)), a set partition A and a finite element subspace V), of V. The family ¥ will be
sald to be admissible if it satisfies the following four conditions:

1°. There exists a constant r(¥) > 0 depending only on 7 such that

r{®) <r(¥), V(@ 4,V)e7?.
2°. There exists a constant x{F) > 0 depending only on ¥ such that
X®.8)<x(7), V@AW EF
3°. There exists a constant Co(#) > 0 depending only on 7 such that

|D*¢i(2)| < Coh; ', ¥z e, i€x;(®,4),0< al<1, V(D A V) e F
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where a = {a;,a2), |a| = ay + az and a; 2> 0 integer.
4°. There exists a constant C;{F) > 0 depending only on 7 such that for any (®,A,V}) €
7 and any ¥ € V, we can find a function ¢ € V}, for which

15— Pller, < Cih'*|0lee, V1 €A, 0<s<1

where k is a standard reference element.

The following lemma, which was proved in [3], will play an easential role in the further
study.

Lemma 2.2. Let 7 be an admissible family of triples (®, A, Vi). Then there emsis a
constant C(F) < oo depending only on F such that for any (®, A, V4),

M
inf 3 |¢i - (F— B < C(FPIF00-
*EVE =1

In order to obtain a posteriori error estimator of [A, pn], we also need to estimate the
LBB constant f; of each element k;,7 = 1,---,m, where

by (7, q)
, B; = o f sup _,l k,(ﬂ, QH
. e€LF (k) ge(H}(k;))? 1] 1,%; || 2llo.x;

where

b, (¥, q) = -j:/;: div - Ugdz.
j

It is easy to see that B, is an invarious value for rotation and reflection transformation.
Therefore we have

Theorem 2.8. The LBB constant of k; depends only on the shape of k;, but B, s
independent of the size of k;.

Let k be a reference element of the finite element mesh A = {k;}72,. For the rectangular
partition, k is a square, and for the triangular one k is a standard equicrural and night

triangle. Set
= inf gup ka{u,q)l -
a€Ly (k) ge(H} (k)3 |91, x19]0,%

Since the partition A isregular, and forallk; € & there are affine mappings ¥5,7=1,---,m,
such that F;(k) = k;, associating with Theorem 2.3, it is not difficult to prove
Theorem 2.4. For the above partition A, there ezists a constant & > 1, such that for

all k;
B; 2 B(k)/3 =

where the constant & depends only on the regularity coefficient o. In particular, G = o for

the rectanglar partition.
Since (2.12) is a saddle point problem, one can compute approximately the LBB constant

B(k) of the reference element k by some numerical methods.
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§8. The Main Results

Let &€= @ — @y and €= p ~ p;. Then & and « satisfy the following error equation

{ a{e,0) + b(v,¢) =0, V&€V,

b(€,q) =0, YgeW,. 3]

Throughout this section, we suppose that the family 7 of triples {®, A, Vi } 1s admissible.
Now we estimate the error |e]; o + |||¢|||.
Lemma 3.1. For any function 7 in V, we have

Fr&Va |

where the constant C(F) 13 the same as that in Lemma 2.2, and

STz g |“(ﬂ¢i‘ﬂ+b(¢i'ﬁrf)|_
i - 4 - A,

(3.3)

Proof. For any given function ¥ in V, since ® is a partition of the unity of £, we have

e M(®)

&7 G) + 0T Tne) =] D [aledi- (- T)) + i (7 ), )]

1=1
M
<3616 (5= o) no.
=1

Thus, from Lemma 2.2 and the Schwarg inequality,

Ta EV, TrEV), iy

M M
inf |a(e,V - )+ b(¥ - G, ¢)| < (Z:f"i:iz)u2 inf (Z |4 - (v - ﬁ‘h)lin)lm
=1

< C(%) 9910

Lemma 8.2. There eztsts a function q, € Wy, such that

le — anlloo < B7" & - (f +|él1,a) (3.4)

where 8 and & are defined sn Section 2, and

_ sk 178 _ a(e,v) + b(P, «

n = (E :'7_?) » By = Sup Ll ﬂ].. ( ]l (3.5)
. TEV IU 1,51
J=1 Bupp¥Ch,

1
proof. Let gy, = T f /; edz. Thus q;, i8 a constant in each element and
i

//n.qhdm=[/;]Ed:n:fn(p—ph]d::=0.
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Therefore g, € W}, and

(’-‘ . ‘?h"kj € Lg(k:'): (5 T qmﬂ'h)ﬂ,kj = f./; (E = Q'h) -gpdz = 0,
j

Thus , from the LBB condition, for k; we have

i br. (U, —
o s, S 5 gy DRBEC B (36)

ve(HMk))? [Tk

For any ¢ € (HE,' (k;))2, since

—-bkj.[ﬁ', gn) = —fj; div - ¥gdz = —thkj f-/; div 'vdx =0,
i i

(3.6) implies

b | b . paury
le — gnllox, £ B;'  sup | k_{(u’g) .
se(H (k) 1P11k;

On the other hand, fgr any ¥ € V satisfying Supp®¥ C k;, from (3.1}, we have

bk, (B,€)| = [6(, )| < |a(&; 8) + (T, &) | + |a(&, T)] < (m; + [Elak,) - [Tl

Therefore we have |
”E i Qh“ﬂ.hj < (’TJ’ + lﬂl,kj)fﬁj:

and
. m _ 1/2
e anloq < [0 + eas,)?/ 2]
i=1

< [Z(ﬁ,- + |a11,k1.)”]1’2&/ﬂ < (7 + leh,0) - 6/8,

1

where the constants & and 8 are defined in Section 2.
Lemma 8.8. Let a, B and z be nonnegative real numbers. If = satisfies

22 <(a+h) z+a-b,

.the n

z < (1+v2) (a+ B)/2.

The proof this Lemma is very easy.
Theorem 3.1. Under the above assumptions, we have

Ao+ lllell S C(F) - (2+V2) n+5 - (1+V2) ¢/ (3.7)

here 5 = max(f §] ondie = [lg ~div - Gyllom.
Proof. From the error equation (3.1}, for any 0 € Vi,

| = |a(&, &)| = |a(& & — &) + b(£— th, )| + [B{E, ).
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Thus 5
13,0 <

St inf |a{&, &~ O) + (& — Uy, €)] + |8(F, £)|

S C(F) n-|el,a+ (e €.

For the second term on the right-hand side of the above inequality, if we take g), as that in
Lemma 3.2, then

6(¢, &)

b(ﬁ'— tTh,E B qh)l = |(g — div - Eh,s e qh]l

<llg— div-@ullo,a-lle— anllon £F-¢-(n+ 1€l1.0)/B.

Thus, we have
0 <(C(F)-n+&-¢/B)-leha+2-¢ n/b.
From Lemma 3.3,
e < (1+V2) - (C(F) - +/8),
On the other hand,
[b(7, )| [a(&, 7~} + b(T — ), €]

|a{é, ¥)|
eil| = sup < sup - + sup
el gev |Pha ~ sev |9]1,0] vev 190

. S+ (14 V2)/2]- C(F) n+ (1 +V2) -5 - ¢/(26).

Therefore.

Asa + |llelil < C(F)2+V2) -n+ (1+V3) -5 -¢/B.

So far, we have given an upper bound of |¢];,q + |||¢]||. Now we present a lower bound

of the error norm [€]1,0 + | €[|o,0 instead of |&];.q + |||¢]|].
Lemma 3.4. Let X and Y be Hilbert spaces and X be a subspace of Y. (-,)) and || - ||
denote the snner product and norm in Y, respectively. Then, for any given y € Y, we have

sup "‘ﬁ‘;ﬁ" e (3.9

where 2 € X 1s the projection of y from Y into X.
Lemma 3.5. Let Y be a Hilbert space, and X; be a subspace of Y, =1, -, n. Assume

that any two subspaces X; and X;(t # 7) are orthogonal to each other, Y = @ X;. For any

*I.._

zeY,
I=EEiE?C Y, z; € X;. (3.10)
=1
Then
sup (29 {z“:[ _— m-)l]’}‘f“_
€Y ||$|| imy CXEX ”Ii "

Proof. Since any two subspaces X; and X, (5 # 7) are orthogonal to each other, therefore

Il = (Y23 ) = 3=l

i=1 j=1 1=1
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Let 2; be the projection of y € Y into X;. Then from Lemma 3.4,

Hence

> v, =) (Z%Z%l

|(ylzi)| i=1
sup - = sup = sup
zev ||z ey  |«if €Y ||-‘L'||
> i 1/2
=13 =l = [ l=lP]
s=1 i=1

YUAN WEI

Theorem 3.2. For the error € and £ we have following estsmate of the lower bound

I#ll1,e + llello.a 2 (A/vr(F) + <) /2.

(3.11)

Hi = {13 = Z P; - UV E V} C (Hﬂ (ﬂ]) and IL; = .{div W W e H;)- C Lg(ﬂ).

From (2.8b), for any ¢; and ¢; in $;(s # 7),a(d; -V, ¢; ¢) = 0. Thus H; can be decomposed
into the direct sum of many subspaces of which any two ones are orthogonal to each other:

H=QRQH" with A ={(d=¢ v;4c®,veV}

Let

o

) _ o &) oy [ die)
T ey 9 o T sev 1990

Thus from Lemma 3.5 we obtain

a(é, 8) a(€, ) _ [ 3 (..{1)]2] e

sup sup
FeV |1ﬂ e H; |w|1,n Py

it implies

fla.0 = sup 289 > [Z(*“’)ﬂ] VA

dcV Ell,ﬁ

Along the line of the above proof for H;, we can prove

—( ] 2n2]'?
lell = sup 5 7= >[Z(n )] VD).

Hence

Ao+ llelon [Z(ﬁf” +47] NCE)

A%

“ gev [#: - Tla,0

P L LR RN RV
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On the other hand,

leliq > || div:-€llon = sup I{ div-&,q)| _ — (g — div-iy,q)|
o | g€L3{0) lgllo.c gELI(Q) lgllo,0

{-

Finally, we obtain

.0 =+ ligllo,a = (1eli.a + lelloa)/2 + [E11.a/2 = (3/Vr(F) + ¢) /2.

Now we have obtained the error estimator of the mixed finite element method for the
Stokes problem. But it is not readily applicable to computation of  and n in Theorems
3.1 and 3.2 in practice. For convenience of computation, we shall present another estimator
which is equivalent to that in Theorem 3.1 and 3.2. Here we prove this result only for the
case of triangular partition. The proof of the rectangular partition is similar.

Theorem 8.8. Let f € (L%((1))? and g € L?({1) be given functions. Set
77 = (h?/48) - f 1+ VR Pda + (hy /24 ]; \Jr,[8i/3n — py, - ]|%ds,
# ! ;

¢f = /k lg —div - @adz, 67 =17+p7" ¢, (3.12)
3
m
=35
=1

where I'; = dk; is the boundary of k;,n = fir; the eaterior normal direction and Jr [ - | the
jump value of some funciion on Iy, 1.e.,

Jo;[0Gn/0n — pn - 7] = ) _[(86n/3n|x, — Bin/n|k,7) — (Pals; — palk.d) - Air,]

where kf denotes the 1-th element nesghboring the element k;. Then there exists a constant
C, sndependent of h, [, pl, [4r,pn] and 01, such that

lels,a + |llelll < C1 - 9. (3.13)
If we assume in addition that f € (P,(A))? (t is a positive integer), where
P(a) ={p € C(Q); pli, € P(k;),7 =1, - ,m}, (3.14)
then there exssts a constant Cy depending only on \/;'m, o, 8 and t, such that

lehia + |lellon > C2 - 6. (3.15)
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Proof. First we prove (3.13). It suffices to
prove that there exists a constant C such that

n < C-(zrf )1/2.
=1

Here we only consider the case that n = .
For the other case n = fj, the proof is simihar. ky
Let £3; = Supp °¢; (Fig. 3.1.). Then we have

diam (ﬂ.:) < 2ha < 2“‘:‘!’1: , 31
Viml-- M; j=1,-- Fig. 3.

Therefore, for any ¢ in (HJ((;))?, we have

1913 0, < 4GP 2K - |70, D 1712y < C7hs - 010, (3.18)
F;en,

there k; is an element in {1;, and Fy the common edge of any two elements contained in {1;.
The number of Fy in ﬁm nbvmusl}' less than or equal to x(¥).

For any v € (H]"(ﬂ Supp 0 C {1;,

Vi, - Vidz — f P, div -tTd::]
k

weasiga[[ 1 3 [

kyE; k

f (f+V’uh—sradPh) vd:c— Z f Jpj[aﬁ‘hjan—Ph-ﬁ] . gds
1

F;€0,
& e ) ) o i 5 1/
< | f+ V?@nllo.e - [|Fllo,n; + { E | JF;186n/On — Pr '“]”L?(Fj]} [ E ||3||L=(Fj}]

Fiefl; Fi;ell;

{C"h, ||f+v’ullun.h+0"[}: hil|Jr,; (@8 /3n — P - n]ll:,n(pjﬂ*} 0]1.0;-

Fyell;
Thus
m m .
=5 4 < 2{40’ S S Bk|f+ V2 dz/y
=1 t=s k,; CI);
+C"E Z _,*/ IJrjlaﬁ'hfan - Phr'i]Fds}
kC0y Lj
I‘ -ﬂk

<zr(9'12{4cﬂ W3k;|f + V3a Pz 4O - by f T, |88 /0n — Puii|[*ds )
=1 .

4]

T DL B

=1
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Now we prove inequality (3.15). Since

[f"‘v?“h:ﬁ')‘l' f JF;IP};H auh/cﬁn] - vds
F,Eﬂ;
sup

Fe(H1(0,))? V1,0

fs

For any given F; C {1;, let F; = k; Nk,, where
k; and k, are contained in {2;, and let {; and
I3 be the other two sides of k; (Fig. 3.2). ,

Let 2
R f =+ ?guh,
and
Fig. 3.2
VE—{UE(H (klukz)F /:/ R - 5dz = 0}.
kiliky
It is easy to prove that V5 is non-empty and Vs C (H3(0))*. Thus
’
:[ Jr,|Puii — Bily /n] - 5ds) | / T, |Pufi ~ 3in/3n) - Uds|
i > sup — - - > sup Ei —
ﬂEVﬂ |u|1,k1Uk= FEVR |u|11k1 Wkg

1901, 21911, 5,

sup
R.-9dzm0 |"T|1;k!
'hl Ul’ == )

L | Je, Jr,[Pafi — 3t /) - 5ds
k3 '

Let § = Jp;|Pni — 84 /3n]. By an affine transformation one can transform kg to k
which i8 the standard element. The transformed functions and variables are denoted by the
superscript “A”.

Let

|f};5-§d5‘|

812 (#)

¢(3,R) =

[[#5a=o

illll.llj

Since 5 and R wrein e fnite dimensional space (P,(k))?, the minimum value fu of £(§ f’t’]
in (P;(k))? can be reached. Therefore

£(5,R) > ¢ >0

where £ > 0 depends only on t.
By an affine transformation we can turn k back to k3. Thus we have

fis 2 C - hy? - || Jp,[Ra - 7t — 88 /00 ||L3(ry)-
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Since the number of F; C €}; is not greater than 7(¥), we have

32202 T hillJey | Paii — 3 /0nllEae, } /(7).

FiCHLl,

On the other hand, since f + V24, € (P.(A))?, one can prove that

2o ¥ R f |7 + V2, da ) /(7)

F;Cl) k i
(see {10]). Therefore
# =Y 1223 3 (h/a8)f + Vanlis,
$=1 i=1 k; CQ
+5° 5 (hi/24) T, [Puii — itn/0nml|Bagey } 2 € 313
i=1 F;Cq; o

According to Therorem 3.2, finally we can obtain (3.15).

Remark 1. It seems that the assumption f € {F:(A))? is not natural in Theorem
3.3. But in computﬁlg a posteriori error estimator and getting a finite element solution,
the computation of the integral value of fi (z) is involuved. In practice, however, for general
function f{::) we always compute the integral value by the Gauss quadrature formulas. In
fact, at this time one has assumed that f(z) € (R.(A))2.

Remark 2. In Theorem 3.3, the numbers 48 and 24 in (5.12) are determined by means
of the results of the estimator, obtained by Babuska, of the finite element method for the
Dirichlet problem of Poisson equation. The results of numerical examples show also that if
we take such coefficients in (3.12), the constants Cy and C; in (3.13) and (3.15) will be near
to 1. Such a result is just what we wish for.

§4. Numerical Examples

In this section, we present two numerical examples which support the above theorecal re-
sults. We employ the conforming square bi-quadratic elements for 4, and constant elements
for pp in both examples. v

Example 1. In the problem, v = 1, {1l = (0, 1) (1, 1)
{{z,v); 0 < z,y < 1} (see Fig. 4.1), and : :
f_.(:t, y)= (fl (Ia y)! fi(::l y])T:
olz,4)= —3 — =Py Pl (5 - 2)(y - 1)

+22(5y — 2)(z — 1)),
z? (5y — 2)(z — 1)] - 50 %
where Fig. 4.1
filz,y) = —g — g~ 1/3y=1/3{54%(1 — y) — z%(20y + 3) + 20zy],
f2(z,y) = -—; s g~ 13y~ 1/3[523(1 — z) — y?(20z + 3) + 20zy}.
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For this problem there exists an analytic solution:

#(z,y) = (ui(=, v), ua(z, ¥))7,
ur(z,y) = 2z - D)y*P(y - 1), ug(z,y) = 25 (z — 1)y*3(y — 1),
p(z,y) = —(2/3)[a12y5/3(y — 1) + 253y~ 1/3(z — 1)] — 9/44.

Example 1 is a Stokes problem of which the pr:esaure solution and the partial derivative
of the velocity solution are singular at (0, 0). We can compare the true error of the finite
element solution with a posteriori error estimator presented in Theorem 3.3. Let P =
(|1€11,0 + ll€llo,0) /7. Then we have the following table.

m  [el,0+ |lello.c n p
16 0.64326386 x 10~!  0.70648597 x 10~ 1.0083

25 0.59469328 x 101 0.69790280 % 10~! 1.1736
36 0.55920162 x 10~ 0.68078825 % 10~! 1.2174

In the table we can see that the constants C; and C; in Theorem 3.3 are not large since
p 18 not large.
Example 2. Solve problem (2.1}, where

({(z,4);0<2z<05and 0<y<1,0r05<z<1and05<y<1}

(see Fig. 4.2) and
filz,y) = falz, ) =1, g(=z,¥)=0.

(0,1) (1,1)

2

0 (3,0)
Fig. 4.2 Fig. 4.3

Example 2 is a Stokes problem for which there exists a concave angle in its domain
{l. The analytic solution does not exist for the problem. But, in general, the solution (€, pl
changes rapidly at the neighborhood of the point (0.5, 0.5) where the concave angle appears.
Hence, the errors in the elements which neighbor the point (0.5, 0.5) are larger. We separate
the error indicators at all elements computed by means of thenrem 3.3 into four classes. The
error indicators at the elements in Class L are between 0.09 x L to 0.09 x (L+1). Figure 4.3
illustrates the distribution of the elements of the various classes. From Figure 4.3 we can see



44 YUAN WEI

that the elements at which the error indicators are larger are generally in the neighborhood
of the concave angle poinf (0.5, 0.5). This shows that the error indicator approximately
equals the true error at each element. _ |

Both examples show that the posteriori error estimator presented in Section 3 is a better
estimator. |
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